1
|
Han M, Feng J, Zhai Y, Si Y, Liu X, Han Y, Hu J, Su T, Cao F. Promoted metabolic remolding by overexpression of AspAT9 ameliorates cadmium toxicity in Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136688. [PMID: 39642747 DOI: 10.1016/j.jhazmat.2024.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that poses a serious threat to crop safety and human health. Aspartate aminotransferase (AspAT) is a prime enzyme engaged in amino acid metabolism, contributing essential metabolic substances for plant growth and acclimatization to various stresses. In this study, we identified a novel AspAT9 gene with high responsiveness to Cd stress from poplar 'Nanlin895' and subsequently transformed it into Arabidopsis. The resulting transgenic AspAT9-1 plants (designated A9) and wild-type (WT) Arabidopsis were subjected to Cd treatment (T) or maintained under control conditions (CK). Phenotypic assessments showed that A9 plants displayed greater resistance to Cd stress compared to WT, as evidenced by their stay-green trait and higher biomass. Subsequent metabolism measurement revealed that A9 plants accumulated more Cd in their roots than WT. Meanwhile, the content of various proteinogenic amino acids, Cd-chelating compounds, such as lignin and phytochelatins (PCs), along with antioxidants like glutathione (GSH) and chlorophyll in A9-T exceeded WT-T. Further RNA-seq analysis uncovered significant transcriptional changes in genes implicated in aspartate-glutamate metabolism, antioxidant systems, phenylpropanoid biosynthesis, transporters, and photosynthesis activities. Our findings demonstrate the beneficial effect of overexpressing AspAT9 on Cd phytoextraction, highlights its potential as a valuable genetic resource for phytoremediation applications.
Collapse
Affiliation(s)
- Mei Han
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Junhu Feng
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yujie Zhai
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yujia Si
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoning Liu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yirong Han
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Jinghan Hu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Su
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China.
| | - Fuliang Cao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Koh N, Kim DK. Synergistic antibacterial effect of 405 nm blue light-emitting diodes (LEDs) and gelatin film for inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium on stainless steel and fresh fruit peel. Int J Food Microbiol 2025; 427:110961. [PMID: 39532024 DOI: 10.1016/j.ijfoodmicro.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
A combined antibacterial effect of 405 nm blue LEDs (BL) and gelatin film (G) was investigated on stainless steel (SUS) and fresh fruit peel for the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium. On the SUS, the sum of the individual treatments of G for 20 min and BL at 20 J/cm2 was <1 log reduction (log CFU/cm2). In comparison, combination treatment of G and BL (G + BL) at 20 J/cm2 exhibited 2.37 and 3.09 log reduction on E. coli O157:H7 and S. Typhimurium. The G + BL treatment only increased a propidium iodide (PI) uptake, indicating that cell membrane damage occurred. In the G + BL treatment, reactive oxygen species (ROS) scavenging assay confirmed that ROS involved in the bactericidal mechanism. On orange peel, the G + BL treatment at 40 J/cm2 resulted in a 3.05 and 3.17 log reduction on E. coli O157:H7 and S. Typhimurium. In contrast, the individual treatment of G for 40 min led to reductions of 0.63 log CFU/cm2 for E. coli O157:H7 and 0.50 log CFU/cm2 for S. Typhimurium, while the BL treatment at 40 J/cm2 achieved reductions of 0.78 and 0.69 log CFU/cm2, respectively. A synergistic bactericidal effect was similarly observed in the combined treatment groups for both apple and grapefruit peels. In a color and texture analysis, G did not affect hardness, toughness, and visual color of fruit.
Collapse
Affiliation(s)
- Naeun Koh
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Kyun Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Chen XM, Mou ZL, Zhao YT, Su XG, Han YC, Chen HJ, Wei W, Shan W, Kuang JF, Lu WJ, Chen JY. Modified atmosphere packaging maintains stem quality of Chinese flowering cabbage by restraining postharvest lignification and ROS accumulation. Food Chem X 2024; 24:102006. [PMID: 39655218 PMCID: PMC11626741 DOI: 10.1016/j.fochx.2024.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
In this study, the impact of modified atmosphere packaging (MAP) on quality, lignin biosynthesis, reactive oxygen species (ROS) metabolism, and microstructures of stem in Chinese flowering cabbages was investigated. Compared with control, MAP treatment retained higher content of protein, total soluble solid, and vitamin C, while lower weight loss rate, carbon dioxide (CO2) production rate, electrolyte leakage, firmness and hollowing of stems. Lignin content in MAP-treated stems was 1.23-fold higher than that of control stems on the twelfth day. Moreover, MAP treatment inhibited the increasing in cell wall thickness by inhibiting activities of lignin biosynthesis-related enzymes. In addition, MAP suppressed ROS contents, while enhanced levels of ascorbic acid and reduced glutathione through promoting activities of antioxidant enzymes. The above results suggest that maintaining stems quality of Chinese flowering cabbages through MAP treatment is related to prevent lignin accumulation around the vascular tissue and enhance antioxidant capacity.
Collapse
Affiliation(s)
- Xue-mei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-liang Mou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ya-ting Zhao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xin-guo Su
- Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Yan-chao Han
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hang-jun Chen
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Zhao X, Song W, Chen S, Xu G, Long Z, Yang H, Cao Y, Hu S. Identification of the Key Gene DfCCoAOMT1 through Comparative Analysis of Lignification in Dendrocalamus farinosus XK4 and ZPX Bamboo Shoots during Cold Storage. Int J Mol Sci 2024; 25:8065. [PMID: 39125636 PMCID: PMC11311333 DOI: 10.3390/ijms25158065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Dendrocalamus farinosus bamboo shoots, a species with rich nutritional value, are important in Southwest China. Lignin is an important factor affecting the postharvest flavor quality of bamboo shoots; however, the underlying mechanism of lignin deposition in D. farinosus bamboo shoots during cold storage is still not fully understood. In this study, the mutant D. farinosus XK4 with low lignin content at 3.11% and the cultivated variety ZPX at 4.47% were used as experimental materials. The lignin content of D. farinosus XK4 and ZPX, as well as the gene expression differences between them, were compared and analyzed during cold storage using transcriptomic and physiological methods. Our analysis revealed several key genes and found that D. farinosus CCoAOMT1 plays a key role in the regulatory network of bamboo shoots during cold storage. Tobacco heterologous transformation experiments demonstrated that overexpression of DfCCoAOMT1 significantly increases lignin content. This study provides a novel foundation for future research aimed at improving the postharvest quality and flavor of D. farinosus bamboo shoots through targeted genetic manipulation during cold storage.
Collapse
Affiliation(s)
- Xin Zhao
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wenjuan Song
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Sen Chen
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Gang Xu
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhijian Long
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Heyi Yang
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
| | - Ying Cao
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shanglian Hu
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
5
|
Cao Y, Wu L, Xia Q, Yi K, Li Y. Novel Post-Harvest Preservation Techniques for Edible Fungi: A Review. Foods 2024; 13:1554. [PMID: 38790854 PMCID: PMC11120273 DOI: 10.3390/foods13101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Edible fungi are well known for their rich nutrition and unique flavor. However, their post-harvest shelf-life is relatively short, and effective post-harvest preservation techniques are crucial for maintaining their quality. In recent years, many new technologies have been used for the preservation of edible fungi. These technologies include cold plasma treatment, electrostatic field treatment, active packaging, edible coatings, antimicrobial photodynamic therapy, and genetic editing, among others. This paper reviews the new methods for post-harvest preservation of mainstream edible fungi. By comprehensively evaluating the relative advantages and limitations of these new technologies, their potential and challenges in practical applications are inferred. The paper also proposes directions and suggestions for the future development of edible fungi preservation, aiming to provide reference and guidance for improving the quality of edible fungi products and extending their shelf-life.
Collapse
Affiliation(s)
- Yuping Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Li Wu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Qing Xia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Kexin Yi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| |
Collapse
|
6
|
Yadav D, Prashanth KVH, Negi PS. Low molecular weight chitosan from Pleurotus ostreatus waste and its prebiotic potential. Int J Biol Macromol 2024; 267:131419. [PMID: 38583831 DOI: 10.1016/j.ijbiomac.2024.131419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The booming mushroom industry envisages economic merits, and massive unutilized waste production (∼ 20 %) creates an opportunity for valorization. Chitosan, a bioactive polysaccharide, has drawn immense attention for its invaluable therapeutic potential. Thus, the present study was conducted to extract chitosan from mushroom waste (MCH) for its prebiotic potential. The structural characterization of MCH was carried out using NMR, FTIR, and XRD. The CP/MAS-13CNMR spectrum of MCH appeared at δ 57.67 (C2), 61.19 (C6), 75.39 (C3/C5), 83.53 (C4), 105.13 (C1), 23.69 (CH3), and 174.19 (C = O) ppm. The FTIR showed characteristic peaks at 3361 cm-1, 1582 cm-1, and 1262 cm-1 attributed to -NH stretching, amide II, and amide III bands of MCH. XRD interpretation of MCH exhibited a single strong reflection at 2θ =20.19, which may correspond to the "form-II" polymorph. The extracted MCH (∼ 47 kDa) exhibited varying degrees of deacetylation from 79 to 84 %. The prebiotic activity score of 0.73 to 0.82 was observed for MCH (1 %) when supplemented with probiotic strains (Lactobacillus casei, L. helveticus, L. plantarum, and L. rhamnosus). MCH enhanced the growth of Lactobacillus strains and SCFA's levels, particularly in L. rhamnosus. The MCH also inhibited the growth of pathogenic strains (MIC of 0.125 and 0.25 mg/mL against E. coli and S. aureus, respectively) and enhanced the adhesion efficiency of probiotics (3 to 8 % at 1 % MCH supplementation). L. rhamnosus efficiency was higher against pathogens in the presence of MCH, as indicated by anti-adhesion assays. These findings suggested that extracted polysaccharides from mushroom waste can be used as a prebiotic for ameliorating intestinal dysbiosis.
Collapse
Affiliation(s)
- Divya Yadav
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K V Harish Prashanth
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Lian L, Gu F, Du M, Lin Y, Chang H, Wang J. The combination of high oxygen and nanocomposite packaging alleviated quality deterioration by promoting antioxidant capacity and phenylpropane metabolism in Volvariella volvacea. Food Chem 2024; 439:138092. [PMID: 38039611 DOI: 10.1016/j.foodchem.2023.138092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Volvariella volvacea is a highly perishable mushroom that severely affects its postharvest commercial value. This study aimed to investigate the impact of high oxygen (O2) levels combined with nanocomposite packaging on the shelf-life quality of V. volvacea. Results showed that treatment with high concentrations of O2 (80% and 100% O2) and nanocomposite packaging effectively delayed the quality deterioration of V. volvacea, resulting in better postharvest appearance, higher firmness, lower weight loss, malondialdehyde (MDA) content, and leakage of membrane electrolytes. Further analysis revealed the combination treatments ameliorated oxidative stress by inducing antioxidant enzymes and the glutathione-ascorbate (GSH-AsA) cycle at both enzymatic and transcriptional levels, thereby activating the antioxidant system. Additionally, the treatments enhanced activities of key enzymes in phenylpropane metabolism, leading to a reduction in the decrease of total phenolics and flavonoids. This work provides new insights into the development of postharvest technologies to prolong the storage life of V. volvacea.
Collapse
Affiliation(s)
- Lingdan Lian
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Fengju Gu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Minru Du
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yimei Lin
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Hao Chang
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jie Wang
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
8
|
Sun J, Ren R, Yao L, Li J, Tong L, Yuan J, Wang D. Effect of Combined Chitosan and Hyperbranched Poly-L-Lysine Based Coating on Prolonging the Shelf Life of Oyster Mushroom ( Pleurotus ostreatus). Foods 2023; 13:77. [PMID: 38201105 PMCID: PMC10778364 DOI: 10.3390/foods13010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
To extend the shelf life of oyster mushroom (Pleurotus ostreatus), the effects of chitosan (CS) and hyperbranched poly-L-lysine (HBPL) combined treatment on quality characteristics, nutritional quality, storage characteristics, and enzyme activity of oyster mushroom during postharvest storage at 4 °C were investigated. The results showed that CS-HBPL combined treatment could significantly reduce rot degree and weight loss and significantly inhibit the browning of oyster mushroom. At the same time, the loss of reducing sugar, vitamin C, soluble protein, and total phenolic was significantly reduced. Compared with the control, CS-HBPL combined treatment could also significantly inhibit an increase in malondialdehyde (MDA) and significantly decrease the relative electrolyte leakage of oyster mushroom. In addition, the activities of catalase (CAT), superoxide dismutase (SOD), phenylalnine ammonialyase (PAL), and peroxidase (POD) were significantly improved, and the activity of polyphenol oxidase (PPO) was significantly inhibited in oyster mushroom. In conclusion, CS-HBPL combined treatment had a good protective effect on the membrane permeability damage of oyster mushroom and could effectively delay the oxidation of phenolic substances and browning of oyster mushroom. Therefore, CS-HBPL combined treatment can be used as a potential strategy to extend the storage time of oyster mushroom.
Collapse
Affiliation(s)
- Jianrui Sun
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (R.R.); (L.Y.); (J.L.); (L.T.); (J.Y.); (D.W.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Zheng C, Li J, Liu H, Wang Y. Review of postharvest processing of edible wild-grown mushrooms. Food Res Int 2023; 173:113223. [PMID: 37803541 DOI: 10.1016/j.foodres.2023.113223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Edible wild-grown mushrooms, plentiful in resources, have excellent organoleptic properties, flavor, nutrition, and bioactive substances. However, fresh mushrooms, which have high water and enzymatic activity, are not protected by cuticles and are easily attacked by microorganisms. And wild-grown mushroom harvesting is seasonal the harvest of edible wild-grown mushrooms is subject to seasonality, so their market availability is challenging. Many processing methods have been used for postharvest mushroom processing, including sun drying, freezing, packaging, electron beam radiation, edible coating, ozone, and cooking, whose effects on the parameters and composition of the mushrooms are not entirely positive. This paper reviews the effect of processing methods on the quality of wild and some cultivated edible mushrooms. Drying and cooking, as thermal processes, reduce hardness, texture, and color browning, with the parallel that drying reduces the content of proteins, polysaccharides, and phenolics while cooking increases the chemical composition. Freezing, which allows mushrooms to retain better hardness, color, and higher chemical content, is a better processing method. Water washing and ozone help maintain color by inhibiting enzymatic browning. Edible coating facilitates the maintenance of hardness and total sugar content. Electrolytic water (EW) maintains total phenol levels and soluble protein content. Pulsed electric field and ultrasound (US) inhibit microbial growth. Frying maintains carbohydrates, lipids, phenolics, and proteins. And the mushrooms processed by these methods are safe. They are the focus of future research that combines different methods or develops new processing methods, molecular mechanisms of chemical composition changes, and exploring the application areas of wild mushrooms.
Collapse
Affiliation(s)
- Chuanmao Zheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Jieqing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Honggao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, Yunnan, China.
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| |
Collapse
|
10
|
Guo Y, Chen X, Gong P, Deng Z, Qi Z, Wang R, Long H, Wang J, Yao W, Yang W, Chen F. Recent advances in quality preservation of postharvest golden needle mushroom (Flammulina velutiper). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37014278 DOI: 10.1002/jsfa.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The golden needle mushroom (Flammulina velutiper) is one of the most productive mushrooms in the world. However, F. velutiper experiences continuous quality degradation in terms of changes in color and textural characteristics, loss of moisture, nutrition and flavor, and increased microbial populations due to its high respiratory activity during the postharvest phase. Postharvest preservation techniques, including physical, chemical and biological methods, play a vital role in maintaining postharvest quality and extending the shelf life of mushrooms. Therefore, in this study, the decay process of F. velutiper and the factors affecting its quality were comprehensively reviewed. Additionally, the preservation methods (e.g., low-temperature storage, packaging, plasma treatment, antimicrobial cleaning and 1-methylcyclopropene treatment) for F. velutiper used for the last 5 years were compared to provide an outlook on future research directions. Overall, this review aims to provide a reference for developing novel, green and safe preservation techniques for F. velutiper. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Zhenfang Deng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Zhuoya Qi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Ruotong Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jiating Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| |
Collapse
|
11
|
Guo Y, Chen X, Gong P, Wang R, Qi Z, Deng Z, Han A, Long H, Wang J, Yao W, Yang W, Wang J, Li N. Advances in Postharvest Storage and Preservation Strategies for Pleurotus eryngii. Foods 2023; 12:foods12051046. [PMID: 36900561 PMCID: PMC10000407 DOI: 10.3390/foods12051046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The king oyster mushroom (Pleurotus eryngii) is a delicious edible mushroom that is highly prized for its unique flavor and excellent medicinal properties. Its enzymes, phenolic compounds and reactive oxygen species are the keys to its browning and aging and result in its loss of nutrition and flavor. However, there is a lack of reviews on the preservation of Pl. eryngii to summarize and compare different storage and preservation methods. This paper reviews postharvest preservation techniques, including physical and chemical methods, to better understand the mechanisms of browning and the storage effects of different preservation methods, extend the storage life of mushrooms and present future perspectives on technical aspects in the storage and preservation of Pl. eryngii. This will provide important research directions for the processing and product development of this mushroom.
Collapse
Affiliation(s)
| | | | - Pin Gong
- Correspondence: ; Tel.: +86-13772196479
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang Y, Dong Y, Wang P, Zhu P, Li Y, Lai Y, Liu J, Liu Q. Cauliflower-shaped Pleurotus ostreatus cultivated in an atmosphere with high environmental carbon dioxide concentration. Mycologia 2023; 115:1-11. [PMID: 36651878 DOI: 10.1080/00275514.2022.2149013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/12/2022] [Indexed: 01/19/2023]
Abstract
Commercial aspects, physiological properties, and nutritional characteristics of Pleurotus ostreatus grown under various environmental carbon dioxide concentration ([CO2]e) conditions were assessed. As [CO2]e increased, the activity of antioxidant enzymes (catalase, peroxidase, and superoxide dismutase) in fruiting body increased, activities of succinate dehydrogenase and cytochrome c oxidase were inhibited, and malondialdehyde and adenosine triphosphate (ATP) syntheses were reduced, leading to incomplete development of pilei and stipes, or even absence of pilei. Under high [CO2]e (≥1.00%), fruiting body of P. ostreatus was morphologically altered to assume cauliflower shape. This cultivation condition resulted in high total contents of crude protein, crude fiber, and amino acids, increased levels of umami- and sweet-tasting amino acids, and reduced levels of bitter-tasting amino acids, thus enhancing the flavor of the product. In conclusion, a novel "cauliflower-shaped" mushroom (P. ostreatus) was successfully cultivated at high (≥1.00%) environmental CO2 concentration. The product has a delicious taste and high nutritional value, is relatively easy to transport and store, and has excellent potential for commercial development.
Collapse
Affiliation(s)
- Yongjie Zhang
- Department of Vegetables, College of Horticulture, China Agricultural University, Haidian District, 100193, Beijing, China
| | - Yongqiang Dong
- Department of Vegetables, College of Horticulture, China Agricultural University, Haidian District, 100193, Beijing, China
| | - Peng Wang
- Department of Vegetables, College of Horticulture, China Agricultural University, Haidian District, 100193, Beijing, China
| | - Peilin Zhu
- Department of Vegetables, College of Horticulture, China Agricultural University, Haidian District, 100193, Beijing, China
| | - Yuanhui Li
- Department of Vegetables, College of Horticulture, China Agricultural University, Haidian District, 100193, Beijing, China
| | - Yu Lai
- Department of Vegetables, College of Horticulture, China Agricultural University, Haidian District, 100193, Beijing, China
| | - Jia Liu
- Department of Vegetables, College of Horticulture, China Agricultural University, Haidian District, 100193, Beijing, China
| | - Qinghong Liu
- Department of Vegetables, College of Horticulture, China Agricultural University, Haidian District, 100193, Beijing, China
| |
Collapse
|
13
|
Wen X, Geng F, Xu Y, Li X, Liu D, Liu Z, Luo Z, Wang J. Quantitative transcriptomic and metabolomic analyses reveal the changes in Tricholoma matsutake fruiting bodies during cold storage. Food Chem 2022; 381:132292. [DOI: 10.1016/j.foodchem.2022.132292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/05/2023]
|
14
|
Go HY, Lee SH, Kim HY. The Effect of Hot-Air Dried Lentinula edodes on the Quality and Oranoleptic Properties of Rolled-Dumplings. Food Sci Anim Resour 2022; 42:593-608. [PMID: 35855265 PMCID: PMC9289801 DOI: 10.5851/kosfa.2022.e24] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
The effect of hot-air dried Lentinula edodes pileus (DLE) on the quality and organoleptic properties of rolled-dumplings was evaluated. DLE was prepared by drying at 60°C for 24 h and added (Non, 7%, and 9%) to rolled-dumplings. The proximate composition, pH, color (CIE L*, a*, b*), and cooking yield were analyzed. Texture profile analysis, electronic-nose (e-nose), electronic-tongue (e-tongue), and organoleptic evaluation were also conducted. The cooking yield of dumplings with 9% DLE was significantly lower than that of the congeners without DLE, whereas 7% DLE did not lead to significant differences compared without DLE. With increasing DLE addition, the pH and lightness of the dumplings decreased significantly, whereas the redness tended to increase. The texture profile was significantly higher for the dumplings with DLE compared to those without DLE. E-nose analysis confirmed that DLE addition led to the positive odors (methanethiol: meaty, sulfurous; 3-methylbutanal: malty, toasted) and the negative odors (trimethylamine: ammoniacal; acetic acid: acidic, sour). E-tongue analysis showed that DLE addition decreased the intensity of the sourness and increased the intensity of the saltiness and umami of rolled-dumplings. DLE addition improved the overall organoleptic properties, but 9% DLE can be recognized as a foreign substance in organoleptic acceptance. Consequently, DLE has the potential to serve as a flavor and odor enhancer for rolled-dumplings, and the addition of DLE can positively improve consumer acceptance by improving the quality and organoleptic properties.
Collapse
Affiliation(s)
- Ha-Yoon Go
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Sol-Hee Lee
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
15
|
Li Y, Ding S, Kitazawa H, Wang Y. Storage temperature effect on quality related with cell wall metabolism of shiitake mushrooms (Lentinula edodes) and its modeling. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Biodegradable phase change materials with high latent heat: Preparation and application on Lentinus edodes storage. Food Chem 2021; 364:130391. [PMID: 34182365 DOI: 10.1016/j.foodchem.2021.130391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022]
Abstract
In order to develop biodegradable phase change materials (PCMs) with high latent heat for cold chain logistics, superabsorbent resin (SAR) was prepared based on starch graft copolymerization. FTIR and DSC demonstrated that acrylic acid was successfully grafted onto starches and optimum latent heat of PCM was 330.4 J/g with 10% (w/w) starch. The water retention of PCM with 10% (w/w) starch was 0.49 after heating at 50 °C for 200 h, which was 4.9 folds higher than that of non-starch PCM. Biodegradation rate of PCM was 60.12% within 75-day burial, which was 6 folds higher than that of non-starch PCM. Moreover, significant reduction in browning index, odor, decay, relative conductivity and malondialdehyde (MDA) content was observed in Lentinus edodes treated by biodegradable PCM. These results indicated that the application of biodegradable PCM could extend the shelf life of fresh L. edodes stored at 25 °C.
Collapse
|
17
|
Jin M, Jiao J, Zhao Q, Ban Q, Gao M, Suo J, Zhu Q, Rao J. Dose effect of exogenous abscisic acid on controlling lignification of postharvest kiwifruit (Actinidia chinensis cv. hongyang). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Li D, Wang D, Fang Y, Li L, Lin X, Xu Y, Chen H, Zhu M, Luo Z. A novel phase change coolant promoted quality attributes and glutamate accumulation in postharvest shiitake mushrooms involved in energy metabolism. Food Chem 2021; 351:129227. [PMID: 33647695 DOI: 10.1016/j.foodchem.2021.129227] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Cold chain transportation is an important link in postharvest logistics of agricultural products. In current study, we developed a novel water-based phase change coolant (PCC), which showed longer effectiveness in maintaining low temperature condition compared with ice, and applied in preserving the postharvest mushrooms. The results showed that the novel PCC effectively inhibited water loss, as well as maintained quality attributes including firmness, color, phenolics, flavonoids, and thus prolonged the shelf-life of mushrooms. Low temperature condition created by the novel PCC treatment maintained high level of energy charge by activating the activities of SDH, CCO, H+-ATPase and Ca2+-ATPase, resulting in the delay of postharvest senescence. In addition, sufficient energy supply decreased the consumption of glutamate as carbon skeleton by inhibiting GDH activity, improved glutamate accumulation, and therefore maintained sensory properties as a result. Thus, the novel PCC might be an excellent substitute for ice in cold chain transportation of mushrooms.
Collapse
Affiliation(s)
- Dong Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Di Wang
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Yida Fang
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Xingyu Lin
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China
| | - Yanqun Xu
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China; Zhejiang University, Ningbo Research Institute, Ningbo 315100, People's Republic of China.
| | - Hangjun Chen
- Zhejiang Academy of Agricultural Science, Institute of Food Science, Hangzhou 310058, People's Republic of China
| | - Ming Zhu
- Ministry of Agriculture and Rural Affairs, Academy of Agricultural Planning and Engineering, Beijing 100125, People's Republic of China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, People's Republic of China; Zhejiang University, Ningbo Research Institute, Ningbo 315100, People's Republic of China; Fuli Institute of Food Science, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
19
|
Alternating current electric field inhibits browning of Pleurotus ostreatus via inactivation of oxidative enzymes during postharvest storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Li L, Kitazawa H, Zhang X, Zhang L, Sun Y, Wang X, Liu Z, Guo Y, Yu S. Melatonin retards senescence via regulation of the electron leakage of postharvest white mushroom (Agaricus bisporus). Food Chem 2020; 340:127833. [PMID: 32919356 DOI: 10.1016/j.foodchem.2020.127833] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 01/20/2023]
Abstract
Currently, melatonin (N-acetyl-5-methoxytrytamine) is recognized as a potential scavenger of free radicals. In this study, the effect of exogenous melatonin at various concentrations (0.05, 0.1, and 0.2 mM) on the texture, sensory qualities, and electron leakage in white mushrooms was evaluated at 3 ± 1 °C. It was observed that mushrooms treated with 0.1 mM melatonin were of good quality and their electron leakage was dramatically dampened. The results showed that 0.1 mM melatonin retained a higher adenosine triphosphate level and also prevented the release of cytochrome c into the cytoplasm. More significantly, it prominently inhibited electron leakage by increasing the activities of complexes I and III by the upregulation of AbNdufB9 and AbRIP1. It also regulated respiratory states in mushrooms; delayed the decline of respiratory state 3; enhanced respiratory state 4; boosted the oxidative phosphorylation and efficiency of mitochondria; and ultimately retarded the senescence of the white mushrooms.
Collapse
Affiliation(s)
- Ling Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Hiroaki Kitazawa
- Food Research Institute, National Agriculture and Food Research Organization, Ibaraki 305-8642, Japan
| | - Xinhua Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Liming Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yang Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yanyin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Shaoxuan Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
21
|
Li R, Zheng Q, Lu J, Zou Y, Lin J, Guo L, Ye S, Xing Z. Chemical composition and deterioration mechanism of Pleurotus tuoliensis during postharvest storage. Food Chem 2020; 338:127731. [PMID: 32810811 DOI: 10.1016/j.foodchem.2020.127731] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Pleurotus tuoliensis is a popular edible and medical mushroom, but it is highly perishable during postharvest storage. The quality parameters, chemical composition, malondialdehyde (MDA) concentration, and activity of metabolic enzymes were studied during 12 days of storage at 4 °C and 6 days of storage at 25 °C. Degradation was well described by changes in quality parameters, losses in nutritional value, increased metabolic enzyme activity, the accumulation of MDA concentrations, and the increase of total phenolic (TP) content. The phenylalanine ammonia lyase (PAL) significantly positively correlated with TP, which suggested an underlying mechanism of browning that the increased PAL activity stimulates the biosynthesis of phenols through the phenylalanine pathway. These results suggest that increased activity of laccase, lipoxygenase, PAL, TP and MDA accumulation, together with polysaccharide degradation, are the main factors involved in the deterioration of P. tuoliensis during storage.
Collapse
Affiliation(s)
- Ruirong Li
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Qianwang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Jiali Lu
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Yuan Zou
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Junfang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China.
| | - Liqiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China.
| | - Siqiang Ye
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Zhiming Xing
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
22
|
Li H, Pan T, Li Y, Chen S, Li G. Functional principal component analysis for near-infrared spectral data: a case study on Tricholoma matsutakeis. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Tricholoma matsutakeis (TM) is the most expensive edible fungi in China. Given its price and exclusivity, some dishonest merchants will sell adulterated TM by combining it with cheaper fungi in an attempt to earn more profits. This fraudulent behavior has broken food laws and violated consumer trust. Therefore, there is an urgent need to develop a rapid, accurate, and nondestructive tool to discriminate TM from other edible fungi. In this work, a novel detection algorithm combined with near-infrared spectroscopy (NIR) and functional principal component analysis (FPCA) is proposed. Firstly, the raw NIR data were pretreated by locally weighted scatterplot smoothing (LOWESS) and multiplication scatter correction (MSC). Then, FPCA was used to extract valuable information from the preprocessed NIR data. Then, a classifier was designed by using the least-squares support-vector machine (LS-SVM) to distinguish categories of edible fungi. Furthermore, the one-versus-one (OVO) strategy was included and the binary LS-SVM was extended to a multi-class classifier. The 166 samples of four varieties of fungi were used to validate the proposed method. The results show that the proposed method has great capability in near infrared spectra classification, and the average accurate of FPCA-LSSVM is 97.3% which is greater than that of PCA-LSSVM (93.5%).
Collapse
Affiliation(s)
- Haoran Li
- School of Electrical Information & Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Tianhong Pan
- School of Electrical Engineering & Automation , Anhui University , Hefei , Anhui 230601 , China
| | - Yuqiang Li
- School of Electrical Information & Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Shan Chen
- School of Electrical Information & Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Guoquan Li
- Jiangsu Hengshun Vinegar Industry Co., Ltd. , Zhenjiang 212043 , China
| |
Collapse
|
23
|
Effect of Peppermint Oil on the Storage Quality of White Button Mushrooms (Agaricus bisporus). FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-019-02385-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Sun B, Lin PX, Xia PX, Di HM, Zhang JQ, Zhang CL, Zhang F. Low-temperature storage after harvest retards the deterioration in the sensory quality, health-promoting compounds, and antioxidant capacity of baby mustard. RSC Adv 2020; 10:36495-36503. [PMID: 35517928 PMCID: PMC9057032 DOI: 10.1039/d0ra07177c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/25/2020] [Indexed: 01/30/2023] Open
Abstract
Baby mustard is a perishable vegetable, and thus its distribution and sale as fresh produce face several challenges. However, little effort has been made to identify optimal techniques for postharvest storage of baby mustard. Here, we evaluated the sensory quality, health-promoting compounds, and antioxidant capacity of baby mustard during postharvest storage for 6 days at low temperature (4 °C, LT) and ambient temperature (20 °C). The results showed that visual quality scores, weight, firmness, the contents of most glucosinolates, and the ferric reducing antioxidant power value decreased in the lateral buds of baby mustard during both treatments; however, LT treatment delayed declines in these characteristics. In addition, the contents of glucose, fructose, total soluble sugars, ascorbic acid, and flavonoids, as well as the level of 2,2-azinobis(3-ethyl-benzothiazoline-6-sulfonic acid), decreased considerably throughout the storage period, sucrose content increased throughout the storage period, and the contents of proanthocyanidin and total phenolics first increased and then decreased at 20 °C; however, their contents remained stable throughout the storage period under the LT treatment. These findings indicate that LT provides a promising approach for maintaining the sensory and nutritional quality of baby mustard. Low temperature retards the deterioration in sensory quality, main health-promoting compounds and antioxidant capacity in post-harvest baby mustard.![]()
Collapse
Affiliation(s)
- Bo Sun
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Pei-Xing Lin
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Ping-Xin Xia
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Hong-Mei Di
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Jia-Qi Zhang
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Chen-Lu Zhang
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Fen Zhang
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| |
Collapse
|
25
|
The main factors inducing postharvest lignification in king oyster mushrooms (Pleurotus eryngii): Wounding and ROS-mediated senescence. Food Chem 2019; 301:125224. [DOI: 10.1016/j.foodchem.2019.125224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 12/29/2022]
|
26
|
Wang J, Fan L. Effect of ultrasound treatment on microbial inhibition and quality maintenance of green asparagus during cold storage. ULTRASONICS SONOCHEMISTRY 2019; 58:104631. [PMID: 31450383 DOI: 10.1016/j.ultsonch.2019.104631] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 06/10/2023]
Abstract
The study focused on inhibiting microorganism and improving preservation of green asparagus (Asparagus officinalis L.) during cold storage. Green asparagus is treated with ultrasound (US), acetic acid and gibberellin acid (AG) separately as well as combination (US + AG) and then stored at 4 °C for 20 days. Microorganism, physicochemical qualities and sensory characteristics were monitored at regular intervals. Results showed that the US treatment significantly (p < 0.05) reduced the total number of colonies, mold and yeast merely in the 12th and 16th day of storage, while the US + AG treatment not only achieved an effective decontamination (up to 2 log reduction) of green asparagus throughout the storage, but also retained the physicochemical characteristics to a higher level in comparison to other treatments. The US + AG treatment exhibited lower weight loss, higher levels of total soluble solid (TSS), ascorbic acid, chlorophyll content and total phenolic content (TPC), as well as kept better sensory attributes. Moreover, the US + AG treatment significantly inhibited the activities of phenylalanine ammonia lyase (PAL) and peroxidase (POD) (p < 0.05), suppressing the biosynthesis of lignin. These results suggested that the US + AG treatment could be a potential strategy to preserve quality of green asparagus during cold storage.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
27
|
Application of chitosan nanoparticles containing Cuminum cyminum oil as a delivery system for shelf life extension of Agaricus bisporus. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Yang W, Wu Y, Hu Q, Pei F, Mariga AM. Preharvest treatment of Agaricus bisporus with methyl jasmonate inhibits postharvest deterioration. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Application of vibrational spectroscopy for classification, authentication and quality analysis of mushroom: A concise review. Food Chem 2019; 289:545-557. [PMID: 30955647 DOI: 10.1016/j.foodchem.2019.03.091] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/16/2023]
Abstract
Chemical compositions of mushrooms are greatly dependent on the geographical region, and also the different parts of the same mushroom have different chemical constitutions. Several chemical methods are employed for quality control of mushrooms. However, these methods are destructive, require skilled personnel and are time consuming. To overcome these limitations researchers are aiming for vibrational spectroscopic techniques. This review is focused on various studies related to the application of vibrational spectroscopy for classification, authentication and quality analysis of mushrooms. It was concluded that vibrational spectroscopy could be efficiently employed for assessing the quality, authenticity and geographical origin of the mushrooms. Fourier-transform infrared (FTIR) and near infrared (NIR) spectroscopy were the most explored, whereas, Raman spectroscopy is the least explored technique in this field. Compact and cost-effective spectrometers based on the selective wavelengths have to be designed and installed at commercial and industrial level for rapid quality control of mushrooms.
Collapse
|
30
|
Zhang Z, Zhang X, Xin G, Gong X, Wang Y, Wang L, Sun B. Umami taste and its association with energy status in harvested Pleurotus geesteranus stored at different temperatures. Food Chem 2018; 279:179-186. [PMID: 30611477 DOI: 10.1016/j.foodchem.2018.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 12/26/2022]
Abstract
Pleurotus geesteranus has recently been gaining popularity due to its strong umami taste. In the present study, umami taste, energy level, and energy metabolism-related enzymes activity in harvested P. geesteranus, stored at 20, 10, 5, and 0 °C, were investigated to evaluate the relationship between umami taste and energy status. Results showed that the mushroom at 5 °C exhibited significantly higher (p < 0.05) equivalent umami concentration (EUC), higher content of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and higher activity of succinic dehydrogenase (SDH) and cytochrome c oxidase (CCO) in late storage. AMP, associating umami taste with energy, presented a significantly positive correlation with EUC and umami determined by electronic tongue at 5 °C. Furthermore, there were better correlations between umami taste and energy status of mushroom at 5 °C. The results suggest that higher energy status of post-harvest P. geesteranus contributes to better umami taste.
Collapse
Affiliation(s)
- Zhiyong Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xue Gong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yudi Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Lu Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Bingxin Sun
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
31
|
Effect of nanocomposite packaging on postharvest senescence of Flammulina velutipes. Food Chem 2018; 246:414-421. [DOI: 10.1016/j.foodchem.2017.10.103] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/18/2023]
|
32
|
Thermally buffered corrugated packaging for preserving the postharvest freshness of mushrooms ( Agaricus bispours ). J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.07.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Chen H, Zhang J, Hao H, Feng Z, Chen M, Wang H, Ye M. Hydrogen-rich water increases postharvest quality by enhancing antioxidant capacity in Hypsizygus marmoreus. AMB Express 2017; 7:221. [PMID: 29264772 PMCID: PMC5738332 DOI: 10.1186/s13568-017-0496-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/26/2017] [Indexed: 01/14/2023] Open
Abstract
In the present study, we aimed to assess the effect of hydrogen-rich water (HRW) on the physicochemical characteristics and antioxidant capacity of Hypsizygus marmoreus during 12 days of postharvest storage at 4 °C. Different concentrations of HRW (25, 50 and 100%) were tested, and our data showed that 25% HRW treatment had the most significant effect on preservation of nutrients in H. marmoreus compared with the control group. In addition, 25% HRW treatment significantly reduced the relative electrolyte leakage rate and malonaldehyde (MDA) content (P < 0.05) and increased anti-superoxide-radical (O2-) activity compared with the control group. The activities of antioxidants, superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were activated by 25% HRW treatment, and the expression levels of these genes were also induced. These results suggested that HRW treatment could delay rot incidence in mushrooms during storage by regulating antioxidant defense ability. This study supplies a new and simple method to maintain the quality and extend the shelf life of mushrooms.
Collapse
|
34
|
Yang W, Du H, Mariga AM, Pei F, Ma N, Hu Q. Hot air drying process promotes lignification of Lentinus edodes. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.06.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Carrasco-González JA, Serna-Saldívar SO, Gutiérrez-Uribe JA. Nutritional composition and nutraceutical properties of the Pleurotus fruiting bodies: Potential use as food ingredient. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.01.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Liu J, Meng CG, Wang XC, Chen Y, Kan J, Jin CH. Effect of Protocatechuic Acid-Grafted-Chitosan Coating on the Postharvest Quality of Pleurotus eryngii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7225-7233. [PMID: 27595300 DOI: 10.1021/acs.jafc.6b02468] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Protocatechuic acid-grafted-chitosan (PA-g-CS) solution with antioxidant activity was developed as a novel edible coating material for Pleurotus eryngii postharvest storage. The effect of PA-g-CS coating on the postharvest quality of P. eryngii was investigated by determination of various physicochemical parameters and enzyme activities. Results showed that the antioxidant capacity and viscosity of PA-g-CS solutions were closely related to the grafting degree and were much higher than that of chitosan (CS) solution. At the end of 15 days of storage, serious mushroom browning was observed in the control and CS coating groups. By contrast, PA-g-CS coating groups with medium and high grafting degrees maintained better physical appearance. Among all of the treatment groups, P. eryngii in PA-g-CS III coating group exhibited the highest firmness and the lowest weight loss, browning degree, respiration rate, malondialdehyde content, electrolyte leakage rate, superoxide anion production rate, and hydrogen peroxide content. Moreover, P. eryngii in PA-g-CS III coating group maintained relatively higher antioxidant enzyme activities but lower polyphenol oxidase activity than other treatment groups. Therefore, PA-g-CS III is a promising preservation agent for P. eryngii.
Collapse
Affiliation(s)
- Jun Liu
- College of Food Science and Engineering, Yangzhou University , Yangzhou 225127, Jiangsu, China
| | - Chen-Guang Meng
- College of Food Science and Engineering, Yangzhou University , Yangzhou 225127, Jiangsu, China
| | - Xing-Chi Wang
- College of Food Science and Engineering, Yangzhou University , Yangzhou 225127, Jiangsu, China
| | - Yao Chen
- College of Food Science and Engineering, Yangzhou University , Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University , Yangzhou 225127, Jiangsu, China
| | - Chang-Hai Jin
- College of Food Science and Engineering, Yangzhou University , Yangzhou 225127, Jiangsu, China
| |
Collapse
|