1
|
Amahrous A, Taib M, Meftah S, Oukani E, Lahboub B. ChemicalComposition, Health Benefits and Future Prospects of Hairless Canary Seed (Phalariscanariensis L.): A Review. J Oleo Sci 2024; 73:1361-1375. [PMID: 39414460 DOI: 10.5650/jos.ess24108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Abstract
The increasing global population and the rise of health-conscious consumers have led to a growing demand for innovative foods and functional ingredients. Hairless canary seed (Phalaris canariensis L.), which has recently obtained regulatory food approval from Health Canada and the United States Food and Drug Administration (US-FDA), has the potential to meet these demands due to its unique nutrient profile and characteristics. Canary seed stands out among cereals and pseudo-cereals (gluten-free cereals) as it has the highest protein content and is gluten-free. Additionally, it contains significant amounts of tryptophan, an amino acid typically lacking in cereals. It is considered a true cereal grain that can be processed into flour, starch, and oil for various food and non-food applications. This article provides a comprehensive overview of the chemical composition, functional properties, and biological activities of canary seeds. It also explores the processing methods for incorporating these seeds into food and cosmetic products. Furthermore, suggestions for future research directions are presented to enhance the utilization of this plant. Overall, it is evident that Phalaris canariensis holds considerable potential as a sustainable crop that can be further developed.
Collapse
Affiliation(s)
- Ayoub Amahrous
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Mehdi Taib
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Said Meftah
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Elhassan Oukani
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Bouyazza Lahboub
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| |
Collapse
|
2
|
Yang B, Wang X, Li W, Liu G, Li D, Xie C, Yang R, Jiang D, Zhou Q, Wang P. Synergistic enhancement of anthocyanin stability and techno-functionality of colored wheat during the steamed bread processing by selectively hydrolyzed soy protein. Food Chem 2024; 456:139984. [PMID: 38876063 DOI: 10.1016/j.foodchem.2024.139984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
To improve the stability of anthocyanins and techno-functionality of purple and blue wheat, the selectively hydrolyzed soy protein (reduced glycinin, RG) and β-conglycinin (7S) were prepared and their enhanced effects were comparatively investigated. The anthocyanins in purple wheat showed higher stability compared to that of the blue wheat during breadmaking. The cyanidin-3-O-glucoside and cyanidin-3-O-rutincoside in purple wheat and delphinidin-3-O-rutinoside and delphinidin-3-O-glucoside in blue wheat were better preserved by RG. Addition of RG and 7S enhanced the quality of steamed bread made from colored and common wheat, with RG exhibited a more prominent effect. RG and 7S suppressed the gelatinization of starch and improved the thermal stability. Both RG and 7S promoted the unfolding process of gluten proteins and facilitated the subsequent crosslinking of glutenins and gliadins by disulfide bonds. Polymerization of α- and γ-gliadin into glutenin were more evidently promoted by RG, which contributed to the improved steamed bread quality.
Collapse
Affiliation(s)
- Bailu Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xinnuo Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Guannan Liu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Qin Zhou
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China.
| |
Collapse
|
3
|
Yuan J, Wang H, Jiang Y, Jiang Y, Tang Y, Li X, Zhao Y. Utilization of Germinated Seeds as Functional Food Ingredients: Optimization of Nutrient Composition and Antioxidant Activity Evolution Based on the Germination Characteristics of Chinese Chestnut ( Castanea mollissima). Foods 2024; 13:2605. [PMID: 39200532 PMCID: PMC11353505 DOI: 10.3390/foods13162605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The current study investigated the impact of germination duration on the functional components (vitamin C, γ-aminobutyric acid (GABA), polyphenols, flavonoids) and antioxidant activity of germs and cotyledons of the germinated Chinese chestnut (Castanea mollissima). We utilized seeds of the "Zaofeng" Chinese chestnut to germinate, and sowed the seeds in wet sand at 22 °C and 85% relative humidity. The germination rate, length, diameter, and fresh weight of the sprouts were investigated at 0, 2, 4, 6, 8, and 10 days after sowing, and the kinetic changes of amylose, amylopectin, sugar components, soluble protein, vitamin C, GABA, total phenols, flavonoids, and the DPPH and ABTS free radical scavenging activity in the germs and cotyledons were monitored, respectively. The findings revealed that the germination rate and germ biomass increased continuously during germination. The germination rate reached 90% on the 8th day after sowing. Germination reduced amylose in cotyledons from 42.3% to 34.2%, amylopectin from 42.9% to 25.8%, total sugar from 12.6% to 11.4%, and vitamin C from 1.45 mg/g to 0.77 mg/g. Meanwhile, soluble protein in the embryos rose from 0.31% to 0.60%, vitamin C from 21.1 to 29.4 mg/g, GABA from 0.49 to 1.68 mg/g, total flavonoids from 53.6 to 129.7 mg/g, and ABTS antioxidant activity from 1.52 to 3.27 μmol TE/g. The average contents of D-fructose, inositol, vitamin C, GABA, polyphenols, and flavonoids and the DPPH and ABTS antioxidant activity in germs were as high as 22.5, 6, 35, 7.5, 10, 20, and 10 and 20-fold those of cotyledons, respectively. Especially, the average content of glucose in germ was as high as 80-fold that of cotyledon. D-xylulose, D-galacturonic acid, and D-ribose were only found in germs, but not in cotyledons. Considering the germ biomass and functional components content, germs of Chinese chestnuts germinated at 22 °C for 8 days are considered the most suitable raw material for functional food products. In conclusion, controlled germination not only enhances the physicochemical and functional properties of Chinese chestnut germs but also reduces the caloric content and improves the nutritional composition of the cotyledons appropriately. Moreover, the comprehensive evaluation of compositional changes and functionality in the embryo and cotyledon of Chinese chestnuts will provide a solid foundation for subsequent functional food processing utilizing germinated Chinese chestnuts.
Collapse
Affiliation(s)
- Junwei Yuan
- Chestnut Research Center, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; (J.Y.); (Y.J.)
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China;
| | - Haifen Wang
- Chestnut Research Center, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; (J.Y.); (Y.J.)
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China;
| | - Yunbin Jiang
- Chestnut Research Center, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; (J.Y.); (Y.J.)
| | - Yuqian Jiang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.J.); (Y.T.); (X.L.)
| | - Yao Tang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.J.); (Y.T.); (X.L.)
| | - Xihong Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.J.); (Y.T.); (X.L.)
| | - Yuhua Zhao
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China;
| |
Collapse
|
4
|
Durruty MX, de Figueiredo K, Rodríguez M, Nolasco S, Riccobene I. Engineering properties and optimization of the dehulling process for hairless canary seed. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1295-1303. [PMID: 38910926 PMCID: PMC11190109 DOI: 10.1007/s13197-023-05898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/24/2023] [Accepted: 11/18/2023] [Indexed: 06/25/2024]
Abstract
This work aimed to determine the engineering properties of hairless canary seeds (Phalaris canariensis L.) of the variety "CDC Maria" and the optimum combination of operating conditions of the dehulling process with a pilot-scale centrifugal dehuller. The engineering properties analyzed in this study were the principal dimensions, length (4.8 mm), width (1.95 mm) and thickness (1.41 mm); geometric mean diameter (2.36 mm); the sphericity (49.2%); apparent and true densities (752 and 1191.47 kg/m3, respectively); the porosity (0.37); 1000 grains weight (7.28 g); angle of repose (15.89°) and the static coefficient of friction (galvanized steel, 0.325; plywood, 0.372; aluminium, 0.316). For the process optimization, a two-variable Doehlert design was used, analyzing the effect of impact dehuller rotor speed (peripheral speed 30.4 to 47.1 m/s) and seed moisture content (10 to 14% d.b.) by maximizing the dehulling ability (DA) and maintaining the production of fines by 3%. Under the experimental conditions of 36.7 m/s (peripheral speed) and 10% d.b. (seed moisture), with a double pass through the dehuller, the optimum value of DA (94%) was obtained, with a fine production of 3%. The optimized dehulling process allows removing a large percentage (98%) of the canary seed hull.
Collapse
Affiliation(s)
- María Ximena Durruty
- Grupo de Investigación TECSE, Departamento de Ingeniería Química y Tecnología de los Alimentos, Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. del Valle 5737, 7400 Buenos Aires, Olavarría Argentina
- CIC - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Karina de Figueiredo
- Grupo de Investigación TECSE, Departamento de Ingeniería Química y Tecnología de los Alimentos, Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. del Valle 5737, 7400 Buenos Aires, Olavarría Argentina
| | - Marcela Rodríguez
- Grupo de Investigación TECSE, Departamento de Ingeniería Química y Tecnología de los Alimentos, Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. del Valle 5737, 7400 Buenos Aires, Olavarría Argentina
- CCT Tandil (CONICET), Pinto 399, 7000 Tandil, Buenos Aires, Argentina
| | - Susana Nolasco
- Grupo de Investigación TECSE, Departamento de Ingeniería Química y Tecnología de los Alimentos, Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. del Valle 5737, 7400 Buenos Aires, Olavarría Argentina
- CIC - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Isabel Riccobene
- Grupo de Investigación TECSE, Departamento de Ingeniería Química y Tecnología de los Alimentos, Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. del Valle 5737, 7400 Buenos Aires, Olavarría Argentina
| |
Collapse
|
5
|
Li W, Liu X, Ma Y, Huang X, Hai D, Cheng Y, Bai G, Wang Y, Zhang B, Qiao M, Song L, Li N. Changes in physio-biochemical metabolism, phenolics and antioxidant capacity during germination of different wheat varieties. Food Chem X 2024; 22:101429. [PMID: 38756466 PMCID: PMC11096995 DOI: 10.1016/j.fochx.2024.101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Changes in physio-biochemical metabolism, phenolics and antioxidant capacity during germination were studied in eight different wheat varieties. Results showed that germination enhanced sprout growth, and caused oxidative damage, but enhanced phenolics accumulation. Ferulic acid and p-coumaric acid were the main phenolic acids in wheat sprouts, and dihydroquercetin, quercetin and vitexin were the main flavonoids. The phenolic acid content of Jimai 44 was the highest on the 2th and 4th day of germination, and that of Bainong 307 was the highest on the 6th day. The flavonoid content of Hei jingang was the highest during whole germination. The enzymes activities of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H) and 4-coumarate coenzyme A ligase (4CL) were up-regulated. The activities of catalase, polyphenol oxidase and peroxidase were also activated. Antioxidant capacity of wheat sprouts was enhanced. The results provided new ideas for the production of naturally sourced phenolic rich foods.
Collapse
Affiliation(s)
- Wenxin Li
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Xiaoyong Liu
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Yan Ma
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
- Henan Shuanghui Investment Development Co., Ltd./Henan Intelligent Meat Segmentation and Biotransformation Engineering Research Center, Luohe 462005, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/National Risk Assessment Laboratory of Agro-products Processing Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Dan Hai
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Yongxia Cheng
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Ge Bai
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Yinping Wang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Bei Zhang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Ning Li
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| |
Collapse
|
6
|
Wang S, Liu G, Xie C, Zhou Y, Yang R, Wu J, Xu J, Tu K. Metabolomics Analysis of Different Quinoa Cultivars Based on UPLC-ZenoTOF-MS/MS and Investigation into Their Antioxidant Characteristics. PLANTS (BASEL, SWITZERLAND) 2024; 13:240. [PMID: 38256795 PMCID: PMC10819959 DOI: 10.3390/plants13020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
In recent years, quinoa, as a nutritious and sustainable food material, has gained increasing popularity worldwide. To investigate the diversity of nutritional characteristics among different quinoa cultivars and explore their potential health benefits, metabolites of five quinoa cultivars (QL-1, SJ-1, SJ-2, KL-1 and KL-2) were compared by non-targeted metabolomics analysis based on UPLC-ZenoTOF-MS/MS in this study. A total of 248 metabolites across 13 categories were identified. Although the metabolite compositions were generally similar among the different quinoa cultivars, significant variations existed in their respective metabolite contents. Among the identified metabolites, amino acids/peptides, nucleosides, saponins and phenolic acids were the most abundant. Notably, SJ-1 exhibited the most distinct metabolite profile when compared to the other cultivars. Amino acids/peptides and nucleosides were found to be crucial factors contributing to the unique metabolite profile of SJ-1. Collectively, these aforementioned metabolites accounted for a substantial 60% of the total metabolites observed in each quinoa variety. Additionally, a correlation between the DPPH radical scavenging activity and the free phenolic content of quinoa was observed. Variations in phenolic content resulted in different antioxidant capacities among the quinoa cultivars, and SJ-1 exhibited lower phenolic levels and weaker antioxidant activity than the others. These results can provide important information for the development of quinoa resources.
Collapse
Affiliation(s)
- Shufang Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Z.); (J.W.)
| | - Guannan Liu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
| | - Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
| | - You Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Z.); (J.W.)
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
| | - Jirong Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Z.); (J.W.)
| | - Jianhong Xu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Z.); (J.W.)
| | - Kang Tu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
| |
Collapse
|
7
|
Chávez García SN, Rodríguez-Herrera R, Nery Flores S, Silva-Belmares SY, Esparza-González SC, Ascacio-Valdés JA, Flores-Gallegos AC. Sprouts as probiotic carriers: A new trend to improve consumer nutrition. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 7:100185. [PMID: 38155686 PMCID: PMC10753383 DOI: 10.1016/j.fochms.2023.100185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 12/30/2023]
Abstract
Over the past few decades, efforts to eradicate hunger in the world have led to the generation of sustainable development goals to reduce poverty and inequality. It is estimated that the current coronavirus pandemic could add between 83 and 132 million to the total number of undernourished people in the world by 2021. Food insecurity is a contributing factor to the increase in malnutrition, overweight and obesity due to the quality of diets to which people have access. It is therefore necessary to develop functional foods that meet the needs of the population, such as the incorporation of sprouts in their formulation to enhance nutritional quality. Germination of grains and seeds can be used as a low-cost bioprocessing technique that provides higher nutritional value and better bioavailability of nutrients. Consequently, the manuscript describes relevant information about the germination process in different seeds, the changes caused in their nutritional value and the use of techniques within the imbibition phase to modify the metabolic profiles within the sprouts such as inoculation with lactic acid bacteria and yeasts, to generate a functional symbiotic food.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Cecilia Esparza-González
- School of Odontology, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas S/N, Republica Oriente, C.P. 25280 Saltillo, Coahuila, Mexico
| | | | | |
Collapse
|
8
|
Zhang J, Guo J, Dang B, Zhang W, Zheng W, Yang X. Enhancement of Polyphenols and Antioxidant Activity in Germinated Black Highland Barley by Ultrasonication. Molecules 2023; 28:molecules28093679. [PMID: 37175091 PMCID: PMC10179913 DOI: 10.3390/molecules28093679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this study was to investigate the effect of ultrasonic stress germination (USG) on total phenolic contents (TPC), total flavonoid contents (TFC), the phenolic compositions, and antioxidant activities of black highland barley (BHB). The USG processing parameters, polyphenol profile, phenolic compositions, and antioxidant activities were explored after USG. Results showed that the optimal USG parameters were as follows: 350 W ultrasonic pretreatment power, 30 °C ultrasonication temperature, 25 min ultrasonication time, and 64 h germination time. Under these conditions, the total phenolic content (688.84 ± 5.30 mg/100 g) and total flavonoid content (59.23 ± 0.45 mg/100 g) of BHB were increased by 28.55% and 10.15%, respectively, compared to the untreated samples. In addition, the USG treatment could more effectively enrich bound phenolic acids and free flavonoids, among which the content of catechin was significantly increased by USG and was the main characteristic substance. Moreover, the USG treatment could improve the antioxidant activity and had a higher antioxidant potency composite index (APC index) (97.91%) of BHB. These results indicate that USG might be an effective method to enrich polyphenols and improve antioxidant activity in BHB.
Collapse
Affiliation(s)
- Jie Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
| | - Junling Guo
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
| | - Bin Dang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
| | - Wengang Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
| | - Wancai Zheng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
| | - Xijuan Yang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China
| |
Collapse
|
9
|
Assessment of Protein Nutritional Quality of Novel Hairless Canary Seed in Comparison to Wheat and Oat Using In Vitro Static Digestion Models. Nutrients 2023; 15:nu15061347. [PMID: 36986077 PMCID: PMC10056580 DOI: 10.3390/nu15061347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Hairless canary seed (Phalaris canariensis L.) is a novel true cereal that is now approved for human consumption in Canada and the United States. This true cereal grain has higher protein content (22%) than oat (13%) and wheat (16%) and represents a valuable source of plant proteins. Assessment of canary seed protein quality is therefore essential to evaluate its digestibility and ability to provide sufficient amounts of essential amino acids for human requirements. In this study, the protein nutritional quality of four hairless canary seed varieties (two brown and two yellow) were evaluated in comparison to oat and wheat. The assessment of anti-nutrients contents (phytate, trypsin inhibitor activity, and polyphenols) showed that brown canary seed varieties had the highest content in phytate and oat the highest in polyphenols. Trypsin inhibitor level was comparable among studied cereals, but slightly higher in the brown canary seed Calvi variety. In regard to protein quality, canary seed had a well-balanced amino acid profile and was particularly high in tryptophan, an essential amino acid normally lacking in cereals. The in vitro protein digestibility of canary seeds as determined by both the pH-drop and INFOGEST (international network of excellence on the fate of food in the gastrointestinal tract) protocols appears slightly lower than wheat and higher than oat. The yellow canary seed varieties showed better overall digestibility than the brown ones. For all studied cereal flours, the limiting amino acid was lysine. The calculated in vitro PDCAAS (protein digestibility corrected amino acid score) and DIAAS (digestible indispensable amino acid score) were higher for the yellow C05041 cultivar than the brown Bastia, similar to those of wheat, but lower than those of oat proteins. This study demonstrates the feasibility and utility of in vitro human digestion models for the assessment of protein quality for comparison purpose.
Collapse
|
10
|
Park L, Green C, Arutyunyan S, Vasile G, Buckley C, Weiss E. Effects of canary seed on two patients with disseminated granuloma annulare. Dermatol Reports 2022. [DOI: 10.4081/dr.2023.9614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Treatment of disseminated granuloma annulare (GA) can be challenging and there is no gold standard for treatment. We observed two cases of generalized GA that had been resistant to other treaments successfully treated with canary seed milk. Canary seed milk has antioxidant (contains vitamin E), anti-diabetic (DPP-4 inhibition), and anti-hypertensive (ACE inhibition) properties. Therefore, dermatologists can consider alpiste milk as a sole or supplemental treatment for patients with GA with or without comorbidities such as diabetes and hypertension, in GA patients who prefer alternative therapy or failed other treatments.
Collapse
|
11
|
Xie C, Sun M, Wang P, Yang R. Interaction of Gamma-Aminobutyric Acid and Ca 2+ on Phenolic Compounds Bioaccumulation in Soybean Sprouts under NaCl Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3503. [PMID: 36559615 PMCID: PMC9787623 DOI: 10.3390/plants11243503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
NaCl stress can enhance the accumulation of phenolic compounds in soybean during germination. In the present study, effects of gamma-aminobutyric acid (GABA) and Ca2+ on the biosynthesis of phenolic compounds in soybean sprouts germinated with NaCl stress were investigated. Results showed that addition of Ca2+ increased the content of total phenolics, phenolic acids, and isoflavonoids in soybean sprouts by ca. 15%, 7%, and 48%, respectively, through enhancing the activities of three key enzymes involved in the biosynthesis. On the other hand, addition of LaCl3, a calcium channel blocker, inhibited the synthesis of phenolic compounds, indicating that Ca2+ plays an important role in the synthesis of these compounds in soybean sprouts. Addition of GABA can increase the content of Ca2+ in soybean sprouts by ca. 20% and alleviate the inhibition of LaCl3 on phenolics biosynthesis in soybean sprouts. Similarly, addition of Ca2+ can reverse the inhibition of 3-mercaptopropionate, an inhibitor of endogenous GABA synthesis, on the biosynthesis of phenolic compounds in soybean sprouts under NaCl stress. To conclude, both GABA and Ca2+ can enhance the biosynthesis of phenolic compounds in soybean sprouts and there was an interaction between their effects on the promotion of phenolic compounds biosynthesis.
Collapse
|
12
|
Urbizo-Reyes U, Kim KH, Reddivari L, Anderson JM, Liceaga AM. Oxidative Stress Protection by Canary Seed ( Phalaris canariensis L.) Peptides in Caco-2 Cells and Caenorhabditis elegans. Nutrients 2022; 14:nu14122415. [PMID: 35745145 PMCID: PMC9227596 DOI: 10.3390/nu14122415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
During oxidative stress, degenerative diseases such as atherosclerosis, Alzheimer’s, and certain cancers are likely to develop. Recent research on canary seed (Phalaris canariensis) peptides has demonstrated the high in vitro antioxidant potential. Thus, this study aimed to assess the cellular and in vivo antioxidant capacity of a low-molecular-weight (<3 kDa) canary seed peptide fraction (CSPF) using Caco-2 cells and the Caenorhabditis elegans model. The results show that the CSPF had no cytotoxicity effect on Caco-2 cells at any tested concentration (0.3−2.5 mg/mL). Additionally, the cellular antioxidant activity (CAA) of the CSPF was concentration-dependent, and the highest activity achieved was 80% by the CSPF at 2.5 mg/mL. Similarly, incubation with the CSPF significantly mitigated the acute and chronic oxidative damage, extending the lifespan of the nematodes by 88 and 61%, respectively. Furthermore, it was demonstrated that the CSPF reduced the accumulation of reactive oxygen species (ROS) to safe levels after sub-lethal doses of pro-oxidant paraquat. Quantitative real-time PCR revealed that the CSPF increased the expression of oxidative-stress-response-related gene GST-4. Overall, these results show that the CSPFs relied on GST-4 upregulation and scavenging of free radicals to confer oxidative stress protection and suggest that a CSPF can be used as a natural antioxidant in foods for health applications.
Collapse
Affiliation(s)
- Uriel Urbizo-Reyes
- Protein Chemistry and Bioactive Peptides Laboratory, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA;
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (K.-H.K.); (L.R.)
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (K.-H.K.); (L.R.)
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (K.-H.K.); (L.R.)
| | - Joseph M. Anderson
- Department of Agronomy, Purdue University, 915 W. State St., West Lafayette, IN 47907, USA;
| | - Andrea M. Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA;
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (K.-H.K.); (L.R.)
- Correspondence:
| |
Collapse
|
13
|
Abdel-Aal ESM, Rabalski I. Changes in Phenolic Acids and Antioxidant Properties during Baking of Bread and Muffin Made from Blends of Hairless Canary Seed, Wheat, and Corn. Antioxidants (Basel) 2022; 11:antiox11061059. [PMID: 35739956 PMCID: PMC9220130 DOI: 10.3390/antiox11061059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
Phenolic acids are the major polyphenols in cereal grains and they undergo changes in their composition and structure during processing. This study investigated changes in phenolic acids and antioxidant properties during baking of bread and muffin made from hairless canary seed (HCS), Phalaris canariensis L., alone or in blends with corn and wheat. The changes were monitored after dry mixing, dough/batter formation, and oven baking. Phenolic acids were quantified in products using HPLC and antioxidant activity was based on DPPH, ABTS, and ORAC assays. Eight phenolic acids were primarily present in the bound fraction extracts, while only a few phenolic acids were detected in the free or unbound fraction extracts. Ferulic was the dominant phenolic acid in wheat, corn, and HCS followed by p-coumaric acid but the latter was extremely high in HCS compared to wheat and corn. After baking, bound phenolic acids decreased in breads and muffins, while the unbound phenolic acids increased. Dough preparation resulted in about 5–13% reductions in bound ferulic acid in addition to 2–9% after oven baking with a total reduction of about 10–20% subject to bread formulation. On the contrary unbound ferulic acid increased by 48–307% after dough preparation and 138–225% after oven baking with a total increase 273–495%. Similarly, muffin-making process resulted in 26–30% reductions in bound ferulic acid after batter preparation and 4–7% after oven baking with reductions of 34–37% in muffins, while the unbound ferulic acid increased by about 35–105% and 9–29%, respectively, with a total increase 47–116%. The baking process resulted in improved DPPH, ABTS, and ORAC antioxidant activities in breads and muffins despite the initial reductions after dough preparation. In general, baking process resulted in tangible increases in unbound phenolic acids which eventually could improve their bioavailability and bioactivity.
Collapse
|
14
|
Li S, Xu H, Sui Y, Mei X, Shi J, Cai S, Xiong T, Carrillo C, Castagnini JM, Zhu Z, Barba FJ. Comparing the LC-MS Phenolic Acids Profiles of Seven Different Varieties of Brown Rice ( Oryza sativa L.). Foods 2022; 11:foods11111552. [PMID: 35681302 PMCID: PMC9180180 DOI: 10.3390/foods11111552] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
Brown rice, an important material of whole-grain food, is increasingly popular for its health benefits. Thus, seven varieties of brown rice from southern China were analyzed in this study, concerning the free and bound phenolic compounds in the extract. The phenolic profiles of different brown rice were obtained and compared by the combination of HPLC and LC-MS analysis, in which eleven phenolic acids were identified. It was indicated that the total phenolic contents of different brown rice varied from 92.32 to 196.54 mg of gallic acid equivalent (GAE)/100 g DW. Ferulic acid and p-coumaric acid, free and bound, dominated within the phenolic acids. To be mentioned, the total phenols of Luotiangongmi (a kind of red rice) were significantly higher than the other six varieties. The high phenolic content of brown rice can further guide us to explore the functional properties of the crops.
Collapse
Affiliation(s)
- Shuyi Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan 430023, China; (S.L.); (H.X.); (Z.Z.)
- Key Laboratory of Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| | - Hui Xu
- School of Modern Industry for Selenium Science and Engineering, Wuhan 430023, China; (S.L.); (H.X.); (Z.Z.)
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.M.); (J.S.); (S.C.); (T.X.)
| | - Yong Sui
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.M.); (J.S.); (S.C.); (T.X.)
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (Y.S.); (C.C.); Tel.: +86-27-8738-9302 (Y.S.)
| | - Xin Mei
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.M.); (J.S.); (S.C.); (T.X.)
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianbin Shi
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.M.); (J.S.); (S.C.); (T.X.)
| | - Sha Cai
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.M.); (J.S.); (S.C.); (T.X.)
| | - Tian Xiong
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.M.); (J.S.); (S.C.); (T.X.)
| | - Celia Carrillo
- Nutrición y Bromatología, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
- Correspondence: (Y.S.); (C.C.); Tel.: +86-27-8738-9302 (Y.S.)
| | - Juan Manuel Castagnini
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (J.M.C.); (F.J.B.)
| | - Zhenzhou Zhu
- School of Modern Industry for Selenium Science and Engineering, Wuhan 430023, China; (S.L.); (H.X.); (Z.Z.)
- Key Laboratory of Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| | - Francisco J. Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (J.M.C.); (F.J.B.)
| |
Collapse
|
15
|
Shabbir U, Tyagi A, Ham HJ, Elahi F, Oh DH. Effect of Fermentation on the Bioactive Compounds of the Black Soybean and Their Anti-Alzheimer’s Activity. Front Nutr 2022; 9:880361. [PMID: 35634410 PMCID: PMC9137038 DOI: 10.3389/fnut.2022.880361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Black soybean is one of the nutritious crops and is being used in traditional medicines in Asian countries. In the present study, we fermented black soybean and screened against in vitro Alzheimer’s disease (AD) biomarkers such as cholinesterase enzymes, inflammatory factors, oxidative stress, and presence of γ-aminobutyric acid (GABA) levels. Firstly, we fermented black soybean with different lactic acid bacteria (LABs) and selected the Pediococcus acidilactici as the best LAB on the basis of GABA levels in the fermentate. We have found that black soybean fermented with P. acidilactici significantly inhibited the inflammatory factors (proteinase, protein denaturation, and lipoxygenase) and cholinesterase enzymes than non-fermented samples. An increase in the antioxidant capacity (FRAP, ABTS, and DPPH), anthocyanins, phenolics, flavonoids, and GABA content was also observed in fermented samples. Moreover, UHPLC-ESI-QTOF-MS/MS technique identified 38 bioactive components, including polyphenols, amino acids, and fatty acids. Among identified components, eight bioactive compounds were quantified, and an increase in the concentration of daidzein, genistein, glycitein, (+)-catechin, quercetin, and gallic acid was observed in fermented samples. However, the concentration of rutin and soyasaponin was higher in raw samples. These results indicated that fermentation of black soybean with P. acidilactici is a promising approach that can be used to develop functional foods to inhibit/prevent AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Umair Shabbir
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Hun Ju Ham
- Department of Biological Environment, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
- *Correspondence: Deog-Hwan Oh,
| |
Collapse
|
16
|
Arabinoxylans Release from Brewers’ Spent Grain Using Extrusion and Solid-State Fermentation with Fusarium oxysporum and the Antioxidant Capacity of the Extracts. Foods 2022; 11:foods11101415. [PMID: 35626985 PMCID: PMC9140831 DOI: 10.3390/foods11101415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Brewers’ spent grain (BSG) is the most abundant byproduct generated from the beer-brewing process. BSG is a material rich in hemicellulose, composed of arabinoxylans (AX). However, the high crosslinking of this material causes low availability of AX, for which it is necessary to apply different treatments. The objective of this research is to increase the release of arabinoxylans through solid-state fermentation with Fusarium oxysporum f. sp. lycopersici using extruded brewery spent grain. First, the BSG is subjected to two types of physical treatments: extrusion at 20% moisture, 200 rpm and 50 °C (BSGe), and blade milling (BSGm). The chemical composition is determined for each sample (BSG, BSGe and BSGm). Subsequently, the solid-state fermentation process (SSF) is carried out on each sample. The fermentation kinetics at 30 °C are monitored for 7 days. Once the SSF concludes, AX are extracted, and the purity of AX is determined by the phloroglucinol colorimetric assay. Finally, the total phenolic compounds, phenolic acids and antioxidant capacity by DPPH are quantified. No significant differences (p ≥ 0.05) in the protein, lipid, ash or total dietary fiber contents are found among the samples. No significant difference (p ≥ 0.05) in the content of soluble fiber is found, although BSGe and BSGm have higher values than BSG. On the other hand, the yields of soluble AX exhibit significant differences (p ≤ 0.05) among nonfermented samples (BSG, 0.03%; BSGm, 0.53%; BSGe, 0.70%) and with SSF (BSG, 2.95%; BSGm, 6.24%; and BSGe, 9.58%). In addition, the contents of free phenolic compounds and free phenolic acids and the percent inhibition of free extracts by 2,2-diphenyl-1-picrylhydrazyl (DPPH) differ significantly (p ≤ 0.05) between samples subjected to SSF and nonfermented samples. Therefore, extrusion and SSF treatment increase AX release from BSG as well as the antioxidant capacity of the extracts.
Collapse
|
17
|
Tyagi A, Chen X, Shabbir U, Chelliah R, Oh DH. Effect of slightly acidic electrolyzed water on amino acid and phenolic profiling of germinated brown rice sprouts and their antioxidant potential. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Huang J, Qian J, Wang S, Li Y, Zhai X, Olajide TM, Shen GX, Liao X. Effect of selenium biofortification on bioactive compounds and antioxidant activity in germinated black soybean. J Food Sci 2022; 87:1009-1019. [PMID: 35122243 DOI: 10.1111/1750-3841.16014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
Biofortification using inorganic selenium has become an effective strategy to enhance selenium content in crops. In the present study, the effects of selenium biofortification on the chemical composition and antioxidant capacity of black soybean (BS) during germination were studied. The contents of selenium, total sugar, vitamin C, γ-aminobutyric acid, total polyphenols, and total flavonoids in selenium biofortified germinated black soybeans (GBS-Se) significantly increased compared to germinated black soybeans (GBS). However, the contents of soluble protein, fat, and reducing sugar were decreased, while fatty acid composition was not significantly different between GBS and BS. HPLC analysis showed that 12 phenolic acids of all samples, which mainly existed in free forms. Their contents increased at low concentration of selenium and decreased along with the rise of selenium concentrations. The antioxidant activity of GBS-Se as analyzed by Pearson correlation analysis positively correlated with the accumulation of phenolic substances. Principal component analysis (PCA) showed that GBS and GBS-Se were significantly different from BS. Moreover, the physicochemical indexes of GBS showed regularly changes with increasing selenium content, and those of GBS-Se50 and GBS-Se75 were significantly different from GBS. The results provide a systematic evaluation on the effect of selenium fortification on the germination of seeds and useful information for the development of Se-enriched functional foods. PRACTICAL APPLICATION: The organic selenium black soybean (BS) produced by the germination method can be directly processed and eaten to improve human health. In addition, complexes of organic selenium, vitamin C, and γ-aminobutyric acid of germinated BS can be developed into functional substances and applied to food or health products as functional ingredient and/or natural antioxidant supplements.
Collapse
Affiliation(s)
- Junyi Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiana Qian
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shanshan Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yingqiu Li
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaolin Zhai
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Tosin Michael Olajide
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Garry X Shen
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xianyan Liao
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
19
|
Xie C, Wang P, Sun M, Gu Z, Yang R. Nitric oxide mediates γ-aminobutyric acid signaling to regulate phenolic compounds biosynthesis in soybean sprouts under NaCl stress. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Martínez-Encinas EG, Carvajal-Millán E, Calderón de la Barca AM, Rascón-Chu A, Martínez-Porchas M, Márquez-Escalante JA, Islas-Rubio AR. Extraction and characterization of arabinoxylans obtained from nixtamalized brewers' spent grains. FOOD SCI TECHNOL INT 2021; 29:40-49. [PMID: 34816761 DOI: 10.1177/10820132211060609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The processes to obtain value-added products from brewers' spent grain, a contaminant industrial waste, require alkaline non-ecofriendly pre-treatments. The arabinoxylans from brewers' spent grain were extracted by nixtamalization evaluating the extraction procedure, antioxidant capacity and molecular characteristics. The best arabinoxylans yields were those extracted with CaO at 100°C and 25°C (6.43% and 3.37%, respectively). The antioxidant capacity by 2,2-diphenyl-1-picrylhydrazyl assay of the arabinoxylans after thermal treatment and additional arabinoxylans after thermal treatment proteolysis were 434 and 118 mg TE/g, while by 2,20'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt assay the value was similar (380 μmol TE/g). The intrinsic viscosities and viscosimetric molecular weights were 69 mL/g and 13 kDa for arabinoxylans after thermal treatment, and 15 mL/g and 1.6 kDa for arabinoxylans after thermal treatment proteolysis, respectively. The protein and lignin contents were 3.1% and 6.4% for arabinoxylans after thermal treatment and, 0.9% and 4.6% for arabinoxylans after thermal treatment proteolysis, while their arabinose: xylose ratios were 0.39 and 0.36, with ferulic acid contents of 0.63 and 0.14 mg/g, respectively. Both products of arabinoxylans were molecularly identical by Fourier transform infra-red. Although the purity of the extracted arabinoxylans was improved with proteolysis, their intrinsic viscosity and viscosimetric molecular weight were affected. The extraction of arabinoxylans from brewers' spent grain by CaO nixtamalization alone or after additional proteolysis was successful to obtain purity and good antioxidant capacity.
Collapse
|
21
|
Zheng S, Song J, Qin X, Yang K, Liu M, Yang C, Nyachoti CM. Dietary supplementation of red-osier dogwood polyphenol extract changes the ileal microbiota structure and increases Lactobacillus in a pig model. AMB Express 2021; 11:145. [PMID: 34714436 PMCID: PMC8556438 DOI: 10.1186/s13568-021-01303-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/16/2021] [Indexed: 01/22/2023] Open
Abstract
Red-osier dogwood (ROD) extract contains a lot of polyphenols that have the potential for modulation of gut microbiota. However, little information is available about its prebiotic properties. This study investigated the impact of ROD polyphenol extract on the ileal microbiota with dietary supplementation of ROD polyphenol extract in a pig model. The data indicated that supplementation of ROD polyphenol extract significantly increased class Bacilli, order Lactobacillales and family lactobacillaceae. Within family lactobacillaceae, Lactobacillus was the main responder by increasing from 5.92% to 35.09%. Further analysis showed that ROD polyphenol extract improved two species Lactobacillus delbrueckii and Lactobacillus mucus. The results of this study suggested that ROD polyphenol extract has the potential to play prebiotic role and confer health benefit through modifying gut microbiota.
Collapse
|
22
|
GABA Regulates Phenolics Accumulation in Soybean Sprouts under NaCl Stress. Antioxidants (Basel) 2021; 10:antiox10060990. [PMID: 34205788 PMCID: PMC8235516 DOI: 10.3390/antiox10060990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
NaCl stress causes oxidative stress in plants; γ-aminobutyric acid (GABA) could alleviate such abiotic stress by enhancing the synthesis of phenolics, but the underlying mechanism is not clear. We investigated the effects of GABA on phenolics accumulation in soybean sprouts under NaCl stress by measuring changes in the content of physiological biochemicals and phenolic substances, in the activity and gene expression of key enzymes, and in antioxidant capacity. GABA reduced the oxidative damage in soybean sprouts caused by NaCl stress and enhanced the content of total phenolics, phenolic acids, and isoflavones by 16.58%, 22.47%, and 3.75%, respectively. It also increased the activities and expression of phenylalanine ammonia lyase, cinnamic acid 4-hydroxylase, and 4-coumarate coenzyme A ligase. Furthermore, GABA increased the activity of antioxidant enzymes and the antioxidant capacity. These events were inhibited by 3-mercaptopropionate (an inhibitor for GABA synthesis), indicating that GABA mediated phenolics accumulation and antioxidant system enhancement in soybean sprouts under NaCl stress.
Collapse
|
23
|
Abdel-Aal ESM. Nutritional and functional attributes of hairless canary seed groats and components and their potential as functional ingredients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Tyagi A, Yeon SJ, Daliri EBM, Chen X, Chelliah R, Oh DH. Untargeted Metabolomics of Korean Fermented Brown Rice Using UHPLC Q-TOF MS/MS Reveal an Abundance of Potential Dietary Antioxidative and Stress-Reducing Compounds. Antioxidants (Basel) 2021; 10:antiox10040626. [PMID: 33921826 PMCID: PMC8072674 DOI: 10.3390/antiox10040626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Free radical-induced oxidative stress is the root cause of many diseases, such as diabetes, stress and cardiovascular diseases. The objective of this research was to screen GABA levels, antioxidant activities and bioactive compounds in brown rice. In this study, we first fermented brown rice with different lactic acid bacteria (LABs), and the best LAB was selected based on the levels of GABA in the fermentate. Lactobacillus reuterii generated the highest levels of GABA after fermentation. To ascertain whether germination can improve the GABA levels of brown rice, we compared the levels of GABA in raw brown rice (Raw), germinated brown rice (Germ), fermented brown rice (Ferm) and fermented-germinated brown rice (G+F) to identify the best approach. Then, antioxidant activities were investigated for Raw BR, Germ BR, Ferm BR and G+F BR. Antioxidant activity was calculated using a 2,2-diphenyl-1-picryl hydrazile radical assay, 2,2-azino-bis-(3-ethylene benzothiozoline-6-sulfonic acid) radical assay and ferric-reducing antioxidant power. In Ferm BR, DPPH (114.40 ± 0.66), ABTS (130.52 ± 0.97) and FRAP (111.16 ± 1.83) mg Trolox equivalent 100 g, dry weight (DW), were observed as the highest among all samples. Total phenolic content (97.13 ± 0.59) and total flavonoids contents (79.62 ± 1.33) mg GAE/100 g and catechin equivalent/100 g, DW, were also found to be highest in fermented BR. Furthermore, an untargeted metabolomics approach using ultra-high-performance liquid tandem chromatography quadrupole time of flight mass spectrometry revealed the abundance of bioactive compounds in fermented BR, such as GABA, tryptophan, coumaric acid, L-ascorbic acid, linoleic acid, β-carotenol, eugenol, 6-gingerol, etc., as well as bioactive peptides which could contribute to the health-promoting properties of L. reuterii fermented brown rice.
Collapse
|
25
|
Xu L, Gao S, Xu H, Wang X, Hou Y, Liang N, Chen X. Impact of incubation on nutritional and antioxidant properties of defatted adlay (Coix lachryma-jobi L.) bran. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Ge X, Saleh AS, Jing L, Zhao K, Su C, Zhang B, Zhang Q, Li W. Germination and drying induced changes in the composition and content of phenolic compounds in naked barley. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Effects of germination on the physicochemical, nutritional and in vitro digestion characteristics of flours from waxy and nonwaxy proso millet, common buckwheat and pea. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102586] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Wang M, Ding Y, Wang Q, Wang P, Han Y, Gu Z, Yang R. NaCl treatment on physio-biochemical metabolism and phenolics accumulation in barley seedlings. Food Chem 2020; 331:127282. [PMID: 32559597 DOI: 10.1016/j.foodchem.2020.127282] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/26/2020] [Accepted: 06/07/2020] [Indexed: 01/27/2023]
Abstract
Phenolics are important secondary metabolites in plants with strong antioxidant effects. Seeds germination and exogenous stimulation could activate endogenous enzymes to enhance the content of phenolic acids and flavonoids. Barley seeds geminated under NaCl (1-20 mM) treatment to evaluate the accumulation of phenolics in this study. Results showed that NaCl treatment significantly enhanced the growth of seedlings, especially bud length. NaCl treatment up-regulated genes and proteins expression of phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL), resulting in the enhancement of their activities. As a result, phenolic acids and flavonoids contents increased by 11.19% and 32.54%, respectively, in which gallic acid, protocatechuic, fisetin, myricetin and quercetin were affected mostly. Moreover, NaCl treatment enhanced 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging capacity. Hence, NaCl stimulated the synthesis of phenolic components via enhancing gene, protein expression and the activity of key enzymes.
Collapse
Affiliation(s)
- Mian Wang
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yuxuan Ding
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qiaoe Wang
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
| | - Pei Wang
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Yongbin Han
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Zhenxin Gu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Runqiang Yang
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
29
|
Mencin M, Abramovič H, Jamnik P, Mikulič Petkovšek M, Veberič R, Terpinc P. Abiotic stress combinations improve the phenolics profiles and activities of extractable and bound antioxidants from germinated spelt (Triticum spelta L.) seeds. Food Chem 2020; 344:128704. [PMID: 33261998 DOI: 10.1016/j.foodchem.2020.128704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023]
Abstract
The aim of this study was to investigate the effects of germination of spelt seeds under different stress conditions on the antioxidant characteristics of their extractable and bound phenolics. Germination under combined stress of 25 mM NaCl and 50 mM sorbitol without subsequent mechanical stress had considerable impact on total phenolics contents and scavenging activities against different free radicals (DPPH, ABTS+, O2-, ROO). Alkaline hydrolysis of extracts from germinated seeds provided the majority of their phenolic acids, where ferulic and p-coumaric acids were the most representative. The phenolics liberated from their bound form also had greater antioxidant activities. For the extractable phenolics, p-coumaric hexoside increased the most (146%), while among the bound phenolics identified, the highest relative increase was for p-coumaric acid (171%). The germinated seeds showed no effects on intracellular oxidation in cells of the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Marjeta Mencin
- Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia.
| | - Helena Abramovič
- Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia.
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia.
| | | | - Robert Veberič
- Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia.
| | - Petra Terpinc
- Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia.
| |
Collapse
|
30
|
Characteristics of Sunsik, a Cereal-Based Ready-to-Drink Korean Beverage, with Added Germinated Wheat and Herbal Plant Extract. Foods 2020; 9:foods9111654. [PMID: 33198231 PMCID: PMC7696171 DOI: 10.3390/foods9111654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to develop a formulation of Sunsik with improved health benefits by adding germinated wheat (GW) and herbal plant extract (HPE) using a response surface methodology (RSM). The central composite experimental design (CCD) was used to evaluate the effects of Sunsik with added HPE (2–4%) and GW (10–20%) on total phenolic content (TPC), total flavonoid content (TFC), Trolox equivalent antioxidant capacity (TEAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, gamma butyric acid (GABA) content, total color changes (△E), browning index (BI), water absorption index (WAI), and water solubility index (WSI). As a result of the CCD, the independent and dependent variables were fitted by the second-order polynomial equation, and the lack of fit for response surface models was not significant except in relation to WSI. The GABA content, TPC, and TEAC were more adequate for a linear model than for a quadratic model, and they might be affected by GW rather than HPE. Alternatively, the TFC, DPPH radical scavenging capacity, WAI, WSI, △E, and BI were fitted with quadratic models. The optimum formulation that could improve antioxidant and physicochemical properties was Sunsik with 3.5% and 20% added HPE and GW, respectively.
Collapse
|
31
|
Yin L, Chen MX, Zeng TH, Liu XM, Zhu F, Huang RQ. Improving probiotic spore yield using rice straw hydrolysate. Lett Appl Microbiol 2020; 72:149-156. [PMID: 32939775 DOI: 10.1111/lam.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/29/2022]
Abstract
Spore-forming Bacillus sp. has been extensively studied for their probiotic properties. In this study, an acid-treated rice straw hydrolysate was used as carbon source to produce the spores of Bacillus coagulans. The results showed that this hydrolysate significantly improved the spore yield compared with other carbon sources such as glucose. Three significant medium components including rice straw hydrolysate, MnSO4 and yeast extract were screened by Plackett-Burman design. These significant variables were further optimized by response surface methodology (RSM). The optimal values of the medium components were rice straw hydolysate of 27% (v/v), MnSO4 of 0·78 g l-1 and yeast extract of 1·2 g l-1 . The optimized medium and RSM model for spore production were validated in a 5 l bioreactor. Overall, this sporulation medium containing acid-treated rice straw hydrolysate has a potential to be used in the production of B. coagulans spores.
Collapse
Affiliation(s)
- L Yin
- School of Life Science, South China Normal University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, Guangzhou, China
| | - M X Chen
- School of Life Science, South China Normal University, Guangzhou, China
| | - T H Zeng
- School of Life Science, South China Normal University, Guangzhou, China
| | - X M Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - F Zhu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - R Q Huang
- School of Life Science, South China Normal University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, Guangzhou, China
| |
Collapse
|
32
|
Turola Barbi RC, Silveira Hornung P, Ávila S, da Silva Bambirra Alves FE, Beta T, Hoffmann Ribani R. Ripe and unripe inajá (Maximilia maripa) fruit: A new high source of added value bioactive compounds. Food Chem 2020; 331:127333. [DOI: 10.1016/j.foodchem.2020.127333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
|
33
|
Mason E, L’Hocine L, Achouri A, Pitre M, Karboune S. Health Promoting Bioactive Properties of Novel Hairless Canary Seed Flour after In Vitro Gastrointestinal Digestion. Foods 2020; 9:E932. [PMID: 32674503 PMCID: PMC7404810 DOI: 10.3390/foods9070932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
The bioactive properties and health-promoting effects of two novel yellow (C09052, C05041) and two brown (Calvi, Bastia) hairless canary seed (Phalaris canariensis L.) cultivars were investigated in comparison to two common cereal grains (wheat and oat). The cereal flours were digested using the standardized INFOGEST in vitro human gastrointestinal digestion model. The three-kilo dalton molecular weight cutoff (3 kDa MWCO) permeate of the generated digestates was assessed in vitro for their antioxidant, chelating, antihypertensive and antidiabetic activities. The results showed no significant differences in studied bioactivities between yellow and brown canary seed cultivars, except for antioxidant activity by the DPPH and chelating Fe2+ assays, where brown cultivars had higher activities. Canary seeds had superior or equivalent antioxidant activity than those from oat and wheat. The anti-hypertensive activity (Angiotensin-converting enzyme (ACE) inhibition) in yellow canary seed cultivars was significantly higher than that of oat and wheat, particularly for C09052 and Calvi varieties. Peptides exhibiting the highest antihypertensive activity from the permeate of the C09052 canary seed variety were further fractionated and identified by mass spectrometry. Forty-six peptides were identified belonging to 18 proteins from the Pooideae subfamily. Fourteen of the parent proteins were homologous to barley proteins. Peptides were analyzed in silico to determine potential bioactivity based on their amino acid composition. All 46 peptides had potential anti-hypertensive and anti-diabetic activities and 20 had potential antioxidant activity, thereby validating the in vitro assay data. Canary seed peptides also exhibited potential antiamnestic, antithrombotic, immunostimulating, opioid and neuro-activity, demonstrating important potential for health promoting effects, particularly against cardiovascular disease.
Collapse
Affiliation(s)
- Emily Mason
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC J2S 8E3, Canada; (E.M.); (A.A.); (M.P.)
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University 21, 111 Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Lamia L’Hocine
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC J2S 8E3, Canada; (E.M.); (A.A.); (M.P.)
| | - Allaoua Achouri
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC J2S 8E3, Canada; (E.M.); (A.A.); (M.P.)
| | - Mélanie Pitre
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC J2S 8E3, Canada; (E.M.); (A.A.); (M.P.)
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University 21, 111 Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
34
|
Perez Gutierrez RM, Baez EG. Diterpenes from seeds of Phalaris canariensis and their PTP1B inhibitory activity and hypoglycemic effects in streptozotocin-induced diabetic mice. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:603-617. [PMID: 31322002 DOI: 10.1080/10286020.2019.1636786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
This present study was to evaluate the protein tyrosine phosphatase 1B (PTP1B) inhibitory activity of nine diterpenes isolated from seeds of Phalaris canariensis, as well as their effect on streptozotocin-nicotinamide-induced type 2 diabetic mice. Their structures were established by spectroscopic analyses. Diterpenes, 1, 4, and 2 exhibited the strongest inhibitory activity on PTP1B with IC50 values of 6.9, 7.3, and 6.5 µM, respectively, The administration of 1-9 showed significant effect on hyperglycemia, among them 1, 4, and 2 reduced fasting glucose levels (55.65%, 54.27%, and 51.22%, respectively). Results revealed that diterpenes performed potential antidiabetic activity via inhibition of PTP1B.[Formula: see text].
Collapse
Affiliation(s)
- Rosa Martha Perez Gutierrez
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Instituto Politecnico Nacional (IPN) Unidad Profesional Adolfo Lopez Mateos S/N Av, Instituto Politécnico Nacional Ciudad de Mexico, Mexico City, Mexico
| | - Efren Garcia Baez
- Laboratory of Supramolecular Chemistry and Nanosciences, Instituto Politecnico Nacional, Acueducto s/n, Barrio la Laguna Ticoman, Mexico City, Mexico
| |
Collapse
|
35
|
Chu C, Du Y, Yu X, Shi J, Yuan X, Liu X, Liu Y, Zhang H, Zhang Z, Yan N. Dynamics of antioxidant activities, metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice (Zizania latifolia). Food Chem 2020; 318:126483. [PMID: 32126468 DOI: 10.1016/j.foodchem.2020.126483] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/27/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023]
Abstract
In this study, the antioxidant activity of germinating Chinese wild rice was found to decline initially, after which it increased. The largest difference in antioxidant activity was observed between the 36-h (G36) and the 120-h germination (G120) stage. We further assessed the dynamic changes in metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice. Ultra-high performance liquid chromatography-triple quadrupole mass spectrometry revealed that 315 metabolites were up-regulated and 28 were down-regulated between G36 and G120. Levels of p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillin, p-coumaric acid, ferulic acid, and epigallocatechin increased significantly during germination. Gene expression of four phenylalanine ammonia-lyases, one 4-coumarate-CoA ligase, one cinnamoyl-CoA reductase, two cinnamyl alcohol dehydrogenases, one chalcone synthase, and one chalcone isomerase was significantly higher at G120 than at G36 and promoted phenolics accumulation. This study elucidated the biochemical mechanisms involved in antioxidant activity and phenolic profile changes during Chinese wild rice germination.
Collapse
Affiliation(s)
- Cheng Chu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiuting Yu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Xiaolong Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xinmin Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hongbo Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
36
|
Response of nutritional and functional composition, anti-nutritional factors and antioxidant activity in germinated soybean under UV-B radiation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108709] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Guan Q, Ding XW, Jiang R, Ouyang PL, Gui J, Feng L, Yang L, Song LH. Effects of hydrogen-rich water on the nutrient composition and antioxidative characteristics of sprouted black barley. Food Chem 2019; 299:125095. [PMID: 31279124 DOI: 10.1016/j.foodchem.2019.125095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023]
Abstract
Hydrogen gas (H2), a multifunctional signaling molecule, has received increasing attention in recent years. In the present study, hydrogen-rich water (HRW) (2 ppm) was used for the processing of sprouted black barley (Hordeum distichum L.), and the results showed that the HRW treatment could significantly increase the germination rate and growth rate of black barley (P < 0.05). A chemical component analysis showed that in sprouted black barley, the HRW treatment could change the distribution of phytochemicals (e.g., the ionic strength of guanosine), increase the concentrations of free vanillic acid, coumaric acid, sinapic acid, conjugated sinapic acid, Ca and Fe and the hydroxyl radical scavenging rate, and decrease the protein, fat, starch and dietary fibre contents compared with the results obtained after treatment with ultra-pure water (P < 0.05). HRW can be used for the processing of sprouted grains to effectively increase their germination efficiency and concentrations of bioactive phytochemicals.
Collapse
Affiliation(s)
- Qi Guan
- Department of Food Science and Engineering, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Wen Ding
- Department of Food Science and Engineering, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Jiang
- Department of Food Science and Engineering, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng-Ling Ouyang
- Department of Food Science and Engineering, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Gui
- Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Feng
- Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Yang
- Department of Food Science and Engineering, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Hua Song
- Department of Food Science and Engineering, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
38
|
Wang Y, He W, Li D, Bao Y, Liu C, Song J, Xiao Y. Response surface optimization of culture conditions for improving lutein content in NaCl‐stressed germinated corn kernels. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yuxi Wang
- College of Forestry Northeast Forestry University Harbin China
| | - Weiwei He
- Institute of Agro‐product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Dajing Li
- Institute of Agro‐product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Yihong Bao
- College of Forestry Northeast Forestry University Harbin China
| | - Chunquan Liu
- Institute of Agro‐product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Jiangfeng Song
- Institute of Agro‐product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Yadong Xiao
- Institute of Agro‐product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| |
Collapse
|
39
|
Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019; 24:E2452. [PMID: 31277395 PMCID: PMC6651195 DOI: 10.3390/molecules24132452] [Citation(s) in RCA: 774] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 01/23/2023] Open
Abstract
Phenolic compounds are an important class of plant secondary metabolites which play crucial physiological roles throughout the plant life cycle. Phenolics are produced under optimal and suboptimal conditions in plants and play key roles in developmental processes like cell division, hormonal regulation, photosynthetic activity, nutrient mineralization, and reproduction. Plants exhibit increased synthesis of polyphenols such as phenolic acids and flavonoids under abiotic stress conditions, which help the plant to cope with environmental constraints. Phenylpropanoid biosynthetic pathway is activated under abiotic stress conditions (drought, heavy metal, salinity, high/low temperature, and ultraviolet radiations) resulting in accumulation of various phenolic compounds which, among other roles, have the potential to scavenge harmful reactive oxygen species. Deepening the research focuses on the phenolic responses to abiotic stress is of great interest for the scientific community. In the present article, we discuss the biochemical and molecular mechanisms related to the activation of phenylpropanoid metabolism and we describe phenolic-mediated stress tolerance in plants. An attempt has been made to provide updated and brand-new information about the response of phenolics under a challenging environment.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS 7005, Australia
| | - Abdul Rehman
- Department of Crop Science and Biotechnology, Dankook University, Chungnam 31116, Korea
| | - Renu Bhardwaj
- Plant Stress Physiology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
40
|
Wang M, Zhang Y, Leng C, Li X, Wang P, Gu Z, Yang R. Glucosinolates metabolism and redox state of rocket (
Eruca sativa
Mill.) during germination. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mian Wang
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Yuxuan Zhang
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Chaoqun Leng
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Xinyue Li
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Pei Wang
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| |
Collapse
|
41
|
He W, Wang Y, Dai Z, Liu C, Xiao Y, Wei Q, Song J, Li D. Effect of UV-B radiation and a supplement of CaCl2 on carotenoid biosynthesis in germinated corn kernels. Food Chem 2019; 278:509-514. [DOI: 10.1016/j.foodchem.2018.11.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 11/28/2022]
|
42
|
Chu C, Yan N, Du Y, Liu X, Chu M, Shi J, Zhang H, Liu Y, Zhang Z. iTRAQ-based proteomic analysis reveals the accumulation of bioactive compounds in Chinese wild rice (Zizania latifolia) during germination. Food Chem 2019; 289:635-644. [PMID: 30955658 DOI: 10.1016/j.foodchem.2019.03.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
Abstract
Polyphenols and γ-aminobutyric acid (GABA) accumulate during seed germination, but the mechanisms involved are poorly understood. The objective of this study was to elucidate the accumulation of these bioactive compounds in Chinese wild rice during germination. The greatest differences in the phenolic content were at 36-h (G36) and 120-h germination (G120) stages. An iTRAQ-based proteomic analysis revealed 7031 proteins, and a comparison of the G120 and G36 stages revealed 956 upregulated and 188 downregulated proteins. The KEGG analysis revealed significant protein enrichment in the "metabolic pathways", "biosynthesis of secondary metabolites" and "phenylpropanoid biosynthesis". Four phenylalanine ammonia-lyases, one 4-coumarate-CoA ligase, one cinnamoyl-CoA reductase, two cinnamyl alcohol dehydrogenases, and four glutamate decarboxylases exhibited higher expression at the G120 than at the G36 stage and promoted phenolics and GABA accumulation. This study revealed bioactive compound accumulation in germinating Chinese wild rice, and the finding may help develop functional foods derived from this cereal.
Collapse
Affiliation(s)
- Cheng Chu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xinmin Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Meijun Chu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Hongbo Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
43
|
Ma Y, Wang P, Chen Z, Gu Z, Yang R. NaCl stress on physio-biochemical metabolism and antioxidant capacity in germinated hulless barley (Hordeum vulgare L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1755-1764. [PMID: 30226277 DOI: 10.1002/jsfa.9365] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 08/30/2018] [Accepted: 09/09/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Hulless barley generally grows in barren fields, where soil salinization is serious. However, only a few studies have been carried out investigating germinated hulless barley under salt stress. In the present study, the effect of NaCl stress on the physio-biochemical metabolism and antioxidant capacity of germinated hulless barley was investigated. RESULTS NaCl stress inhibited seedling growth and caused oxidative damage, although it enhanced the accumulation of phenolic compounds and antioxidant capacity. The highest contents of total phenolic and main phenolic acids (vanillic acid, p-coumaric acid, ferulic acid and sinapic acid) were found with 60 mmol L-1 NaCl treatment, whereas 120 mmol L-1 NaCl inhibited the synthesis of phenolic components. Gene expression of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H), 4-coumarate coenzyme A ligase (4CL), p-coumaric acid 3-hdroxylase (C3H) and caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT), which participated in the synthesis of phenolic compounds, was up-regulated by NaCl stress, as were the enzyme activities of PAL, C4H and 4CL. NaCl treatment also enhanced the antioxidant enzyme activities of germinated hulless barley. CONCLUSION NaCl stress inhibited seedlings growth and caused oxidative damage. Simultaneously, the antioxidant system of germinated hulless barley was enhanced. The results of the present study provide a theoretical basis with respect to the growth of hulless barley under salt stress. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Food Science and Technology, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
44
|
Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food Chem 2019; 289:328-339. [PMID: 30955620 DOI: 10.1016/j.foodchem.2019.03.061] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/09/2023]
Abstract
The changes in the bioactive phytochemicals of six cultivars of Thai germinated brown rice (GBR) were monitored in parallel to those of cold plasma-treated GBR (PGBR). After treatment with the optimal plasma conditions, the germination percentage, root length, and seedling height measurements of the most sensitive rice cultivar increased by 84%, 57%, and 69%, respectively. For all of the rice cultivars, there were no significant differences in the antioxidant activities of the GBRs and PGBRs. Conversely, higher contents of γ-oryzanols were observed in the PGBR group than in the GBR group during the 2-day germination period. Certain cultivars in the PGBR group reached their maximum values for total phenolic compounds, total vitamin E, certain simple phenolics, phytosterols, triterpenoids, and anthocyanins one day earlier than the same values for GBR. In contrast, the concentrations of 2-acetyl-1-pyrroline in both the GBR and PGBR samples were reduced significantly with increased germination time.
Collapse
|
45
|
GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress. Food Chem 2019; 270:593-601. [DOI: 10.1016/j.foodchem.2018.07.092] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 11/21/2022]
|
46
|
Ma Y, Wang P, Chen Z, Gu Z, Yang R. GABA enhances physio-biochemical metabolism and antioxidant capacity of germinated hulless barley under NaCl stress. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:192-201. [PMID: 30278315 DOI: 10.1016/j.jplph.2018.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 05/05/2023]
Abstract
The effects of exogenous γ-aminobutyric acid (GABA) on the endogenous GABA metabolism and antioxidant capacity of germinated hulless barley (Hordeum vulgare L.) under NaCl stress were investigated. The results showed that all of the GABA treatments could alleviate the growth inhibition and oxidative damage by NaCl stress, with 0.5 mM being the most effective concentration. The GABA-treated barley seedlings exhibited a significantly higher content of endogenous GABA and other free amino acids, especially proline, which resulted from the changes in corresponding enzyme activity. The phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H), and 4-coumarate coenzyme A ligase (4CL) activities also increased in GABA-treated barley, which led to higher total phenolic content and antioxidant capacity than that of the control barley. These results indicate that GABA treatment may be an effective way to relieve salt stress as it induces the accumulation of endogenous GABA and proline and total phenolic content, thus enhancing the antioxidant capacity.
Collapse
Affiliation(s)
- Yan Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Zhijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China; College of Food Science and Technology, Jiangsu Food and Pharmaceutical Science College, Huaian, 223005, People's Republic of China.
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
47
|
Mason E, L'Hocine L, Achouri A, Karboune S. Hairless Canaryseed: A Novel Cereal with Health Promoting Potential. Nutrients 2018; 10:E1327. [PMID: 30235793 PMCID: PMC6164689 DOI: 10.3390/nu10091327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/02/2022] Open
Abstract
Glabrous canaryseeds were recently approved for human consumption as a novel cereal grain in Canada and the United States. Previously, canaryseeds were exclusively used as birdseed due to the presence of carcinogenic silica fibers; therefore the nutritional value of the seeds has been seriously overlooked. Two cultivars of glabrous canaryseeds (yellow and brown) were created from the hairy varieties. They are high in protein compared to other cereal grains, and contain high amounts of tryptophan, an amino acid normally lacking in cereals, and are gluten-free. Bioactive peptides of canaryseeds produced by in vitro gastrointestinal digestion have shown antioxidant, antidiabetic, and antihypertensive activity. The seeds contain other constituents with health promoting effects, including unsaturated fatty acids, minerals, and phytochemicals. Anti-nutritional components in the seeds are comparable to other cereal grains. Because of their beneficial health effects, canaryseeds should be regarded as a healthy food and have immense potential as a functional food and ingredient. Further research is required to determine additional bioactive peptide activity and capacity, as well as differences between the yellow and brown cultivars.
Collapse
Affiliation(s)
- Emily Mason
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, St-Hyacinthe, QC J2S 8E3, Canada.
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University 21, 111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada.
| | - Lamia L'Hocine
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, St-Hyacinthe, QC J2S 8E3, Canada.
| | - Allaoua Achouri
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, St-Hyacinthe, QC J2S 8E3, Canada.
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University 21, 111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
48
|
Kim MJ, Kwak HS, Kim SS. Effects of Germination on Protein, γ-Aminobutyric Acid, Phenolic Acids, and Antioxidant Capacity in Wheat. Molecules 2018; 23:molecules23092244. [PMID: 30177646 PMCID: PMC6225431 DOI: 10.3390/molecules23092244] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 11/21/2022] Open
Abstract
Germinated wheat is a food material with potential health benefits due to its high phenolic and antioxidant content, but the reason why germination increases this content is unclear. The aim of this study was to investigate the relationships between protein changes (determined by two-dimensional gel electrophoresis (2-DE)), phenolics, γ-aminobutyric acid (GABA) levels, and antioxidant capacity of wheat germinated for various periods (24, 48, 72, and 96 h) compared to control. Each phenolic acid tended to increase with increasing germination time. The GABA content was highest (39.98 mg/100 g dwb) after 96 h of germination. The total oxygen radical absorbance capacity (ORAC) was 1.97 times higher after 96 h than in ungerminated seeds. Fifteen proteins, among 82 proteins separated by 2-DE, were highly related with ORAC and were identified by peptide mass fingerprinting (PMS). The PMS revealed strong expression of granule bound starch synthase (GBSS) and glutathione S-transferase (GSTF) after 96 h of germination. Overall, the ORAC at 96 h exhibited a close relationship with the levels of phenolic acids, GABA, and proteins such as GBSS and GSTF. In conclusion, these findings add to the existing knowledge of wheat protein changes and their relationship to the antioxidant properties of germinating wheat seeds.
Collapse
Affiliation(s)
- Mi Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Jeollabuk-do 55465, Korea.
- Department of Food and Nutrition, Changwon National University, Changwon 51140, Korea.
| | - Han Sub Kwak
- Research Group of Food Processing, Korea Food Research Institute, Jeollabuk-do 55465, Korea.
| | - Sang Sook Kim
- Research Group of Food Processing, Korea Food Research Institute, Jeollabuk-do 55465, Korea.
| |
Collapse
|
49
|
|
50
|
Effect of the iron biofortification on enzymes activities and antioxidant properties in germinated brown rice. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-017-9693-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|