1
|
Shen M, Yuan L, Zhang J, Wang X, Zhang M, Li H, Jing Y, Zeng F, Xie J. Phytosterols: Physiological Functions and Potential Application. Foods 2024; 13:1754. [PMID: 38890982 PMCID: PMC11171835 DOI: 10.3390/foods13111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Dietary intake of natural substances to regulate physiological functions is currently regarded as a potential way of promoting health. As one of the recommended dietary ingredients, phytosterols that are natural bioactive compounds distributed in plants have received increasing attention for their health effects. Phytosterols have attracted great attention from scientists because of many physiological functions, for example, cholesterol-lowering, anticancer, anti-inflammatory, and immunomodulatory effects. In addition, the physiological functions of phytosterols, the purification, structure analysis, synthesis, and food application of phytosterols have been widely studied. Nowadays, many bioactivities of phytosterols have been assessed in vivo and in vitro. However, the mechanisms of their pharmacological activities are not yet fully understood, and in-depth investigation of the relationship between structure and function is crucial. Therefore, a contemporaneous overview of the extraction, beneficial properties, and the mechanisms, as well as the current states of phytosterol application, in the food field of phytosterols is provided in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (M.S.); (L.Y.); (J.Z.); (X.W.); (M.Z.); (H.L.); (Y.J.); (F.Z.)
| |
Collapse
|
2
|
Rudzińska M, Grygier A, Olejnik A, Kowalska K, Kmiecik D, Chojnacka A, Gładkowski W, Grudniewska A, Przybylski R. Heating and storage of structured acylglycerols with succinyl-linked stigmasterol residue does not cause negative chemical or biological changes. Sci Rep 2023; 13:21375. [PMID: 38049600 PMCID: PMC10695919 DOI: 10.1038/s41598-023-48444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Four structured acylglycerols with stigmasterol bonded by a succinyl linker were investigated and their stability were analyzed. Samples were heated to 60 °C and kept at that temperature to simulate storage, and to 180 °C to simulate frying conditions. The degradation of the synthesized compounds and formed derivatives was determined, and their cytotoxicity and genotoxicity on normal human cells from the digestive system was determined. Holding at 180 °C resulted in greater degradation of the compounds than holding at 60 °C. The most stable compound in each sample proved to be one with oleic acid in its structure-1,3-dioleoyl-2-stigmasterylsuccinoyl-sn-glycerol (DO2SSt) at 60 °C and 1,2-dioleoyl-3-stigmasterylsuccinoyl-sn-glycerol (DO3SSt) at 180 °C. These results indicate that the type of fatty acid in the molecule is more important than its position in the glycerol structure. None of the diacylmonostigmasterylsuccinoyl-sn-glycerols (DASStGs) before or after heating exhibited cytotoxic or genotoxic potential to small intestine and colon mucosa cells.
Collapse
Affiliation(s)
- M Rudzińska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland.
| | - A Grygier
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - A Olejnik
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - K Kowalska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - D Kmiecik
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - A Chojnacka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - W Gładkowski
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - A Grudniewska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - R Przybylski
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
3
|
Wang Y, Wang T, Wang Z, Guo Y, Liu R, Chang M. Application of small angle X-ray scattering in exploring the effect of edible oils with different unsaturation FAs on bioaccessibility of stigmasterol oleate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7764-7774. [PMID: 37482970 DOI: 10.1002/jsfa.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 07/22/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Phytosterol can improve its lipid solubility, lipophilic/hydrophilic balance and bioaccessibility by esterification with fatty acids, which increases its practical application range in the food industry. In the present study, small angle X-ray scattering combined with the pH-stat in vitro digestion model was applied to continuously monitor the molecular structure evolution of mixed micelles during digestion and investigate the effect of three edible oils (olive oil with 72.41 ± 0.57% oleic, sunflower seed oil with 63.45 ± 0.78% linoleic, refined linseed oil with 51.74 ± 0.34% linolenic) on bioaccessibility of stigmasterol oleate in vitro. RESULTS The release degree and rate of fatty acids in the three edible oil systems (kOO+ST-OA = 0.0501, kSO+ ST-OA = 0.0357, kLO+ST-OA = 0.0323) was compared. The three different edible oils had similar impact on the formation of dietary mixed micelles during the simulatedin vitro digestion of stigmasterol oleate, although there were significant differences in molecular morphology and composition of mixed micelles. The results showed that the vesicles formed by linoleic oil (SO system) or linolenic oil (LO system) were easy to dissociate. The largest average number and diameter of vesicles (5.55 × 1016 cm-3 and 2230.75 Å), the most stable vesicle structure and the fastest fatty acid release rate were observed in the OO system. CONCLUSION Compared to linoleic (SO system) or linolenic (LO system), the oleic (OO system) could facilitate the transformation of micelles to vesicles and maintain the stability of its membrane, significantly promotin the dissolution of stigmasterol and improving bioaccessibility. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tao Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhangtie Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yiwen Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruijie Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Kasprzak M, Rudzińska M, Juzwa W, Olejnik A. Anti-proliferative potential and oxidative reactivity of thermo-oxidative degradation products of stigmasterol and stigmasteryl esters for human intestinal cells. Sci Rep 2023; 13:7093. [PMID: 37127788 PMCID: PMC10151334 DOI: 10.1038/s41598-023-34335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023] Open
Abstract
Stigmasterol in free and esterified form is incorporated in LDL cholesterol-lowering food products, intended for direct consumption and cooking, baking, and frying. Under thermal treatment, stigmasterol compounds may constitute a source of thermo-oxidative degradation products and oxyderivatives with potentially adverse health effects. This study aimed to analyze the anti-proliferative potential and genotoxicity of thermo-oxidatively treated stigmasterol (ST), stigmasteryl linoleate (ST-LA), and oleate (ST-OA). The effects on cell viability and proliferation, cell cycle progression, intracellular reactive oxygen species (ROS) generation, and DNA damage were analyzed in normal human intestinal cells. The mutagenic potential was assessed in a bacterial reverse mutation test using Salmonella enterica serovar Typhimurium strains involving metabolic activation. Stigmasteryl esters showed a significantly lower potential to affect intestinal cell viability and proliferation than non-esterified ST, regardless of heating. Thermo-oxidatively treated ST suppressed intestinal cell proliferation by arresting the cell cycle in the G2/M phase and DNA synthesis inhibition. The enhanced intracellular ROS generation and caspase 3/7 activity suggest targeting intestinal cells to the apoptosis pathway. Also, heated ST-LA intensified ROS production and elicited pro-apoptotic effects. Thermo-oxidative derivatives of ST and ST-LA may evoke harmful gastrointestinal effects due to their high oxidative reactivity towards intestinal cells.
Collapse
Affiliation(s)
- Maria Kasprzak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627, Poznań, Poland
| | - Magdalena Rudzińska
- Institute of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 31 Wojska Polskiego St., 60-624, Poznań, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627, Poznań, Poland
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627, Poznań, Poland.
| |
Collapse
|
5
|
Rudzińska M, Olejnik A, Grygier A, Kowalska K, Kmiecik D, Chojnacka A, Gładkowski W, Grudniewska A, Przybylski R. Thermo-oxidative stability and safety of new acylglycerols with stigmasterol residue: Effects of fatty acids saturation and position in the glycerol backbone. Food Chem 2023; 421:136194. [PMID: 37094401 DOI: 10.1016/j.foodchem.2023.136194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
The safety and thermoxidative stability of new diacyl-stigmasterylcarbonoyl-sn-glycerols (DAStGs) with two molecules of palmitic or oleic acids and one molecule of stigmasterol at the sn-2 or sn-3 position were studied. After heating to 60 °C, the compounds with stigmasterol at the sn-2 position were more stable than those with stigmasterol at the sn-3 position. The lowest level of degradation of stigmasterol after heating to 180 °C was detected for both compounds with oleic acid, followed by the samples with palmitic acid. The high content of SOPs, especially triolSt, as well as the high level of dimers showed the most effect on the cytotoxicity of DAStGs heated at both temperatures. DAStGs with oleic acid at sn-1,3 and stigmasterol at sn-2 position were the most stable compounds. Both oleic acid and the location of stigmasterol in the middle of the glycerol molecule play an important role in increasing the thermoxidative stability of stigmasterol.
Collapse
Affiliation(s)
- M Rudzińska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - A Olejnik
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - A Grygier
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - K Kowalska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - D Kmiecik
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - A Chojnacka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - W Gładkowski
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - A Grudniewska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - R Przybylski
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
6
|
Rudzińska M, Olejnik A, Grygier A, Kowalska K, Kmiecik D, Grudniewska A, Chojnacka A, Gładkowski W, Maciejewska G, Przybylski R. Thermo-oxidative stability of asymmetric distigmasterol-modified acylglycerols as novel derivatives of plant sterols. Food Chem 2022; 390:133150. [PMID: 35551028 DOI: 10.1016/j.foodchem.2022.133150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/23/2022]
Abstract
The study investigated the thermo-oxidative stability of distigmasterol-modified acylglycerols as a new structured acylglycerols. Samples were heated at 60 and 180 °C for 8 h. Their percentage degradation and products formed during heating were compared with free stigmasterol and stigmasteryl esters. The remaining of stigmasterol and fatty acid parts, the formation of stigmasterol oxidation products and the composition of polar and non-polar fractions were analysed using chromatographic methods. The cytotoxicity and genotoxicity were determined with the use of an MTT test and a comet assay, respectively. The highest stability during heating was observed for 2,3-distigmasterylsuccinoyl-1-oleoyl-sn-glycerol (dStigS-OA) and the lowest for 2,3-distigmasterylcarbonoyl-1-oleoyl-sn-glycerol (dStigC-OA). Data showed that the formation of thermo-oxidative degradation products is affected by the temperature and chemical structure of lipids present in the molecule. The dStigMAs bonded by a succinate linker and products formed during their thermo-oxidation showed no cytotoxic or genotoxic activity to normal human cells.
Collapse
Affiliation(s)
- M Rudzińska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, WojskaPolskiego 28, 60-637 Poznań, Poland.
| | - A Olejnik
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, WojskaPolskiego 28, 60-637 Poznań, Poland
| | - A Grygier
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, WojskaPolskiego 28, 60-637 Poznań, Poland
| | - K Kowalska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, WojskaPolskiego 28, 60-637 Poznań, Poland
| | - D Kmiecik
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, WojskaPolskiego 28, 60-637 Poznań, Poland
| | - A Grudniewska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - A Chojnacka
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - W Gładkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - G Maciejewska
- Faculty of Chemistry, Wrocław University of Science and Technology, WybrzeżeWyspiańskiego 27, 50-370 Wrocław, Poland
| | - R Przybylski
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
7
|
Rudzińska M, Grudniewska A, Chojnacka A, Gładkowski W, Maciejewska G, Olejnik A, Kowalska K. Distigmasterol-Modified Acylglycerols as New Structured Lipids-Synthesis, Identification and Cytotoxicity. Molecules 2021; 26:molecules26226837. [PMID: 34833929 PMCID: PMC8617691 DOI: 10.3390/molecules26226837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Plant sterols, also referred as phytosterols, have been known as bioactive compounds which have cholesterol-lowering properties in human blood. It has been established that a diet rich in plant sterols or their esters alleviates cardiovascular diseases (CVD), and also may inhibit breast, colon and lung carcinogenesis. Phytosterols, in their free and esterified forms, are prone to thermo-oxidative degradation, where time and temperature affect the level of degradation. Looking for new derivatives of phytosterols with high thermo-oxidative stability for application in foods, our idea was to obtain novel structured acylglycerols in which two fatty acid parts are replaced by stigmasterol residues. In this work, asymmetric (1,2- and 2,3-) distigmasterol-modified acylglycerols (dStigMAs) were synthesized by the covalent attachment of stigmasterol residues to sn-1 and sn-2 or sn-2 and sn-3 positions of 3-palmitoyl-sn-glycerol or 1-oleoyl-sn-glycerol, respectively, using a succinate or carbonate linker. The chemical structures of the synthesized compounds were identified by NMR, HR-MS, and IR data. Moreover, the cytotoxicity of the obtained compounds was determined. The dStigMAs possessing a carbonate linker showed potent cytotoxicity to cells isolated from the small intestine and colon epithelium and liver, whereas the opposite results were obtained for compounds containing a succinate linker.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-637 Poznań, Poland; (A.O.); (K.K.)
- Correspondence: ; Tel.: +48-618487276
| | - Aleksandra Grudniewska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.G.); (A.C.); (W.G.)
| | - Anna Chojnacka
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.G.); (A.C.); (W.G.)
| | - Witold Gładkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.G.); (A.C.); (W.G.)
| | - Gabriela Maciejewska
- Faculty of Chemistry, Wrocław University of Science and Technology, 50-371 Wrocław, Poland;
| | - Anna Olejnik
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-637 Poznań, Poland; (A.O.); (K.K.)
| | - Katarzyna Kowalska
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-637 Poznań, Poland; (A.O.); (K.K.)
| |
Collapse
|
8
|
Development of a functional whey cheese (ricotta) enriched in phytosterols: Evaluation of the suitability of whey cheese matrix and processing for phytosterols supplementation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Chen J, Li D, Tang G, Zhou J, Liu W, Bi Y. Thermal-Oxidation Stability of Soybean Germ Phytosterols in Different Lipid Matrixes. Molecules 2020; 25:E4079. [PMID: 32906624 PMCID: PMC7570545 DOI: 10.3390/molecules25184079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
The stability of soybean germ phytosterols (SGPs) in different lipid matrixes, including soybean germ oil, olive oil, and lard, was studied at 120, 150, and 180 °C. Results on the loss rate demonstrated that SGPs were most stable in olive oil, followed by soybean germ oil, and lard in a decreasing order. It is most likely that unsaturated fatty acids could oxidize first, compete with consumption of oxygen, and then spare phytosterols from oxidation. The oxidation products of SGPS in non-oil and oil systems were also quantified. The results demonstrated that at relatively lower temperatures (120 and 150 °C), SGPs' oxidation products were produced the most in the non-oil system, followed by lard, soybean germ oil, and olive oil. This was consistent with the loss rate pattern of SGPs. At a relatively higher temperature of 180 °C, the formation of SGPs' oxidation products in soybean germ oil was quantitatively the same as that in lard, implying that the temperature became a dominative factor rather than the content of unsaturated fatty acids of lipid matrixes in the oxidation of SGPs.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanlan Bi
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (J.C.); (D.L.); (G.T.); (J.Z.); (W.L.)
| |
Collapse
|
10
|
Portilho Trentini C, de Mello BTF, Ferreira Cabral V, da Silva C. Crambe seed oil: Extraction and reaction with dimethyl carbonate under pressurized conditions. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Acyl moiety and temperature affects thermo-oxidative degradation of steryl esters. Cytotoxicity of the degradation products. Food Chem Toxicol 2019; 136:111074. [PMID: 31883991 DOI: 10.1016/j.fct.2019.111074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/24/2019] [Accepted: 12/20/2019] [Indexed: 11/20/2022]
Abstract
Phytosterols and their esters are often used as functional ingredients in food products due to its lowering blood cholesterol properties. Products containing phytosterols and its esters are recommended for direct consumption, cooking, baking and frying, however during food preparation it is possible thermo-oxidative degradation is possible. Unsaturation of fatty acid present in steryl ester may further stimulates degradation. Free stigmasterol degraded faster than its esters, even with linoleic acid attached. The highest amount of degradation products was observed for free stigmasterol, followed by esters with linoleic and oleic acids. Polar dimers were fund in all heated samples, although for free stigmasterol heated at 60 °C were not detected. Whereas non-polar dimers were observed only in heated stigmasterol. Degradation of esterified stigmasterol generated degradation products with lower cytotoxicity.
Collapse
|
12
|
Massimo L, Laura D, Ginevra LB. Phytosterols and phytosterol oxides in Bronte’s Pistachio (Pistacia vera L.) and in processed pistachio products. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03343-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Zhao Y, Yang B, Xu T, Wang M, Lu B. Photooxidation of phytosterols in oil matrix: Effects of the light, photosensitizers and unsaturation degree of the lipids. Food Chem 2019; 288:162-169. [DOI: 10.1016/j.foodchem.2019.02.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/26/2023]
|
14
|
Neves DA, Schmiele M, Pallone JAL, Orlando EA, Risso EM, Cunha ECE, Godoy HT. Chemical and nutritional characterization of raw and hydrothermal processed jambu (Acmella oleracea (L.) R.K. Jansen). Food Res Int 2019; 116:1144-1152. [DOI: 10.1016/j.foodres.2018.09.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/30/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
|
15
|
Alvarez-Sala A, Blanco-Morales V, Cilla A, Garcia-Llatas G, Sánchez-Siles LM, Barberá R, Lagarda MJ. Safe intake of a plant sterol-enriched beverage with milk fat globule membrane: Bioaccessibility of sterol oxides during storage. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2017.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Raczyk M, Bonte A, Matthäus B, Rudzińska M. Impact of Added Phytosteryl/Phytostanyl Fatty Acid Esters on Chemical Parameters of Margarines upon Heating and Pan-Frying. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marianna Raczyk
- Faculty of Food Sciences and Nutrition Poznań University of Life Sciences; 60-624 Poznań Poland
| | - Anja Bonte
- Department for Safety and Quality of Cereals Max Rubner-Institut (MRI) Federal Research Institute for Nutrition and Food; 32756 Detmold Germany
| | - Bertrand Matthäus
- Department for Safety and Quality of Cereals Max Rubner-Institut (MRI) Federal Research Institute for Nutrition and Food; 32756 Detmold Germany
| | - Magdalena Rudzińska
- Faculty of Food Sciences and Nutrition Poznań University of Life Sciences; 60-624 Poznań Poland
| |
Collapse
|
17
|
Hu Y, Huang W, Li M, Wang M, Zhao Y, Xu T, Zhang L, Lu B, He Y. Metal ions accelerated phytosterol thermal degradation on Ring A & Ring B of steroid nucleus in oils. Food Res Int 2017; 100:219-226. [PMID: 28888444 DOI: 10.1016/j.foodres.2017.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the effect of metal ions on the degradation of phytosterols in oils. The oil was heated at 180°C for 1h with/without addition of Fe3+, Fe2+, Cu2+, Mn2+, Zn2+, Na+, Al3+ and Mg2+. Variations of β-sitosterol, stigmasterol, campesterol, brassicasterol and their degradation products were confirmed by the GC-MS analysis. In general, the increase of the metal ion concentration resulted in more phytosterol degradation, and the ability of metal ions following decreasing order: Fe3+>Fe2+>Mn2+≥Cu2+≥Zn2+>Na+≥Mg2+>Al3+. Metal ions significantly induced phytosterol autoxidation on C5, C6 and C7 on Ring B of steroid nucleus at even a low concentration, and induced dehydration on the C3 hydroxyl to form dienes and trienes at high concentration. The metal ions in oils are accounted for increasing phytosterol degradation, which decreases food nutritional quality and gives rise to the formation of undesirable compounds.
Collapse
Affiliation(s)
- Yinzhou Hu
- College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, China
| | - Weisu Huang
- Zhejiang Economic & Trade Polytechnic, Department of Applied Technology, Hangzhou 310018, China
| | - Maiquan Li
- College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, China
| | - Mengmeng Wang
- College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, China
| | - Yajing Zhao
- College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, China
| | - Tao Xu
- College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, China
| | - Liuquan Zhang
- College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, China.
| | - Yan He
- Institute of Food Science and Technology CAAS, Beijing 100081, China
| |
Collapse
|
18
|
Barriuso B, Ansorena D, Astiasarán I. Oxysterols formation: A review of a multifactorial process. J Steroid Biochem Mol Biol 2017; 169:39-45. [PMID: 26921766 DOI: 10.1016/j.jsbmb.2016.02.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 11/26/2022]
Abstract
Dietary sterols are nutritionally interesting compounds which can suffer oxidation reactions. In the case of plant sterols, they are being widely used for food enrichment due to their hypocholesterolemic properties. Besides, cholesterol and plant sterols oxidation products are associated with the development of cardiovascular and neurodegenerative diseases, among others. Therefore, the evaluation of the particular factors affecting sterol degradation and oxysterols formation in foods is of major importance. The present work summarizes the main results obtained in experiments which aimed to study four aspects in this context: the effect of the heating treatment, the unsaturation degree of the surrounding lipids, the presence of antioxidants on sterols degradation, and at last, oxides formation. The use of model systems allowed the isolation of some of these effects resulting in more accurate data. Thus, these results could be applied in real conditions.
Collapse
Affiliation(s)
- Blanca Barriuso
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea s/n, IDISNA- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.
| | - Diana Ansorena
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea s/n, IDISNA- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.
| | - Iciar Astiasarán
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea s/n, IDISNA- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
19
|
Raczyk M, Kmiecik D, Przybylski R, Rudzińska M. Effect of Fatty Acid Unsaturation on Phytosteryl Ester Degradation. J AM OIL CHEM SOC 2017; 94:701-711. [PMID: 28479606 PMCID: PMC5397657 DOI: 10.1007/s11746-017-2979-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/22/2022]
Abstract
This study examined the thermo-oxidative degradation of stigmasterol fatty acids esters. Stigmasterol stearate, oleate, linoleate and linolenate were synthesized by chemical esterification and their purity evaluated by 1H-NMR and GC-MS. The degradation of stigmasterol esters was examined after heating them at 60 and 180 °C for 1, 2, 4, 8 and 12 h. It was established that stigmasterol esters were prone to thermo-oxidative degradation, with time and temperature affecting the degree of degradation. The unsaturation of fatty acids affected the rate of stigmasteryl ester degradation. The kinetics of StS and StO degradation were similar and the additional double bonds in StL and StLn resulted in their faster decomposition. The esters degraded faster at 180 than at 60 °C. The sterol and fatty acid molecules degraded at different rates, such that the fatty acid moiety deteriorated faster than the sterol at both temperatures, independent of the time of heating and the level of unsaturation.
Collapse
Affiliation(s)
- Marianna Raczyk
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Dominik Kmiecik
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Roman Przybylski
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
| | - Magdalena Rudzińska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
20
|
Lin Y, Knol D, Valk I, van Andel V, Friedrichs S, Lütjohann D, Hrncirik K, Trautwein EA. Thermal stability of plant sterols and formation of their oxidation products in vegetable oils and margarines upon controlled heating. Chem Phys Lipids 2017; 207:99-107. [PMID: 28163064 DOI: 10.1016/j.chemphyslip.2017.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/30/2017] [Indexed: 11/15/2022]
Abstract
Fat-based products like vegetable oils and margarines are commonly used for cooking, which may enhance oxidation of plant sterols (PS) present therein, leading to the formation of PS oxidation products (POP). The present study aims to assess the kinetics of POP formation in six different fat-based products. Vegetable oils and margarines without and with added PS (7.5-7.6% w/w) in esterified form were heated in a Petri-dish at temperatures of 150, 180 and 210°C for 8, 12 and 16min. PS and POP were analysed using GC-FID and GC-MS-SIM, respectively. Increasing PS content, temperature and heating time led to higher POP formation in all tested fat-based products. PS (either naturally occurring or added) in margarines were less susceptible to oxidation as compared to PS in vegetable oils. The susceptibility of sitosterol to oxidation was about 20% lower than that of campesterol under all the applied experimental conditions. During heating, the relative abundance of 7-keto-PS (expressed as% of total POP) decreased in all the fat-based products regardless of their PS contents, which was accompanied by an increase in the relative abundance of 7-OH-PS and 5,6-epoxy-PS, while PS-triols were fairly unchanged. In conclusion, heating time, temperature, initial PS content and the matrix of the fat-based products (vegetable oil vs. margarine) showed distinct effects on POP formation and composition of individual POP formed.
Collapse
Affiliation(s)
- Yuguang Lin
- Unilever Research & Development Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands.
| | - Diny Knol
- Unilever Research & Development Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| | - Iris Valk
- Unilever Research & Development Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| | - Vincent van Andel
- Unilever Research & Development Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| | - Silvia Friedrichs
- Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - Karel Hrncirik
- Unilever Research & Development Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| | - Elke A Trautwein
- Unilever Research & Development Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| |
Collapse
|
21
|
Yoshime LT, de Melo ILP, Sattler JAG, de Carvalho EBT, Mancini-Filho J. Bitter gourd (Momordica charantia L.) seed oil as a naturally rich source of bioactive compounds for nutraceutical purposes. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s41110-016-0013-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Lu B, Hu Y, Huang W, Wang M, Jiang Y, Lou T. Effect of Transition Metal Ions on the B Ring Oxidation of Sterols and their Kinetics in Oil-in-Water Emulsions. Sci Rep 2016; 6:27240. [PMID: 27328709 PMCID: PMC4916447 DOI: 10.1038/srep27240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/16/2016] [Indexed: 01/25/2023] Open
Abstract
This study investigated the effect of metal ions on the oxidation of sterols and their kinetics in oil-in-water emulsions. Sterol substrates were added with different metal ions (Cu(2+), Fe(2+), Mn(2+), Zn(2+), Na(+), and Mg(2+)) of five concentrations and investigated after 2 h of heating at 90 °C. The substrates added with Fe(2+) and Cu(2+) were heated continuously to evaluate the kinetics of four sterols and their corresponding sterol oxidation products (SOPs). Sterol oxidation increased as the metal ion concentration increased and the heating time was prolonged. The capability of the metal ions oxidizing sterols ranked as followed: Fe(2+) > Cu(2+) > Mn(2+) > Zn(2+) > Mg(2+) ≈ Na(+). 7-Ketosterol, 7β/7α-Hydroxysterol, 5β,6β/5α,6α-Epoxysterol, and Triols were the main oxides on the B ring, whereas 6β-Hydroxysterol was not or only slightly influenced. The acceleration of sterol degradation induced by Fe(2+) and Cu(2+), as well as the formation of oxidation products, followed first-order formation/elimination kinetics. The acceleration effect may be partly ascribed to the increase in elimination rate constant and formation rate constant. Transition metal ions can significantly induce sterol oxidation, which reduces food nutritional quality and triggers the formation of undesirable compounds, such as SOPs.
Collapse
Affiliation(s)
- Baiyi Lu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Yinzhou Hu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Weisu Huang
- Zhejiang Economic & Trade Polytechnic, Department of Applied Technology, Hangzhou 310018, China
| | - Mengmeng Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Jiang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Tiantian Lou
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Minstry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|