1
|
Wang Y, Wu J, Lian T, Wang Y, Zhang F, Li X, Xu Y, Liu S, Li Y. Exploring chemical markers and identifying phenolic markers using a metabolomics strategy and chemometrics to study the different origins of defatted Coix seed. Food Res Int 2024; 194:114864. [PMID: 39232506 DOI: 10.1016/j.foodres.2024.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Coix seed, a prevalent medicinal and food-homologous plant, is extensively consumed in Asia. It has various pharmacological properties, such as anti-inflammatory and anticancer effects. Coix seed oil, as its main component, is widely produced. However, during the industrial production process of Coix seed oil, substantial byproducts are produced, namely, defatted Coix seeds, which are also worth researching. Currently, it remains unclear whether there will be differences in defatted Coix seeds obtained from different geographical locations, with previous studies reporting that phenolic compounds in defatted Coix seeds have a significant utilization value. In this study, firstly, the TPC and TFC of samples collected in three temperature zones were detected. Subsequently, UPLC-Q-TOF/MS was used to analyze the samples, and a metabolomics data processing strategy and chemometric analysis method were established. We have confirmed the presence of flavonoids and phenolic compounds in 30 batches of Coix seed from different temperature zones in China, and concluded that the overall quality of Coix seed from different batches is relatively stable. With the established strategy, 12 characteristic chemical markers were identified, and 5 valuable phenolic chemical markers were selected for distinguishing the origin of Coix seed and evaluating the quality of defatted Coix seed. Among them, proanthocyanidin A2 has the highest content in defatted Coix seed in subtropical regions, while the content of caffeic acid, naringin, rutin, and chlorogenic acid decreases from north to south. The strategy proposed in this study may provide some basis for the quality control and rational use of defatted Coix seeds.
Collapse
Affiliation(s)
- Yuming Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Junke Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Tingting Lian
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuyu Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fangfang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanyan Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Shiqiao Liu
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Dai J, Liu Z, Ma L, Yang C, Bai L, Han D, Song Q, Yan H, Wang Z. Identification of procyanidins as α-glucosidase inhibitors, pancreatic lipase inhibitors, and antioxidants from the bark of Cinnamomum cassia by multi-bioactivity-labeled molecular networking. Food Res Int 2024; 192:114833. [PMID: 39147522 DOI: 10.1016/j.foodres.2024.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
This study examined the suppressive effects of 16 selected plant-based foods on α-glucosidase and pancreatic lipase and their antioxidant properties. Among these, the bark of Cinnamomum cassia (Cinnamon, WLN-FM 15) showed the highest inhibitory activity against α-glucosidase and the highest antioxidant activity. Additionally, WLN-FM 15 showed promising results in the other tests. To further identify the bioactive constituents of WLN-FM 15, a multi-bioactivity-labeled molecular networking approach was used through a combination of GNPS-based molecular networking, DPPH-HPLC, and affinity-based ultrafiltration-HPLC. A total of nine procyanidins were identified as antioxidants and inhibitors of α-glucosidase and pancreatic lipase in WLN-FM 15. Subsequently, procyanidins A1, A2, B1, and C1 were isolated, and their efficacy was confirmed through functional assays. In summary, WLN-FM 15 has the potential to serve as a functional food ingredient with the procyanidins as its bioactive constituents. These results also suggest that the multi-bioactivity-labeled molecular networking approach is reliable for identifying bioactive constituents in plant-based foods.
Collapse
Affiliation(s)
- Jun Dai
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zihan Liu
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Lei Ma
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Chunliu Yang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ligai Bai
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Qi Song
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Zhiqiang Wang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Maestri D. Groundnut and tree nuts: a comprehensive review on their lipid components, phytochemicals, and nutraceutical properties. Crit Rev Food Sci Nutr 2024; 64:7426-7450. [PMID: 39093582 DOI: 10.1080/10408398.2023.2185202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The health benefits of nut consumption have been extensively demonstrated in observational studies and intervention trials. Besides the high nutritional value, countless evidences show that incorporating nuts into the diet may contribute to health promotion and prevention of certain diseases. Such benefits have been mostly and certainly attributed not only to their richness in healthy lipids (plentiful in unsaturated fatty acids), but also to the presence of a vast array of phytochemicals, such as polar lipids, squalene, phytosterols, tocochromanols, and polyphenolic compounds. Thus, many nut chemical compounds apply well to the designation "nutraceuticals," a broad umbrella term used to describe any food component that, in addition to the basic nutritional value, can contribute extra health benefits. This contribution analyses the general chemical profile of groundnut and common tree nuts (almond, walnut, cashew, hazelnut, pistachio, macadamia, pecan), focusing on lipid components and phytochemicals, with a view on their bioactive properties. Relevant scientific literature linking consumption of nuts, and/or some of their components, with ameliorative and/or preventive effects on selected diseases - such as cancer, cardiovascular, metabolic, and neurodegenerative pathologies - was also reviewed. In addition, the bioactive properties were analyzed in the light of known mechanistic frameworks.
Collapse
Affiliation(s)
- Damián Maestri
- Instituto Multidisciplinario de Biología Vegetal (IMBIV - CONICET). Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
4
|
Cordeiro-Massironi K, Soares Freitas RAM, Vieira da Silva Martins IC, de Camargo AC, Torres EAFDS. Bioactive compounds of peanut skin in prevention and adjunctive treatment of chronic non-communicable diseases. Food Funct 2024; 15:6304-6323. [PMID: 38812411 DOI: 10.1039/d4fo00647j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The global prevalence of cancer continues to increase, so does its mortality. Strategies that can prevent/treat this condition are therefore required, especially low-cost and low-toxicity strategies. Bioactive compounds of plant origin have been presented as a good alternative. In this scenario, due to its abundant polyphenolic content (around 60 to 120 times greater than that of the grain), peanut skin by-products stand out as a sustainable source of food bioactives beneficial to human health. Investigated studies highlighted the importance of peanut skin for human health, its phytochemical composition, bioactivity and the potential for prevention and/or adjuvant therapy in cancer, through the advanced search for articles in the Virtual Health Library (VHL), Science direct and the Mourisco platform of the FioCruz Institute, from 2012 to 2022. Using the keywords, "peanut skin" AND "cancer" AND NOT "allergy", the words "peanut testa" and "peanut peel" were included replacing "peanut skin". 18 articles were selected from Plataforma Mourisco, 26 from Science Direct and 26 from VHL. Of these, 7 articles evaluated aspects of cancer prevention and/or treatment. Promising benefits were found in the prevention/treatment of chronic non-communicable diseases in the use of peanut and peanut skin extracts, such as cholesterolemia and glucose control, attenuation of oxidative stress and suppressive action on the proliferation and metabolism of cancer cells.
Collapse
|
5
|
Šedbarė R, Janulis V, Pavilonis A, Petrikaite V. Comparative In Vitro Study: Assessing Phytochemical, Antioxidant, Antimicrobial, and Anticancer Properties of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L. Fruit Extracts. Pharmaceutics 2024; 16:735. [PMID: 38931857 PMCID: PMC11207080 DOI: 10.3390/pharmaceutics16060735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The phytochemical diversity and potential health benefits of V. oxycoccos and V. macrocarpon fruits call for further scientific inquiry. Our study aimed to determine the phytochemical composition of extracts from these fruits and assess their antioxidant, antibacterial, and anticancer properties in vitro. It was found that the ethanolic extracts of V. oxycoccos and V. macrocarpon fruits, which contained more lipophilic compounds, had 2-14 times lower antioxidant activity compared to the dry aqueous extracts of cranberry fruit, which contained more hydrophilic compounds. All tested cranberry fruit extracts (OE, OW, ME, and MW) significantly inhibited the growth of bacterial strains S. aureus, S. epidermidis, E. coli, and K. pneumoniae in vitro compared to the control. Cytotoxic activity against the human prostate carcinoma PPC-1 cell line, human renal carcinoma cell line (CaKi-1), and human foreskin fibroblasts (HF) was determined using an MTT assay. Furthermore, the effect of the cranberry fruit extract samples on cell migration activity, cancer spheroid growth, and viability was examined. The ethanolic extract from V. macrocarpon fruits (ME) showed higher selectivity in inhibiting the viability of prostate and renal cancer cell lines compared to fibroblasts. It also effectively hindered the migration of these cancer cell lines. Additionally, the V. macrocarpon fruit extract (ME) demonstrated potent cytotoxicity against PPC-1 and CaKi-1 spheroids, significantly reducing the size of PPC-1 spheroids compared to the control. These findings suggest that cranberry fruit extracts, particularly the ethanolic extract from V. macrocarpon fruits, have promising potential as natural remedies for bacterial infections and cancer therapy.
Collapse
Affiliation(s)
- Rima Šedbarė
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania;
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania;
| | - Alvydas Pavilonis
- Institute of Microbiology and Virology, Veterinary Academy, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania;
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania;
| |
Collapse
|
6
|
Zeng Y, Zhao L, Wang K, Renard CMGC, Le Bourvellec C, Hu Z, Liu X. A-type proanthocyanidins: Sources, structure, bioactivity, processing, nutrition, and potential applications. Compr Rev Food Sci Food Saf 2024; 23:e13352. [PMID: 38634188 DOI: 10.1111/1541-4337.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
A-type proanthocyanidins (PAs) are a subgroup of PAs that differ from B-type PAs by the presence of an ether bond between two consecutive constitutive units. This additional C-O-C bond gives them a more stable and hydrophobic character. They are of increasing interest due to their potential multiple nutritional effects with low toxicity in food processing and supplement development. They have been identified in several plants. However, the role of A-type PAs, especially their complex polymeric form (degree of polymerization and linkage), has not been specifically discussed and explored. Therefore, recent advances in the physicochemical and structural changes of A-type PAs and their functional properties during extraction, processing, and storing are evaluated. In addition, discussions on the sources, structures, bioactivities, potential applications in the food industry, and future research trends of their derivatives are highlighted. Litchis, cranberries, avocados, and persimmons are all favorable plant sources. Α-type PAs contribute directly or indirectly to human nutrition via the regulation of different degrees of polymerization and bonding types. Thermal processing could have a negative impact on the amount and structure of A-type PAs in the food matrix. More attention should be focused on nonthermal technologies that could better preserve their architecture and structure. The diversity and complexity of these compounds, as well as the difficulty in isolating and purifying natural A-type PAs, remain obstacles to their further applications. A-type PAs have received widespread acceptance and attention in the food industry but have not yet achieved their maximum potential for the future of food. Further research and development are therefore needed.
Collapse
Affiliation(s)
- Yu Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | | | | | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
7
|
Zhang J, Xu Y, Ruan X, Zhang T, Zi M, Zhang Q. Photoprotective Effects of Epigallocatechin Gallate on Ultraviolet-Induced Zebrafish and Human Skin Fibroblasts Cells. Mediators Inflamm 2024; 2024:7887678. [PMID: 38304421 PMCID: PMC10830905 DOI: 10.1155/2024/7887678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 02/03/2024] Open
Abstract
Background The long-term exposure to ultraviolet radiation (UVR) raises oxidative stress and chronic inflammation levels, which in turn has a series of deleterious effects on skin health, such as sunburn, photoaging, and skin cancer. Hence, our study was determined to investigate the effects and mechanisms of epigallocatechin gallate (EGCG) in zebrafish and human skin fibroblasts (HSF) cells to alleviate ultraviolet-induced photoaging. Methods The 4 days postfertilization (dpf) zebrafish larvae and HSF cells were treated with 10 J/cm2 UVA + 30 mJ/cm2 UVB, or 25, or 50 μM EGCG for 72 hr. The indicators involving in oxidative stress, inflammatory, and photoaging were measured by the kits, ELISA Kits and western blot methods. Results EGCGs protect against UVR-induced skin damage in zebrafish and HSF cells. EGCG markedly decreased the reactive oxygen species (ROS), malondialdehyde, 8-OHdG levels, increased superoxide dismutase (SOD) activity, and significantly inhibited inflammatory factors levels including tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), interleukin-6 (IL-6) in zebrafish, and HSF cells irradiated with UVR. We found that EGCG could reduce UVR-induced p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation and effectively inhibited the activity of the transcriptional factor nuclear factor-κB (NF-κB), thereby reducing the protein-1 (AP-1), TNF-α, IL-1α, IL-6, and matrix metalloproteinase-1 (MMP-1) expressions, which are critical mediators of skin aging cascade causing the photoaging. Conclusion These results validate that EGCG for protection of photoaging in zebrafish and HSF cells induced by UVR, which is closely related to the regulation of p38 MAPK/NF-κB, AP-1 signaling pathway which relieve oxidative stress, inflammation, and collagen degradation.
Collapse
Affiliation(s)
- Jie Zhang
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Yahui Xu
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Xiyu Ruan
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Ting Zhang
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Minghui Zi
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Qiao Zhang
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
8
|
Wang L, Liu R, Yan F, Chen W, Zhang M, Lu Q, Huang B, Liu R. A newly isolated intestinal bacterium involved in the C-ring cleavage of flavan-3-ol monomers and the antioxidant activity of the metabolites. Food Funct 2024; 15:580-590. [PMID: 37927225 DOI: 10.1039/d3fo03601d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Flavan-3-ols are an important class of secondary metabolites in many plants. Their bioavailability and bioactivity are largely determined by the metabolism of intestinal microbiota. However, little is known about the intestinal bacteria involved in the metabolism of flavan-3-ols and the activities of the metabolites. C-ring cleavage is the initial and key step in the metabolism of flavan-3-ol monomers. Here, we isolated a strain from porcine cecum content, which is capable of cleaving the heterocyclic C-ring to form 1-(3',4'-dihydroxyphenyl)-3-(2'',4'',6''-trihydroxyphenyl)propan-2-ol from (+)-catechin and (-)-epicatechin, and 1-(3',4',5'-trihydroxyphenyl)-3-(2'',4'',6''-trihydroxyphenyl) propan-2-ol from (-)-epigallocatechin. The strain was identified as Streptococcus pasteurianus (Streptococcus gallolyticus subsp. Pasteurianus, designated as F32-1) based on 16S rDNA similarity and MALDI-TOF-MS identification. The formation of the C-ring cleavage structural unit by the F32-1 strain enhanced the chemical antioxidant ability and altered the cellular antioxidant activity of (+)-catechin, (-)-epicatechin and (-)-epigallocatechin. Overall, in this study we isolated a new intestinal bacterium involved in the C-ring cleavage of flavan-3-ol monomers and elucidated the bioactivity of their metabolites.
Collapse
Affiliation(s)
- Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Ruonan Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Wanbing Chen
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guang Dong 430073, China
| | - Mo Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, China
| | - Bijun Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, P. R. China
| |
Collapse
|
9
|
Xiao Y, Li X, Wang L, Hu M, Liu Y. Proanthocyanidin A2 attenuates the activation of hepatic stellate cells by activating the PPAR-γ signalling pathway. Autoimmunity 2023; 56:2250101. [PMID: 37615088 DOI: 10.1080/08916934.2023.2250101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/07/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Liver fibrosis is the pathological process of chronic liver diseases induced by hepatic stellate cells. Proanthocyanidin A2 (PA2) has multiple pharmacological activities. In this study, we aimed to explore the effects of PA2 on hepatic stellate cell (HSC) activation in liver fibrosis. LX-2 cells were treated with TGF-β1 to establish a fibrosis cell model. Cell viability was evaluated using cell counting kit-8. The levels of fibrosis-related factors (collagen I, fibronectin, and α-SMA) were examined using quantitative real-time polymerase chain reaction, western blot, and immunofluorescence assay. The molecular mechanisms of PA2 were evaluated by RNA-seq, bioinformatic analysis, and western blot. The results showed that PA2 suppressed cell viability, and downregulated fibrosis-related factors induced by TGF-β1, suggesting PA2 suppressed the activation of HSCs. PA2 treatment-induced differentially expressed mRNAs are predicted to be associated with the PPAR-γ pathway. PA2 reversed the downregulation of PPAR-γ and the upregulation of phosphorylated (p)-Smad2 and Smad3. A rescue experiment illustrated that the inactivation of the PPAR-γ pathway reversed the effects of PA2 on cell viability and HSC activation. In conclusion, PA2 inhibited TGF-β1-induced activation of HSCs by activating the PPAR-γ/Smad pathway. The findings suggested that PA2 may be an effective treatment for liver fibrosis.
Collapse
Affiliation(s)
- Yacong Xiao
- Guangdong Lingnan Institute of Technology, Qingyuan, Guangdong, P.R. China
| | - Xiujuan Li
- Guangdong Lingnan Institute of Technology, Qingyuan, Guangdong, P.R. China
| | - Li Wang
- Guangdong Lingnan Institute of Technology, Qingyuan, Guangdong, P.R. China
| | - Mingyue Hu
- Guangdong Lingnan Institute of Technology, Qingyuan, Guangdong, P.R. China
| | - Youlin Liu
- Guangdong Lingnan Institute of Technology, Qingyuan, Guangdong, P.R. China
| |
Collapse
|
10
|
Šedbarė R, Pašakinskienė I, Janulis V. Changes in the Composition of Biologically Active Compounds during the Ripening Period in Fruit of Different Large Cranberry ( Vaccinium macrocarpon Aiton) Cultivars Grown in the Lithuanian Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12010202. [PMID: 36616331 PMCID: PMC9824273 DOI: 10.3390/plants12010202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/25/2022] [Indexed: 06/12/2023]
Abstract
In our investigation, we evaluated the content of chlorogenic acid, proanthocyanidins, anthocyanins, flavonols, triterpenoids, and phytosterols in cranberry fruit extracts of the cultivars ‘Baifay’, ‘Early Black’, ‘Howes’, ‘Pilgrim’, ‘Red Star’, and ‘Stevens’ grown in Lithuania, as well as changes in the antioxidant activity in extracts of fruit samples of these cultivars during the period of berry maturation. The highest amount of proanthocyanidins (8.87 ± 0.57 mg EE/g EE) and flavonols (3688.52 ± 22.85 µg/g) was determined in cranberries of the cultivar ‘Howes’ harvested on 12 August. Remarkably, the highest anthocyanins content (9628.62 ± 266 µg/g) was determined in cranberries of the cultivar ‘Howes’ harvested on 22 October. The study showed that the content of phytochemical compounds in cranberries varied between 12 August and 22 October; the content of proanthocyanidins decreased by a factor of about 2, the content of chlorogenic acid decreased by a factor of about 1.3, the content of flavonols decreased by a factor of about 2, and the content of anthocyanins increased by 27 to 450 times. A strong correlation was found between the total proanthocyanidin content of cranberry fruit extracts and their in vitro antiradical and reducing activity (r = 0.781 and 0.726, respectively, p < 0.001). The data of our study detail the accumulation of the phytochemical composition of biologically active compounds in cranberry samples during the stages of maturity, therefore these data are significant for the assessment of harvest time of cranberry and can be applied to select cranberry cultivars for further cultivation in Lithuanian climatic conditions.
Collapse
Affiliation(s)
- Rima Šedbarė
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania
| | | | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania
| |
Collapse
|
11
|
Phenolic Fraction from Peanut ( Arachis hypogaea L.) By-product: Innovative Extraction Techniques and New Encapsulation Trends for Its Valorization. FOOD BIOPROCESS TECH 2023; 16:726-748. [PMID: 36158454 PMCID: PMC9483447 DOI: 10.1007/s11947-022-02901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
Peanut skin is a by-product rich in bioactive compounds with high nutritional and pharmaceutical values. The phenolic fraction, rich in proanthocyanidins/procyanidins, is a relevant class of bioactive compounds, which has been increasingly applied as functional ingredients for food and pharmaceutical applications and is mostly recovered from peanut skins through low-pressure extraction methods. Therefore, the use of green high-pressure extractions is an interesting alternative to value this peanut by-product. This review addresses the benefits of the phenolic fraction recovered from peanut skin, with a focus on proanthocyanin/procyanidin compounds, and discusses the improvement of their activity, bioavailability, and protection, by methods such as encapsulation. Different applications for the proanthocyanidins, in the food and pharmaceutical industries, are also explored. Additionally, high-pressure green extraction methods, combined with micro/nanoencapsulation, using wall material derived from peanut industrial processing, may represent a promising biorefinery strategy to improve the bioavailability of proanthocyanidins recovered from underutilized peanut skins.
Collapse
|
12
|
Guo K, Liu R, Jing R, Wang L, Li X, Zhang K, Fu M, Ye J, Hu Z, Zhao W, Xu N. Cryptotanshinone protects skin cells from ultraviolet radiation-induced photoaging via its antioxidant effect and by reducing mitochondrial dysfunction and inhibiting apoptosis. Front Pharmacol 2022; 13:1036013. [PMID: 36386220 PMCID: PMC9640529 DOI: 10.3389/fphar.2022.1036013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
The integrity of skin tissue structure and function plays an important role in maintaining skin rejuvenation. Ultraviolet (UV) radiation is the main environmental factor that causes skin aging through photodamage of the skin tissue. Cryptotanshinone (CTS), an active ingredient mianly derived from the Salvia plants of Lamiaceae, has many pharmacological effects, such as anti-inflammatory, antioxidant, and anti-tumor effects. In this study, we showed that CTS could ameliorate the photodamage induced by UV radiation in epidermal keratinocytes (HaCaT) and dermal fibroblasts (HFF-1) when applied to the cells before exposure to the radiation, effectively delaying the aging of the cells. CTS exerted its antiaging effect by reducing the level of reactive oxygen species (ROS) in the cells, attenuating DNA damage, activating the nuclear factor E2-related factor 2 (Nrf2) signaling pathway, and reduced mitochondrial dysfunction as well as inhibiting apoptosis. Further, CTS could promote mitochondrial biosynthesis in skin cells by activating the AMP-activated protein kinase (AMPK)/sirtuin-1 (SIRT1)/peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) signaling pathway. These findings demonstrated the protective effects of CTS against UV radiation-induced skin photoaging and provided a theoretical and experimental basis for the application of CTS as an anti-photodamage and anti-aging agent for the skin.
Collapse
Affiliation(s)
- Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Run Liu
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Rongrong Jing
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Lusheng Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xuenan Li
- Department of Pharmacy, Zhoupu Hospital, Shanghai, China
| | - Kaini Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Mengli Fu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jiabin Ye
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Zhenlin Hu
- School of Medicine, Shanghai University, Shanghai, China
| | - Wengang Zhao
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
- *Correspondence: Wengang Zhao, ; Nuo Xu,
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- *Correspondence: Wengang Zhao, ; Nuo Xu,
| |
Collapse
|
13
|
Bodoira R, Rossi Y, Velez A, Montenegro M, Martínez M, Ribotta P, Maestri D. Impact of storage conditions on the composition and antioxidant activity of peanut skin phenolic‐based extract. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Romina Bodoira
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC ‐ CONICET). Universidad Nacional de Córdoba (UNC). Argentina
| | - Yanina Rossi
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB ‐ CONICET), Universidad Nacional de Villa María (UNVM). Argentina
| | - Alexis Velez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA ‐ CONICET). Facultad de Ciencias Exactas, Físicas y Naturales ‐ Universidad Nacional de Córdoba (UNC). Argentina
| | - Mariana Montenegro
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB ‐ CONICET), Universidad Nacional de Villa María (UNVM). Argentina
| | - Marcela Martínez
- Instituto Multidisciplinario de Biología Vegetal (IMBIV ‐ CONICET). Facultad de Ciencias Exactas, Físicas y Naturales ‐ Universidad Nacional de Córdoba (UNC). Argentina
| | - Pablo Ribotta
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC ‐ CONICET). Universidad Nacional de Córdoba (UNC). Argentina
| | - Damián Maestri
- Instituto Multidisciplinario de Biología Vegetal (IMBIV ‐ CONICET). Facultad de Ciencias Exactas, Físicas y Naturales ‐ Universidad Nacional de Córdoba (UNC). Argentina
| |
Collapse
|
14
|
Naumoska K, Jug U, Kõrge K, Oberlintner A, Golob M, Novak U, Vovk I, Likozar B. Antioxidant and Antimicrobial Biofoil Based on Chitosan and Japanese Knotweed ( Fallopia japonica, Houtt.) Rhizome Bark Extract. Antioxidants (Basel) 2022; 11:antiox11061200. [PMID: 35740097 PMCID: PMC9219676 DOI: 10.3390/antiox11061200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
A 70% ethanol(aq) extract of the rhizome bark of the invasive alien plant species Japanese knotweed (JKRB) with potent (in the range of vitamin C) and stable antioxidant activity was incorporated in 1% w/v into a chitosan biofoil, which was then characterized on a lab-scale. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay confirmed the antioxidant activity of the JKRB biofoil upon contact with the food simulants A, B, C, and D1 (measured half-maximal inhibitory concentrations—IC50) and supported the Folin–Ciocalteu assay result. The migration of the antioxidant marker, (−)-epicatechin, into all food simulants (A, B, C, D1, D2, and E) was quantified using liquid chromatography hyphenated to mass spectrometry (LC-MS). Calculations showed that 1 cm2 of JKRB biofoil provided antioxidant activity to ~0.5 L of liquid food upon 1 h of contact. The JKRB biofoil demonstrated antimicrobial activity against Gram-positive bacteria. The incorporation of JKRB into the chitosan biofoil resulted in improved tensile strength from 0.75 MPa to 1.81 MPa, while elongation decreased to 28%. JKRB biofoil’s lower moisture content compared to chitosan biofoil was attributed to the formation of hydrogen bonds between chitosan biofoil and JKRB compounds, further confirmed with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The JKRB biofoil completely degraded in compost in 11 days. The future upscaled production of JKRB biofoil from biowastes for active packaging may support the fights against plastic waste, food waste, and the invasiveness of Japanese knotweed, while greatly contributing to the so-called ‘zero-waste’ strategy and the reduction in greenhouse gas emissions.
Collapse
Affiliation(s)
- Katerina Naumoska
- Laboratory for Food Chemistry, Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia;
- Correspondence: (K.N.); (U.J.); Tel.: +386-1-4760 521 (K.N. & U.J.)
| | - Urška Jug
- Laboratory for Food Chemistry, Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia;
- Correspondence: (K.N.); (U.J.); Tel.: +386-1-4760 521 (K.N. & U.J.)
| | - Kristi Kõrge
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; (K.K.); (A.O.); (U.N.); (B.L.)
| | - Ana Oberlintner
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; (K.K.); (A.O.); (U.N.); (B.L.)
| | - Majda Golob
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia;
| | - Uroš Novak
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; (K.K.); (A.O.); (U.N.); (B.L.)
| | - Irena Vovk
- Laboratory for Food Chemistry, Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia;
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; (K.K.); (A.O.); (U.N.); (B.L.)
| |
Collapse
|
15
|
Nguyen NXB, Uthairatanakij A, Laohakunjit N, Jitareerat P, Boonsirichai K, Yap ESP, Kaprasob R. Effects of gamma irradiation dose and short‐term storage on phytochemicals, antioxidants, and textural properties of boiled ‘Tainan 9’ peanuts. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ngoc X. B. Nguyen
- Division of Postharvest Technology School of Bioresources and Technology King Mongkut’s University of Technology Thonburi 49 Tientalay 25, Thakam, Bangkhuntien Bangkok 10150 Thailand
| | - Apiradee Uthairatanakij
- Division of Postharvest Technology School of Bioresources and Technology King Mongkut’s University of Technology Thonburi 49 Tientalay 25, Thakam, Bangkhuntien Bangkok 10150 Thailand
| | - Natta Laohakunjit
- Division of Biochemical Technology School of Bioresources and Technology King Mongkut’s University of Technology Thonburi 49 Tientalay 25, Thakam, Bangkhuntien Bangkok 10150 Thailand
| | - Pongphen Jitareerat
- Division of Postharvest Technology School of Bioresources and Technology King Mongkut’s University of Technology Thonburi 49 Tientalay 25, Thakam, Bangkhuntien Bangkok 10150 Thailand
| | - Kanokporn Boonsirichai
- Thailand Institute of Nuclear Technology (TINT) Amphur Ongkharak Nakornnayok 26120 Thailand
| | - Esther Shiau Ping Yap
- Division of Postharvest Technology School of Bioresources and Technology King Mongkut’s University of Technology Thonburi 49 Tientalay 25, Thakam, Bangkhuntien Bangkok 10150 Thailand
| | - Ratchadaporn Kaprasob
- Division of Biochemical Technology School of Bioresources and Technology King Mongkut’s University of Technology Thonburi 49 Tientalay 25, Thakam, Bangkhuntien Bangkok 10150 Thailand
| |
Collapse
|
16
|
Mingrou L, Guo S, Ho C, Bai N. Review on chemical compositions and biological activities of peanut (
Arachis hypogeae
L.). J Food Biochem 2022; 46:e14119. [DOI: 10.1111/jfbc.14119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 12/27/2022]
Affiliation(s)
- Li Mingrou
- College of Food Science and Technology Northwest University Xi’an China
| | - Sen Guo
- College of Food Science and Technology Northwest University Xi’an China
| | - Chi‐Tang Ho
- Department of Food Science Rutgers University New Brunswick New Jersey USA
| | - Naisheng Bai
- College of Food Science and Technology Northwest University Xi’an China
| |
Collapse
|
17
|
Reguengo LM, Salgaço MK, Sivieri K, Maróstica Júnior MR. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res Int 2022; 152:110871. [DOI: 10.1016/j.foodres.2021.110871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
|
18
|
Bodoira R, Cecilia Cittadini M, Velez A, Rossi Y, Montenegro M, Martínez M, Maestri D. An overview on extraction, composition, bioactivity and food applications of peanut phenolics. Food Chem 2022; 381:132250. [PMID: 35121321 DOI: 10.1016/j.foodchem.2022.132250] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/05/2022] [Accepted: 01/23/2022] [Indexed: 12/20/2022]
Abstract
Peanuts contain a diverse and vast array of phenolic compounds having important biological properties. They are allocated mostly in the seed coat (skin), an industrial waste with minor and undervalued applications. In the last few years, a considerable amount of scientific knowledge about extraction, composition, bioactivities and health benefits of peanut skin phenolics has been generated. The present review was focused on four main aspects: a) extraction methods and technologies for obtaining peanut skin phenolics with an emphasis on green-solvent extraction processes; b) variations in chemical profiles including those due to genetic variability, extraction methodologies and process-related issues; c) bioactive properties, especially antioxidant activities in food and biological systems; d) update of promising food applications. The revision was also aimed at identifying areas where knowledge is insufficient and to set priorities for further research.
Collapse
Affiliation(s)
- Romina Bodoira
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC - CONICET), Universidad Nacional de Córdoba (UNC), Argentina
| | - M Cecilia Cittadini
- Instituto Multidisciplinario de Biología Vegetal (IMBIV - CONICET), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Argentina
| | - Alexis Velez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA - CONICET), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Argentina
| | - Yanina Rossi
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB - CONICET), Universidad Nacional de Villa María (UNVM), Argentina
| | - Mariana Montenegro
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB - CONICET), Universidad Nacional de Villa María (UNVM), Argentina
| | - Marcela Martínez
- Instituto Multidisciplinario de Biología Vegetal (IMBIV - CONICET), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Argentina
| | - Damián Maestri
- Instituto Multidisciplinario de Biología Vegetal (IMBIV - CONICET), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Argentina.
| |
Collapse
|
19
|
Xiao D, Jin X, Song Y, Zhang Y, Li X, Wang F. Enzymatic Acylation of Proanthocyanidin Dimers from Acacia Mearnsii Bark: Effect on Lipophilic and Antioxidant Properties. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
20
|
Fernandes ACF, Santana ÁL, Vieira NC, Gandra RLP, Rubia C, Castro‐Gamboa I, Macedo JA, Macedo GA. In vitro effects of peanut skin polyphenolic extract on oxidative stress, adipogenesis, and lipid accumulation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Annayara C. F. Fernandes
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Ádina L. Santana
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
- Food Science Institute Kansas State University Manhattan USA
| | - Natália C. Vieira
- Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE) Institute of Chemistry (ICAr) Sao Paulo State University (UNESP) Araraquara Brazil
| | - Renata L. P. Gandra
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Camila Rubia
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Ian Castro‐Gamboa
- Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE) Institute of Chemistry (ICAr) Sao Paulo State University (UNESP) Araraquara Brazil
| | - Juliana A. Macedo
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Gabriela A. Macedo
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| |
Collapse
|
21
|
Floris B, Galloni P, Conte V, Sabuzi F. Tailored Functionalization of Natural Phenols to Improve Biological Activity. Biomolecules 2021; 11:1325. [PMID: 34572538 PMCID: PMC8467377 DOI: 10.3390/biom11091325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols' anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity. In this review, the functionalization of selected natural phenols is critically examined, mainly highlighting their improved bioactivity after the proper chemical transformations. In particular, functionalization of the most abundant naturally occurring monophenols, diphenols, lipidic phenols, phenolic acids, polyphenols and curcumin derivatives is explored.
Collapse
Affiliation(s)
- Barbara Floris
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| |
Collapse
|
22
|
Rebollo-Hernanz M, Cañas S, Taladrid D, Segovia Á, Bartolomé B, Aguilera Y, Martín-Cabrejas MA. Extraction of phenolic compounds from cocoa shell: Modeling using response surface methodology and artificial neural networks. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118779] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Tian Y, Yang B. Phenolic compounds in Nordic berry species and their application as potential natural food preservatives. Crit Rev Food Sci Nutr 2021; 63:345-377. [PMID: 34251918 DOI: 10.1080/10408398.2021.1946673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing demand for natural food preservatives is raised by consumers. For Nordic berry species, abundance of phenolic compounds and potent activities of anti-oxidation and anti-bacteria enables a great potential as food preservatives. This review provides a systematic examination of current literature on phenolic profiles, anti-oxidative and anti-bacterial activities of various extracts of Nordic berry species, as well as the impact of various structure features of phenolics on the bioactivities. Special attention is placed on exploitation of leaves of berry species and pomaces after juice-pressing as side-streams of berry production and processing. The current progress and challenges in application of Nordic berry species as food preservatives are discussed. To fully explore the potential application of Nordic berry species in food industry and especially to valorize the side-streams of berry cultivation (leaves) and juice-pressing industry (pomaces), it is crucial to obtain extracts and fractions with targeted phenolic composition, which have high food preserving efficacy and minimal impact on sensory qualities of food products.
Collapse
Affiliation(s)
- Ye Tian
- Food Chemistry and Food Development, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| |
Collapse
|
24
|
Georgin J, Franco DSP, Netto MS, Piccilli DGA, Foletto EL, Dotto GL. Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36453-36463. [PMID: 33694109 DOI: 10.1007/s11356-021-12813-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
In this work, peanut (Arachis hypogaea) skin, a by-product generated by the agricultural production of its seeds, was employed as a precursor in the preparation of an adsorbent for the 2,4-D removal in water. The skins were treated with sulfuric acid and characterized by different techniques. The adsorption was favored at acid pH = 2 with pHpzc = 6. The dosage of 0.9 g L-1 was considered ideal, obtaining satisfactory indications of removal and capacity. The kinetic curves were well represented by the general order model, with the equilibrium reached quickly in the first 30 min for all concentrations. Adsorption isotherm studies showed that the increase in temperature negatively affected the herbicide adsorption, obtaining a maximum capacity of 246.72 mg g-1, by the Langmuir isotherm at 298 K. The remarkable adsorption efficiency presented by the adsorbent can be associated with the presence of new functional groups on the adsorbent surface generated after the acid treatment. Thermodynamic parameters confirmed the exothermic nature of the adsorptive system. In the treatment of synthetic wastewater consisting of a mixture of herbicides and salts, a high removal efficiency (72%) of herbicides was obtained. Therefore, the development of an adsorbent derived from peanut (Arachis hypogaea) skin treated with sulfuric acid is an excellent alternative, generating remarkable removal results towards 2,4-D herbicide.
Collapse
Affiliation(s)
- Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil
| | - Matias S Netto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil
| | - Daniel G A Piccilli
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Edson Luiz Foletto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil
| | - Guilherme L Dotto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
25
|
Annunziata G, Capó X, Quetglas-Llabrés MM, Monserrat-Mesquida M, Tejada S, Tur JA, Ciampaglia R, Guerra F, Maisto M, Tenore GC, Novellino E, Sureda A. Ex Vivo Study on the Antioxidant Activity of a Winemaking By-Product Polyphenolic Extract (Taurisolo ®) on Human Neutrophils. Antioxidants (Basel) 2021; 10:antiox10071009. [PMID: 34201732 PMCID: PMC8300751 DOI: 10.3390/antiox10071009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress (OxS) has been linked to several chronic diseases and is recognized to have both major causes and consequences. The use of antioxidant-based nutraceuticals has been licensed as an optimal tool for management of OxS-related diseases. Currently, great interest is focused on the valorization of agri-food by-products as a source of bioactive compounds, including polyphenols. In this sense, we evaluated the efficacy of a novel nutraceutical formulation based on polyphenolic extract from Aglianico cultivar grape pomace (registered as Taurisolo®). In particular, we tested both native and in vitro gastrointestinal digested forms. The two extracts have been used to treat ex vivo neutrophils from subjects with metabolic syndrome, reporting a marked antioxidant activity of Taurisolo®, as shown by its ability to significantly reduce both the levels of reactive oxygen species (ROS) and the activities of catalase and myeloperoxidase in the cell medium after stimulation of neutrophils with phorbol 12-myristate 13-acetate (PMA). Interestingly, we observed an increase in intracellular enzymatic activities in PMA-treated cells, suggesting that Taurisolo® polyphenols might be able to activate nuclear factors, up-regulating the expression of this target antioxidant gene. In addition, Taurisolo® reversed the increase in malondialdehyde induced by PMA; reduced the expression of pro-inflammatory genes such as cyclooxygenase 2 (COX-2), tumor necrosis factor alpha (TNFα) and myeloperoxidase (MPO); and induced the expression of the anti-inflammatory cytokine IL-10. Overall, these results suggest the efficacy of Taurisolo® in contrasting the OxS at blood level, providing evidence for its therapeutic potential in the management of OxS-related pathological conditions in humans.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
| | - Maria Magdalena Quetglas-Llabrés
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
| | - Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Silvia Tejada
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Laboratory of Neurophysiology, Biology Department and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Josep A. Tur
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Roberto Ciampaglia
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
| | - Fabrizia Guerra
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
| | - Maria Maisto
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
| | - Gian Carlo Tenore
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (F.G.); (M.M.)
- Correspondence: ; Tel.: +39-081-678-610
| | - Ettore Novellino
- NGN Healthcare—New Generation Nutraceuticals s.r.l., Torrette Via Nazionale 207, 83013 Mercogliano, Italy;
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain; (X.C.); (M.M.Q.-L.); (M.M.-M.); (S.T.); (J.A.T.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
26
|
Xue H, Tan J, Zhu X, Li Q, Tang J, Cai X. Counter-current fractionation-assisted and bioassay-guided separation of active compounds from cranberry and their interaction with α-glucosidase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Comprehensive analysis of the anti-glycation effect of peanut skin extract. Food Chem 2021; 362:130169. [PMID: 34102509 DOI: 10.1016/j.foodchem.2021.130169] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022]
Abstract
Advanced glycation end-products (AGEs) are produced during protein glycation and associated with diabetic complications. Peanut skin is rich in procyanidins, which may be used as an inhibitor of glycation. This study evaluated the potential anti-glycation effect of peanut skin extract (PSE) and dissected the underlying mechanism. PSE could effectively inhibit the formation of AGEs in BSA-Glc and BSA-MGO/GO models, with 44%, 37% and 82% lower IC50 values than the positive control (AG), respectively. The inhibitory effect of PSE on BSA glycation might be ascribed to its binding interaction with BSA, attenuated formation of early glycation products and trapping of reactive dicarbonyl compounds. Notably, PSE showed a remarkably stronger inhibitory effect on Amadori products than AG. Furthermore, three new types of PSE-MGO adducts were formed as identified by UPLC-Q-TOF-MS. These findings suggest that PSE may serve as an inhibitor of glycation and provide new insights into its application.
Collapse
|
28
|
de Souza Silva AP, Rosalen PL, de Camargo AC, Lazarini JG, Rocha G, Shahidi F, Franchin M, de Alencar SM. Inajá oil processing by-product: A novel source of bioactive catechins and procyanidins from a Brazilian native fruit. Food Res Int 2021; 144:110353. [PMID: 34053546 DOI: 10.1016/j.foodres.2021.110353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/30/2022]
Abstract
Agro-industrial activities generate large amounts of solid residues, which are generally discarded or used as animal feed. Interestingly, some of these by-products could serve as natural sources of bioactive compounds with great potential for industrial exploitation. This study aimed to optimize the extraction of phenolic antioxidants from the pulp residue (oil processing by-product) of inajá (Maximiliana maripa, a native species found in the Brazilian Amazon). The antioxidant properties of the optimized extract and its phenolic profile by high-resolution mass spectrometry (LC-ESI-QTOF-MS) were further determined. Central composite rotatable design and statistical analysis demonstrated that the temperature of 70 °C and 50% (v/v) ethanol concentration improved the extraction of phenolic compounds with antioxidant properties. The optimized extract also showed scavenging activity against the ABTS radical cation and reactive oxygen species (ROS; peroxyl and superoxide radical, and hypochlorous acid). Moreover, the optimized extract was able to reduce NF-κB activation and TNF-α release, which are modulated by ROS. Flavan-3-ols were the major phenolics present in the optimized extract. Collectively, our findings support the use of inajá cake as a new source of bioactive catechins and procyanidins. This innovative approach adds value to this agro-industrial by-product in the functional food, nutraceutical, pharmaceutical, and/or cosmetic industries and complies with the circular economy agenda.
Collapse
Affiliation(s)
- Anna Paula de Souza Silva
- Agri-food Industry, Food and Nutrition Department, Luiz de Queiroz College of Agriculture, University of São Paulo, ESALQ/USP, Piracicaba, São Paulo, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas, UNICAMP, São Paulo, Brazil; Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile
| | - Josy Goldoni Lazarini
- Department of Biosciences, Piracicaba Dental School, University of Campinas, UNICAMP, São Paulo, Brazil
| | - Gabriela Rocha
- Citróleo Industry and Commerce of Essential Oils, LTDA, Research, Development and Innovation Department, Torrinha, São Paulo, Brazil
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, NL A1B 3X9, Canada
| | - Marcelo Franchin
- Department of Biosciences, Piracicaba Dental School, University of Campinas, UNICAMP, São Paulo, Brazil; Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Severino Matias de Alencar
- Agri-food Industry, Food and Nutrition Department, Luiz de Queiroz College of Agriculture, University of São Paulo, ESALQ/USP, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
29
|
Zhang J, Liu D, Wang A, Cheng L, Wang W, Liu Y, Ullah S, Yuan Q. Production of oligomeric procyanidins by mild steam explosion treatment of grape seeds. BIORESOUR BIOPROCESS 2021; 8:23. [PMID: 38650208 PMCID: PMC10992546 DOI: 10.1186/s40643-021-00376-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sixty five percent of procyanidins in grape seeds is polymeric procyanidins (PPC), and they could not be assimilated directly by human. To enhance procyanidin assimilation, steam explosion treatment (SE) was used to facilitate the preparation of oligomeric procyanidins (OPC) from grape seeds. RESULTS The results indicate that SE treatment made grape seeds loose and porous, and decreased the mean degree of polymerization (mDP) of procyanidins. The procyanidins content and total phenolic content (TPC) were decreased with the increase of SE severity, while the amount of catechin (CA), epicatechin (EC) and epicatechin-3-O-gallate (ECG) were increased, resulting in significant increase of antioxidant activity. CONCLUSIONS Although SE treatment could depolymerize PPC and produce CA/EC/ECG with high yield, it caused the yield loss of total procyanidins. SE treatment is a potential effective method to prepare procyanidins with low degree of polymerization and high antioxidant activity. However, it still needs to study further how to balance the yield of total procyanidins and catechin monomers (CA/EC/ECG).
Collapse
Affiliation(s)
- Jie Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- Amoy-BUCT Industrial Biotechnovation Institute, Beijing University of Chemical Technology, Amoy, 361022, China
| | - Dan Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aoke Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Cheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenya Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
- Amoy-BUCT Industrial Biotechnovation Institute, Beijing University of Chemical Technology, Amoy, 361022, China.
| | - Yanhui Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Sadeeq Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qipeng Yuan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
30
|
Counter-Current Fractionation-Assisted Bioassay-Guided Separation of Active Compound from Blueberry and the Interaction between the Active Compound and α-Glucosidase. Foods 2021; 10:foods10030509. [PMID: 33804322 PMCID: PMC7998573 DOI: 10.3390/foods10030509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
An efficient strategy for the selection of active compounds from blueberry based on counter-current fractionation and bioassay-guided separation was established in this study. Blueberry extract showed potential α-glucosidase inhibitory activity. After extraction by different solvents, the active components were enriched in water. The water extract was divided into six fractions via high-speed counter-current chromatography to further track the active components. Results indicated that the α-glucosidase inhibition rate of F4 was remarkable higher than the others. Cyanidin-3-glucoside (C3G) with a purity of 94.16% was successfully separated from F4 through column chromatography, and its structure was identified by ultraviolet spectral, Fourier-transformed infrared spectroscopy, high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, 1H nuclear magnetic resonance (NMR), and 13C NMR. The interaction mechanism between C3G and α-glucosidase was clearly characterized and described by spectroscopic methods, including fluorescence and circular dichroism (CD) in combination with molecular docking techniques. C3G could spontaneously bind with α-glucosidase to form complexes by hydrogen bonds. The secondary structure of α-glucosidase changed in varying degrees after complexation with C3G. The α-helical and β-turn contents of α-glucosidase decreased, whereas the β-sheet content and the irregular coil structures increased. Molecular docking speculated that C3G could form hydrogen bonds with α-glucosidase by binding to the active sit (Leu 313, Ser 157, Tyr 158, Phe 314, Arg 315, and two Asp 307). These findings may be useful for the development of functional foods to tackle type 2 diabetes.
Collapse
|
31
|
Kim MY, Kim H, Lee Y, Kim MH, Lee JY, Kang MS, Koo BC, Lee BW. Antioxidant and anti-inflammatory effects of Peanut ( Arachishypogaea L.) skin extracts of various cultivars in oxidative-damaged HepG2 cells and LPS-induced raw 264.7 macrophages. Food Sci Nutr 2021; 9:973-984. [PMID: 33598180 PMCID: PMC7866586 DOI: 10.1002/fsn3.2064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022] Open
Abstract
This study was performed to investigate the distribution of phenolic compounds in the peanut skins of various cultivars, as well as their antioxidant and anti-inflammatory effect (Arachishypogaea L. cv. K-Ol, cv. Sinpalkwang, cv. Daan, cv. Heuksaeng) and extraction solvent. The major components of red peanut cultivars (K-Ol, Sinpalkwang, and Daan) were identified as proanthocyanidin, catechin, gallic acid, coumaric acid, and hesperidine, whereas the major components of black peanut cultivar (Heuksaeng) were identified as anthocyanin, ferulic acid, and quercetin. The DPPH and ABTS radical scavenging activities, and FRAP values were the highest in Daan followed by Sinpalkwng, K-Ol, and Heuksang. Furthermore, the skin extracts of red peanuts effectively improved cell viability, reactive oxygen species generation, MDA concentration, and antioxidant enzyme activity (GR, GPx, CAT, and superoxide dismutase) in oxidative stress-induced HepG2 cells, and reduced the expression of pro-inflammatory factors (NO, TNF-α, IL-6, and IL-1β) in LPS-stimulated RAW 264.7 macrophages. These results suggest that red peanut skin extracts could effectively mediate physiological activity and provide valuable information for the use of peanut byproducts as functional food materials.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Central Area Crop ScienceNational Institute of Crop ScienceRural Development AdministrationSuwonKorea
| | - Hyun‐Joo Kim
- Department of Central Area Crop ScienceNational Institute of Crop ScienceRural Development AdministrationSuwonKorea
| | - Yu‐Young Lee
- Department of Central Area Crop ScienceNational Institute of Crop ScienceRural Development AdministrationSuwonKorea
| | - Mi Hyang Kim
- Department of Central Area Crop ScienceNational Institute of Crop ScienceRural Development AdministrationSuwonKorea
| | - Jin Young Lee
- Department of Central Area Crop ScienceNational Institute of Crop ScienceRural Development AdministrationSuwonKorea
| | - Mun Suk Kang
- Department of Central Area Crop ScienceNational Institute of Crop ScienceRural Development AdministrationSuwonKorea
| | - Bon Cheol Koo
- Department of Central Area Crop ScienceNational Institute of Crop ScienceRural Development AdministrationSuwonKorea
| | - Byong Won Lee
- Department of Central Area Crop ScienceNational Institute of Crop ScienceRural Development AdministrationSuwonKorea
| |
Collapse
|
32
|
Jug U, Naumoska K, Vovk I. (-)-Epicatechin-An Important Contributor to the Antioxidant Activity of Japanese Knotweed Rhizome Bark Extract as Determined by Antioxidant Activity-Guided Fractionation. Antioxidants (Basel) 2021; 10:antiox10010133. [PMID: 33477734 PMCID: PMC7832395 DOI: 10.3390/antiox10010133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023] Open
Abstract
The antioxidant activities of Japanese knotweed rhizome bark extracts, prepared with eight different solvents or solvent mixtures (water, methanol, 80% methanol(aq), acetone, 70% acetone(aq), ethanol, 70% ethanol(aq), and 90% ethyl acetate(aq)), were determined using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging assay. Low half maximal inhibitory concentration (IC50) values (2.632–3.720 µg mL−1) for all the extracts were in the range of the IC50 value of the known antioxidant ascorbic acid at t0 (3.115 µg mL−1). Due to the highest extraction yield (~44%), 70% ethanol(aq) was selected for the preparation of the extract for further investigations. The IC50 value calculated for its antioxidant activity remained stable for at least 14 days, while the IC50 of ascorbic acid increased over time. The stability study showed that the container material was of great importance for the light-protected storage of the ascorbic acid(aq) solution in a refrigerator. Size exclusion–high-performance liquid chromatography (SEC-HPLC)–UV and reversed phase (RP)-HPLC-UV coupled with multistage mass spectrometry (MSn) were developed for fractionation of the 70% ethanol(aq) extract and for further compound identification, respectively. In the most potent antioxidant SEC fraction, determined using an on-line post-column SEC-HPLC-DPPH assay, epicatechin, resveratrol malonyl hexoside, and its in-source fragments (resveratrol and resveratrol acetyl hexoside) were tentatively identified by RP-HPLC-MSn. Moreover, epicatechin was additionally confirmed by two orthogonal methods, SEC-HPLC-UV and high-performance thin-layer chromatography (HPTLC) coupled with densitometry. Finally, the latter technique enabled the identification of (−)-epicatechin. (−)-Epicatechin demonstrated potent and stable time-dependent antioxidant activity (IC50 value ~1.5 µg mL−1) for at least 14 days.
Collapse
Affiliation(s)
- Urška Jug
- Department of Food Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia;
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Katerina Naumoska
- Department of Food Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia;
- Correspondence: (K.N.); (I.V.); Tel.: +386-1476-0521 (K.N.); +386-1476-0341 (I.V.)
| | - Irena Vovk
- Department of Food Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia;
- Correspondence: (K.N.); (I.V.); Tel.: +386-1476-0521 (K.N.); +386-1476-0341 (I.V.)
| |
Collapse
|
33
|
de Camargo AC, de Souza Silva AP, Soares JC, de Alencar SM, Handa CL, Cordeiro KS, Figueira MS, Sampaio GR, Torres EAFS, Shahidi F, Schwember AR. Do Flavonoids from Durum Wheat Contribute to Its Bioactive Properties? A Prospective Study. Molecules 2021; 26:molecules26020463. [PMID: 33477281 PMCID: PMC7830396 DOI: 10.3390/molecules26020463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
A clear gap with respect to the potential biological properties of wheat flavonoids exists in the available literature. This information is crucial for breeding programs aiming to produce new varieties presenting improved health benefits. Accordingly, advanced breeding lines of whole durum wheat were evaluated in this contribution. The highest recovery of phenolics was achieved using aqueous acetone (50:50, v/v), as verified by multi-response optimization, thus showing that phenolics could be largely underestimated by employing an inappropriate extraction. The concentration of derivatives of apigenin, the main phenolics present, ranged from 63.5 to 80.7%, as evaluated by LC-ESI-QTOF-MS. Phenolics from the breeding line 98 exhibited the highest ability in scavenging peroxyl radicals, reducing power as well as in terms of inhibition of pancreatic lipase activity, a key enzyme regulating the absorption of triacylglycerols. In contrast, none of the samples exhibited a significant anti-diabetic potential. Despite their high concentration compared to that of phenolic acids, results of this work do not support a significant antioxidant and pancreatic lipase inhibitory effect of durum wheat flavonoids. Therefore, breeding programs and animal and/or human trials related to the effect of durum wheat flavonoids on oxidative stress and absorption of triacylglycerols are discouraged at this point.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7830490, Chile
- Correspondence: (A.C.d.C); (A.R.S)
| | - Anna Paula de Souza Silva
- Departament of Agri-Food Industry, Food & Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, P.O. Box 9, Piracicaba, SP CEP 13418-900, Brazil; (A.P.d.S.S.); (J.C.S.); (S.M.d.A.)
| | - Jackeline Cintra Soares
- Departament of Agri-Food Industry, Food & Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, P.O. Box 9, Piracicaba, SP CEP 13418-900, Brazil; (A.P.d.S.S.); (J.C.S.); (S.M.d.A.)
| | - Severino Matias de Alencar
- Departament of Agri-Food Industry, Food & Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, P.O. Box 9, Piracicaba, SP CEP 13418-900, Brazil; (A.P.d.S.S.); (J.C.S.); (S.M.d.A.)
| | - Cíntia Ladeira Handa
- Minas Gerais State University, R. Ver. Geraldo Moisés da Silva 308-434, Ituiutaba, MG CEP 38302-182, Brazil;
| | - Karina Silva Cordeiro
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Marcela Souza Figueira
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Geni R. Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Elizabeth A. F. S. Torres
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7830490, Chile
- Correspondence: (A.C.d.C); (A.R.S)
| |
Collapse
|
34
|
Oldoni TLC, Merlin N, Bicas TC, Prasniewski A, Carpes ST, Ascari J, de Alencar SM, Massarioli AP, Bagatini MD, Morales R, Thomé G. Antihyperglycemic activity of crude extract and isolation of phenolic compounds with antioxidant activity from Moringa oleifera Lam. leaves grown in Southern Brazil. Food Res Int 2020; 141:110082. [PMID: 33641964 DOI: 10.1016/j.foodres.2020.110082] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022]
Abstract
The antihyperglicemic activity of crude extract from Moringa oleifera leaves and isolation of phenolic compounds with antioxidant activity using bioguided assay were employed by the first time in leaves cultivated in Brazil. The hydroalcoholic extract (HE) was produced by using ethanol:water (80:20 v/v) and purified by solid-liquid procedure using solvents in ascending order of polarity. The ethyl acetate fraction (Fr-EtOAc) presented high antioxidant potential and it was purified using chromatographic techniques rendering isolated compounds that were identified from the spectral data. The HE extract (500 mg kg-1) was adimistrated in diabetic rats induced by streptozotocin and chemical markers and lipid peroxidation in liver and kidney were evaluated. The Fr-EtOAc showed high antioxidant potential by FRAP reduction method (1678 µmol Fe2+ g-1), DPPH and ABTS scavenging methods (526.7 and 671.5 µmol TEAC g-1 respectively) and ORAC assay (3560.6 µmol TEAC g-1). Therefore, the Fr-EtOAc was purified and yielded three bioactive subfractions (S-12, S-13 abd S-15) that were rechromatoghaphed in HPLC-SemiPrep. After that, two main bioactive glycosylated flavonoids (isoquercitrin and astragalin) and phenolic acid (3-O-caffeoylquinic acid) were obtained. Additionally, the HE extract provided protection against oxidative damage in liver and kidney of diabetic rats ameliorating endogenous antioxidant defenses by increase catalase (CAT), glutathione S-transferase (GST) and non-protein thiol groups (NPSH) levels as well as decreased the lipid peroxidation in these tissues. Our results indicate that three phenolic compounds with high antioxidant activity were isolated and, the chemical composition of HE crude extract, rich in flavonoids glycosylated could be intimately related to antihyperglycemic action. So, it is possible to suggest that these compounds may be used as chemical biomarkers for this plant in Brazil, ensuring quality and supporting the use of aerial parts in tradicional medicine.
Collapse
Affiliation(s)
- Tatiane Luiza C Oldoni
- Department of Chemistry, Federal Technological University of Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil.
| | - Nathalie Merlin
- Department of Chemistry, Federal Technological University of Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil
| | - Thariane Carvalho Bicas
- Department of Chemistry, Federal Technological University of Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil
| | - Anaclara Prasniewski
- Department of Biology, Federal Technological University of Paraná (UTFPR), Santa Helena, PR 85892-000, Brazil
| | - Solange Teresinha Carpes
- Department of Chemistry, Federal Technological University of Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil
| | - Jociani Ascari
- Department of Biology, Federal Technological University of Paraná (UTFPR), Santa Helena, PR 85892-000, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo (USP), P.O. Box. 9, 13418-900 Piracicaba, SP, Brazil
| | - Adna Prado Massarioli
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo (USP), P.O. Box. 9, 13418-900 Piracicaba, SP, Brazil
| | | | - Rafael Morales
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (Epagri), 88318-112 Itajaí, SC, Brazil
| | - Gustavo Thomé
- Department of Chemistry, Federal Technological University of Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil
| |
Collapse
|
35
|
Extracts of Peanut Skins as a Source of Bioactive Compounds: Methodology and Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peanut skins are a waste product of the peanut processing industry with little commercial value. They are also significant sources of the polyphenolic compounds that are noted for their bioactivity. The extraction procedures for these compounds range from simple single solvent extracts to sophisticated separation schemes to isolate and identify the large range of compounds present. To take advantage of the bioactivities attributed to the polyphenols present, a range of products both edible and nonedible containing peanut skin extracts have been developed. This review presents the range of studies to date that are dedicated to extracting these compounds from peanut skins and their various applications.
Collapse
|
36
|
Sorita GD, Leimann FV, Ferreira SRS. Biorefinery approach: Is it an upgrade opportunity for peanut by-products? Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Oldoni TLC, Silva RC, Carpes ST, Massarioli AP, Alencar SMDE. Antioxidant activity and development of one chromatographic method to determine the phenolic compounds from Agroindustrial Pomace. AN ACAD BRAS CIENC 2020; 92:e20181068. [PMID: 33111815 DOI: 10.1590/0001-3765202020181068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/26/2019] [Indexed: 11/22/2022] Open
Abstract
A chromatographic method consisting of multi wavelength detection for identification of six phenolic acids, one stilbene and five flavonoids in grape and apple pomaces was proposed. Scavenging of DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid), reactive oxygen species and reduction of Fe3+ to Fe2+ using in vitro and HPLC-UV-ABTS on-line methods are herein presented. A reversed phase C18 coupled with an absorption detector operating at 280, 300, 320 and 360 nm for the benzoic acid derivatives and flavanols; stilbenes; cinnamic acid derivatives and flavonols, were respecctively used. The solvents water, methanol and acetonitrile acidified with acetic acid were evaluated as mobile phase. The optimized chromatographic method presented recoveries ranged from 68 to 130% and from 66 to 130% for grape and apple pomaces respectively. The determination coefficients (R2) of the 12 compounds were > 0.98. The extracts showed high total phenolic content and exhibits strong capacities to scavenge free radicals and reactive oxygen species. The results obtained by HPLC-ABTS on-line method suggest that pomaces of grape and apple are rich in bioactive compounds and that catechin and epicatechin contribute in a significantly way to the antioxidant activity in both agroindustrial pomaces.
Collapse
Affiliation(s)
- Tatiane L C Oldoni
- Universidade Tecnológica Federal do Paraná/UTFPR, Departamento de Química, Via do Conhecimento, Km 01, 85503-390 Pato Branco, PR, Brazil
| | - Rafaela C Silva
- Universidade Tecnológica Federal do Paraná/UTFPR, Departamento de Química, Via do Conhecimento, Km 01, 85503-390 Pato Branco, PR, Brazil
| | - Solange T Carpes
- Universidade Tecnológica Federal do Paraná/UTFPR, Departamento de Química, Via do Conhecimento, Km 01, 85503-390 Pato Branco, PR, Brazil
| | - Adna P Massarioli
- Universidade de São Paulo/USP, Departamento de Agroindústria, Alimentos e Nutrição, Escola Superior de Agricultura Luiz de Queiroz, Avenida Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Severino M DE Alencar
- Universidade de São Paulo/USP, Departamento de Agroindústria, Alimentos e Nutrição, Escola Superior de Agricultura Luiz de Queiroz, Avenida Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
38
|
Evaluation of cellular safety and the chemical composition of the peanut ( Arachis hypogaea L.) ethanolic extracts. Heliyon 2020; 6:e05119. [PMID: 33083604 PMCID: PMC7550920 DOI: 10.1016/j.heliyon.2020.e05119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 09/27/2020] [Indexed: 11/25/2022] Open
Abstract
Arachis hypogaea L. (Leguminosae) is distributed in tropical and subtropical areas. Peanut has high nutritional and commercial value. Scientific research showed that peanut has biological properties such as anticancer, antioxidant, antiinflammatory. However, it is necessary to know if consumption of peanut, either as food or as a phytopharmaceutical implies a health risk. The aim was to evaluate cytotoxicity and genotoxicity of ethanolic extracts from A. hypogaea. Also, chemical characterization of these extracts was performed. Cytotoxicity was evaluated by MTT and Neutral Red Uptake (NRU) assays on Vero cells. Genotoxicity was studied by Micronuclei and comet assays on Balb/C mice. Qualitative and quantitative chemical analysis of extracts were performed. Results showed that extracts have low cytotoxicity. Tegument ethanolic extract (TEE) and Seed ethanolic extract (SEE) were not genotoxic. The treatments with TEE at 250 mg/kg and SEE at 2000 mg/kg revealed (highest concentrations evaluated) some toxicity on blood marrow cells of mice. Chemical characterization indicated that TEE had 74.33 ± 1.10 mg GAE/g of dried extract and SEE had 15.05 ± 0.06 mg GAE/g of dried extract of total phenolic content. Also, proanthocyanidins (O.D. at 550 nm 1.39 ± 0.15) and caffeic acid (2.46%) were identified in TEE. While, linoleic acid (58.84%) oleic acid (11.31%) and palmitic acid (8.37%) were major compounds of SEE. In conclusion, peanut consumption is safe at concentrations recommended for healthy uses, such as nutrition, and phytomedicine.
Collapse
|
39
|
Melo PS, Massarioli AP, Lazarini JG, Soares JC, Franchin M, Rosalen PL, Alencar SMD. Simulated gastrointestinal digestion of Brazilian açaí seeds affects the content of flavan-3-ol derivatives, and their antioxidant and anti-inflammatory activities. Heliyon 2020; 6:e05214. [PMID: 33088966 PMCID: PMC7566108 DOI: 10.1016/j.heliyon.2020.e05214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/17/2020] [Accepted: 10/07/2020] [Indexed: 01/26/2023] Open
Abstract
Açaí seeds (Euterpe oleracea Mart.) are the major residue generated during industrial extraction of açaí fruit pulp - a popular and typical Amazon fruit rich in bioactive compounds and nutrients. In this study, we investigated the bioaccessibility of an açaí seed extract using an in vitro simulated gastrointestinal digestion model. Catechin, epicatechin and procyanidins B1 and B2 were identified and quantified in the açaí seed extract and monitored by HPLC-DAD through the digestion phases. Bioaccessibility of these flavan-3-ols and deactivation of reactive oxygen species decreased after the intestinal phase, except for peroxyl radical (ROO●). RAW 264.7 macrophages treated either with the digested or undigested açaí seed extract showed reduced NF-κB activation and TNF-α levels, even following gastrointestinal digestion. Thus, the ROO● scavenging capacity and anti-inflammatory activity of the extract were found to be still remarkable after digestion, suggesting that açaí seeds could be explored as a source of bioactive compounds for functional foods, cosmetic or pharmaceutical purposes.
Collapse
Affiliation(s)
- Priscilla Siqueira Melo
- Department of Agri-food Industry, Food and Nutrition, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Pádua Dias Avenue, P.O. Box. 9, 13418-900, Piracicaba, SP, Brazil.,Center of Nature Sciences, Lagoa do Sino Campus, Federal University of São Carlos (UFSCar), Lauri Simões de Barros Highway, Km 12, SP-189, 18290-000, Buri, SP, Brazil
| | - Adna Prado Massarioli
- Department of Agri-food Industry, Food and Nutrition, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Pádua Dias Avenue, P.O. Box. 9, 13418-900, Piracicaba, SP, Brazil
| | - Josy Goldoni Lazarini
- Piracicaba Dental School, Department of Physiological Sciences, University of Campinas, 901 Limeira Avenue, 13414-903, Piracicaba, SP, Brazil
| | - Jackeline Cintra Soares
- Department of Agri-food Industry, Food and Nutrition, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Pádua Dias Avenue, P.O. Box. 9, 13418-900, Piracicaba, SP, Brazil
| | - Marcelo Franchin
- Piracicaba Dental School, Department of Physiological Sciences, University of Campinas, 901 Limeira Avenue, 13414-903, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Piracicaba Dental School, Department of Physiological Sciences, University of Campinas, 901 Limeira Avenue, 13414-903, Piracicaba, SP, Brazil
| | - Severino Matias de Alencar
- Department of Agri-food Industry, Food and Nutrition, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Pádua Dias Avenue, P.O. Box. 9, 13418-900, Piracicaba, SP, Brazil
| |
Collapse
|
40
|
Jia Q, Dong Q, Sang Q, Wang M, Zhang H, Zhou Y, Li Y, Xiao T, Hu P, Zhang S. Rapid qualitative and quantitative analyses of anthocyanin composition in berries from the Tibetan Plateau with UPLC-quadruple-Orbitrap MS and their antioxidant activities. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:301-308. [PMID: 32508139 DOI: 10.1177/1469066720926435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nitraria tangutorum B. (NT), Hippophae rhamnoides L. (HR), Lycium ruthenicum M. (LR), Lycii fructus (LF), Rosa xanthina L. (RX), and Rubuscor chorifolius L. f. (RC) are six berries from Tibetan Plateau. They have been used in traditional folk medicine with a long history, which are rich in anthocyanins. However, detailed study of their anthocyanins remains scarce. Therefore, a method for rapid simultaneous identification and quantification of 12 anthocyanins from berries using UPLC-Quadruple-Orbitrap MS system (UPLC-Q-Orbitrap MS) was established in this work. It was verified with limit of detection (3.86-11.61 µg/L), limit of quantification (3.86-11.61 µg/L), precision (0.95-2.38%), repeatability (0.96-2.08%), stability (0.86-2.31%), mean recovery (95.8-103.1%), recovery range (93.1-107.2%) and RSD less than 5.21%. It was then used in the analysis of anthocyanins in six berries species; 8, 7, 7, 7, 6 and 9 species of anthocyanins have been identified in NT, LF, LR, HR, RC and RX, respectively based on their own retention time and exact mass in positive mode, and for the first time quantified successfully in each berry (31.11 ± 0.42-2978 ± 25.67 μg.g-1). Finally, 2, 2-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity (0.92 ± 0.12-5.61 ± 0.23 mM TE/100 g), ferric reducing antioxidant power (FRAP) (1.23 ± 0.15-7.42 ± 0.28 mM TE/100 g) and total antioxidant activity (T-AOC) assays were used to evaluate the antioxidant activities of the six berries.
Collapse
Affiliation(s)
- Qiangqiang Jia
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Qiuxia Dong
- Oncology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Qingni Sang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Mingfang Wang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Hongyang Zhang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL, USA
| | - Yuxi Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Tingting Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Ping Hu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Shoude Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
41
|
Zhu H, Ni L, Ren S, Fang G, Li S. A composite carbon-based solid acid-supported palladium catalyst (Pd/C-SO 3H) for hydrogenolysis of plant-derived polymeric proanthocyanidins. RSC Adv 2020; 10:20665-20675. [PMID: 35517777 PMCID: PMC9054284 DOI: 10.1039/d0ra03518a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
A composite catalyst, Pd/C-SO3H, has been prepared to depolymerize plant-derived polymeric proanthocyanidins (PPC). Different reaction conditions were explored and the catalyst was shown to have good performance and recyclability, as well as good thermal and acid–base stability. UV, FTIR and 1H NMR analyses showed that the depolymerization products (oligomeric proanthocyanidins, OPC) retained a condensed flavanol polyphenol structure and that the basic structural units of the polymers had not been destroyed. The antioxidant activity of the OPC was better than that of the PPC, and also better than that of 2,6-di-tert-butyl-4-methylphenol, which is widely used in industry, including as a food additive. OPC could, therefore, be developed as a commercially useful radical chain-breaking antioxidant. The preparation of Pd/C-SO3H provides an example of the design and development of a new composite catalyst that has high practical value. The study also provides a new technical route for the depolymerization of PPC and thus makes a useful contribution to the high-value utilization of renewable plant resources. A composite catalyst, Pd/C-SO3H, has been prepared to depolymerize plant-derived polymeric proanthocyanidins (PPC).![]()
Collapse
Affiliation(s)
- Hongfei Zhu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University China.,College of Materials Science and Engineering, Northeast Forestry University Harbin 150040 P. R. China
| | - Liwen Ni
- College of Materials Science and Engineering, Northeast Forestry University Harbin 150040 P. R. China
| | - Shixue Ren
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University China.,College of Materials Science and Engineering, Northeast Forestry University Harbin 150040 P. R. China
| | - Guizhen Fang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University China.,College of Materials Science and Engineering, Northeast Forestry University Harbin 150040 P. R. China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University China.,College of Materials Science and Engineering, Northeast Forestry University Harbin 150040 P. R. China
| |
Collapse
|
42
|
C-ring cleavage metabolites of catechin and epicatechin enhanced antioxidant activities through intestinal microbiota. Food Res Int 2020; 135:109271. [PMID: 32527491 DOI: 10.1016/j.foodres.2020.109271] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/23/2022]
Abstract
The changes in DPPH radical-scavenging capability of catechin and epicatechin during 24 h incubation with fecal microbiota in vitro and the targeted analysis of the characteristic metabolites by using UPLC-Q-TOF indicated that increase in antioxidant activity was synchronous with the accumulation of C-ring cleavage metabolites. Therefore, C-ring cleavage metabolite, 1-(3',4'-Dihydroxyphenyl)-3-(2'',4'',6''-trihydroxyphenyl)propan-2-ol (3,4-DHPP-2-ol), was separated from incubation liquid. The antioxidant activities of this metabolite and other 11 metabolites were examined through DPPH and ABTS free radical scavenging capacity and ferric reducing antioxidant capability (FRAC). The results indicated that all metabolites with the structure of 3',4'-dihydroxylated had high antioxidant activity, especially 3,4-DHPP-2-ol, whose EC50 was 5.97 μM in DPPH assay, 2 times as high as that of catechin, and 1.8 times as high as that of epicatechin. But the metabolites with the structure of monohydroxylated or unhydroxylated on the benzene ring hardly exhibited antioxidant activity.
Collapse
|
43
|
Rossi YE, Bohl LP, Vanden Braber NL, Ballatore MB, Escobar FM, Bodoira R, Maestri DM, Porporatto C, Cavaglieri LR, Montenegro MA. Polyphenols of peanut (Arachis hypogaea L.) skin as bioprotectors of normal cells. Studies of cytotoxicity, cytoprotection and interaction with ROS. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Fernandes ACF, Martins IM, Moreira DKT, Macedo GA. Use of agro‐industrial residues as potent antioxidant, antiglycation agents, and α‐amylase and pancreatic lipase inhibitory activity. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Isabela Mateus Martins
- Bioprocesses Laboratory Faculty of Food Engineering University of Campinas Campinas Brazil
| | | | - Gabriela Alves Macedo
- Bioprocesses Laboratory Faculty of Food Engineering University of Campinas Campinas Brazil
| |
Collapse
|
45
|
Bodoira R, Maestri D. Phenolic Compounds from Nuts: Extraction, Chemical Profiles, and Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:927-942. [PMID: 31910006 DOI: 10.1021/acs.jafc.9b07160] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nuts contain a vast array of phenolic compounds having important biological properties. They include substances allocated into the five major groups named phenolic acids, flavonoids, tannins, phenolic lignans, and stilbene derivatives. The complexity in composition does not allow for setting a universal extraction procedure suitable for extraction of all nut phenolics. The use of non-conventional extraction techniques, such as those based on microwave, ultrasound, and compressed fluids, combined with generally recognized as safe solvents is gaining major interest. With regard to the latter, ethanol, water, and ethanol-water mixtures have proven to be effective as extracting solvents and allow for clean, safe, and low-cost extraction operations. In recent years, there has been an increasing interest in biological properties of natural phenolic compounds, especially on their role in the prevention of several diseases in which oxidative stress reactions are involved. This review provides an updated and comprehensive overview on nut phenolic extraction and their chemical profiles and bioactive properties.
Collapse
Affiliation(s)
- Romina Bodoira
- Instituto Multidisciplinario de Biología Vegetal (IMBIV) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC) , Avenida Vélez Sarsfield 1611 , X5016GCA Córdoba , Argentina
| | - Damián Maestri
- Instituto Multidisciplinario de Biología Vegetal (IMBIV) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC) , Avenida Vélez Sarsfield 1611 , X5016GCA Córdoba , Argentina
| |
Collapse
|
46
|
Zeng YX, Wang S, Wei L, Cui YY, Chen YH. Proanthocyanidins: Components, Pharmacokinetics and Biomedical Properties. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:813-869. [PMID: 32536248 DOI: 10.1142/s0192415x2050041x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proanthocyanidins (PAs) are a group of polyphenols enriched in plant and human food. In recent decades, epidemiological studies have upheld the direct relationship between PA consumption and health benefits; therefore, studies on PAs have become a research hotspot. Although the oral bioavailability of PAs is quite low, pharmacokinetics data revealed that some small molecules and colonic microbial metabolites of PAs could be absorbed and exert their health beneficial effects. The pharmacological effects of PAs mainly include anti-oxidant, anticancer, anti-inflammation, antimicrobial, cardiovascular protection, neuroprotection, and metabolism-regulation behaviors. Moreover, current toxicological studies show that PAs have no observable toxicity to humans. This review summarizes the resources, extraction, structures, pharmacokinetics, pharmacology, and toxicology of PAs and discusses the limitations of current studies. Areas for further research are also proposed.
Collapse
Affiliation(s)
- Yan-Xi Zeng
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Sen Wang
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Lu Wei
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Ying-Yu Cui
- Key Laboratory of Arrhythmias, Ministry of Education (Tongji University), Shanghai 200120, P. R. China
- Heart Health Centre, Tongji University School of Medicine, Shanghai 200120, P. R. China
- Institute of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, P. R. China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Yi-Han Chen
- Key Laboratory of Arrhythmias, Ministry of Education (Tongji University), Shanghai 200120, P. R. China
- Heart Health Centre, Tongji University School of Medicine, Shanghai 200120, P. R. China
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
- Institute of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, P. R. China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, P. R. China
| |
Collapse
|
47
|
Pan Z, Lin Y, Sarkar B, Owens G, Chen Z. Green synthesis of iron nanoparticles using red peanut skin extract: Synthesis mechanism, characterization and effect of conditions on chromium removal. J Colloid Interface Sci 2020; 558:106-114. [DOI: 10.1016/j.jcis.2019.09.106] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
|
48
|
Zhu H, Li P, Ren S, Tan W, Fang G. Low-Cost Ru/C-Catalyzed Depolymerization of the Polymeric Proanthocyanidin-Rich Fraction from Bark To Produce Oligomeric Proanthocyanidins with Antioxidant Activity. ACS OMEGA 2019; 4:16471-16480. [PMID: 31616825 PMCID: PMC6787890 DOI: 10.1021/acsomega.9b02071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/17/2019] [Indexed: 06/01/2023]
Abstract
A new method has been developed for the high-value utilization of larch bark, which is regarded as a low-value byproduct of the logging industry. Polymeric proanthocyanidins (PPCs) were extracted from the Larix gmelinii bark and depolymerized by catalytic hydrogenolysis, using ruthenium/carbon (Ru/C) as the catalyst. The method has been found that although the molecular weight of the depolymerized product was significantly lower, the basic structural units were not destroyed, and the product retained a condensed flavanol polyphenol structure; the depolymerized product contains very little Ru metal and thus complies with food safety standards; the antioxidant properties of both the depolymerized products and PPCs were better than those of the commonly used antioxidant 2,6-di-tert-butyl-4-methylphenol. The relative molecular weight and steric hindrance of the depolymerized products were lower than those of the PPCs, leading to better antioxidant performance. A new technical route for the depolymerization of PPCs from the L. gmelinii bark is provided. The route offers practical and commercial advantages, and the product could have many applications as an antioxidant.
Collapse
Affiliation(s)
- Hongfei Zhu
- Key
Laboratory of Bio-Based Material Science and Technology of Ministry
of Education and College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Peize Li
- Key
Laboratory of Bio-Based Material Science and Technology of Ministry
of Education and College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Shixue Ren
- Key
Laboratory of Bio-Based Material Science and Technology of Ministry
of Education and College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Wenying Tan
- Key
Laboratory of Bio-Based Material Science and Technology of Ministry
of Education and College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Guizhen Fang
- Key
Laboratory of Bio-Based Material Science and Technology of Ministry
of Education and College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
49
|
Oldoni TLC, Merlin N, Karling M, Carpes ST, Alencar SMD, Morales RGF, Silva EAD, Pilau EJ. Bioguided extraction of phenolic compounds and UHPLC-ESI-Q-TOF-MS/MS characterization of extracts of Moringa oleifera leaves collected in Brazil. Food Res Int 2019; 125:108647. [PMID: 31554035 DOI: 10.1016/j.foodres.2019.108647] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/30/2019] [Accepted: 08/25/2019] [Indexed: 11/30/2022]
Abstract
Moringa oleifera leaves are used in Brazilian folk medicine for their hypoglycemic and nutritional properties. In this context, the chemical and biological characteristics were determined. Conventional successive solid-liquid extraction with simultaneous bioguided purification using solvents with different polarities was performed with M. oleifera leaves, yielding six fractions and extracts. The fractions showed better results for antioxidant activity than the extracts. All of them were evaluated by scavenging of synthetic free radicals and reactive oxygen species, and Fr-Ace and Fr-EtOAc showed >100 mg GAE g-1 of phenolic content, while for FRAP and ORAC assays the values were higher than 1600 μmol Fe2+ g-1 and 3500 mmol TEAC g-1 respectively. The UPLC-ESI-QTOF-MS analysis of hydroalcoholic extract (HE) allowed identifying 24 compounds, with flavonoid derivatives being the most abundant group. Furthermore, the alkaloid trigonelline and sesquiterpenoid abscisic acid were identified for the first time in M. oleifera leaves. Finally, gallic acid, caffeic acid, rutin and quercetin were found in concentrations of 16.5, 2129, 477.4 and 127.5 μg g-1 respectively in HE, all of which were higher in fractions and extracts. These results suggest that bioguided extraction is an important technique, due to its ability to concentrate active compounds in a logical and rational way. In addition, M. oleifera leaves grown in Brazil are an important source of phenolic compounds with antioxidant activity that can be used in food, nutraceutical and pharmaceutical products.
Collapse
Affiliation(s)
| | - Nathalie Merlin
- Department of Chemistry, Federal Technological University of Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil
| | - Mariéli Karling
- Department of Chemistry, Federal Technological University of Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil
| | - Solange Teresinha Carpes
- Department of Chemistry, Federal Technological University of Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo (USP), 13418-900 Piracicaba, SP, Brazil
| | | | - Evandro Aparecido da Silva
- Department of Chemistry, State University of Maringa (UEM), Av. Colombo, 5790 - Jardim Universitário, CP 591, 87020-900 Maringá, Paraná, Brazil
| | - Eduardo Jorge Pilau
- Department of Chemistry, State University of Maringa (UEM), Av. Colombo, 5790 - Jardim Universitário, CP 591, 87020-900 Maringá, Paraná, Brazil
| |
Collapse
|
50
|
Study of physicochemical stability of anthocyanin extracts from black peanut skin and their digestion enzyme and adipogenesis inhibitory activities. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|