1
|
Meng X, Cao Y, Lv Y, Wang L, Wang Y. Integrating physiological, metabolome and transcriptome revealed the response of maize seeds to combined cold and high soil moisture stresses. PHYSIOLOGIA PLANTARUM 2025; 177:e70096. [PMID: 39887997 DOI: 10.1111/ppl.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Combined cold and high moisture stress (CHS) is a prevalent abiotic stress during maize sowing in northeast China, severely affecting the growth of seedlings and seed germination. However, the mechanism underlying seed growth responses to CHS remains unclear. We used Jidan441 (JD441, CHS-resistant) and Jidan558 (JD558, CHS-sensitive) as experimental materials. Treatments of 5-day cold (4°C, CS), high moisture (25%, gravimetric water content, HH), and CHS were initiated at sowing, followed by a return to normal growth conditions (20°C during light/ 15°C during dark, 15%) at 7 days after sowing (DAS). CS, HH, and CHS decreased seed root length and surface area. The reduction in root length and surface area in JD441 due to CHS was less severe than in JD558. We found that the difference between CHS and control in JD441was less than that in JD558 at transcriptional and metabolic levels at 7 DAS. After CHS removal, JD441 exhibited a greater increase in α-amylase activity and antioxidant content than JD558, which facilitated starch decomposition and the rapid removal of O2 - and H2O2 in seeds. The rapid recovery of soluble sugar and soluble protein in JD441 helped maintain osmotic balance. Amino acids and genes related to amino acid metabolism were upregulated in response to combined stress in JD441, whereas they were downregulated in JD558. In conclusion, the stress tolerance of JD441 was attributed to its efficient recovery ability from CHS. This study provides a scientific foundation for exploring seed stress tolerance pathways and developing cold and high-moisture-tolerant hybrids.
Collapse
Affiliation(s)
- Xiangzeng Meng
- College of Agronomy, Jilin Agricultural University, Jilin, P. R. China
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| | - Yujun Cao
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| | - Yanjie Lv
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| | - Lichun Wang
- College of Agronomy, Jilin Agricultural University, Jilin, P. R. China
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| | - Yongjun Wang
- College of Agronomy, Jilin Agricultural University, Jilin, P. R. China
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| |
Collapse
|
2
|
Che Y, Ding Z, Shen C, Fernie AR, Tang X, Yao Y, Liu J, Wang Y, Li R, Guo J. Physiological and Microstructure Analysis Reveals the Mechanism by Which Formic Acid Delays Postharvest Physiological Deterioration of Cassava. Antioxidants (Basel) 2024; 13:1245. [PMID: 39456497 PMCID: PMC11504381 DOI: 10.3390/antiox13101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Formic acid is reported to act as a food preservative and feed additive, but its effects on controlling postharvest physiological deterioration (PPD) development in cassava are unclear. In this study, we assessed the effectiveness of different concentrations of formic acid in attenuating PPD occurrence in fresh-cut cassava. The results showed that the concentration of 0.1% (v/v) formic acid could significantly delay the occurrence of PPD, and that the higher the concentration of formic acid supplied, the later the occurrence of PPD symptoms. The physiological and biochemical analysis of 0.5%-formic-acid-treated cassava slices revealed that formic acid decreased the degradation of starch, inhibited the accumulation of hydrogen peroxide (H2O2), malondialdehyde (MDA), and water-soluble pectin in cassava slices with PPD development, and increased the activities of the antioxidant enzymes ascorbate peroxidase (APX) and glutathione reductase (GR). A microscopic observation showed that the formic acid treatment inhibited the enlargement of the intercellular space during the cassava PPD process, which suggests that the formation of an intercellular layer of the cell wall was inhibited by formic acid. This study thus revealed the mechanism used by formic acid to extend the cassava shelf life; however, a detailed evaluation of the possible side effects on, for example, the cyanide content will be needed to categorically ensure the safety of this method.
Collapse
Affiliation(s)
- Yannian Che
- School of Life Sciences, Hainan University, Haikou 570228, China; (Y.C.); (Z.D.); (X.T.)
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Zhongping Ding
- School of Life Sciences, Hainan University, Haikou 570228, China; (Y.C.); (Z.D.); (X.T.)
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Chen Shen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R. Fernie
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany;
| | - Xiangning Tang
- School of Life Sciences, Hainan University, Haikou 570228, China; (Y.C.); (Z.D.); (X.T.)
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Yuan Yao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Jiao Liu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Yajie Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Ruimei Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Jianchun Guo
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (C.S.); (Y.Y.); (J.L.); (Y.W.)
| |
Collapse
|
3
|
Cruz-Álvarez O, Sánchez-Chávez E, Benavides-Mendoza A, Hernández-Rodríguez O, Parra-Quezada R, Ciscomani-Larios J, Martínez-Damián M, Ojeda-Barrios D. Foliar applications of zinc oxide nanoparticles and boric acid affect leaf oxidative metabolism and productivity in young pecan trees. Heliyon 2024; 10:e34742. [PMID: 39144945 PMCID: PMC11320133 DOI: 10.1016/j.heliyon.2024.e34742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Zinc and boron are nutrients that often suffer low bioavailability to pecan trees grown in calcareous soils whereas adequate supplies of these two elements is essential for commercial pecan production. Working with young pecan trees, we evaluated changes in oxidative metabolism, levels of bioactive compounds, yield components and foliar nutrient concentrations in response to foliar sprays (50 or 100 mg L-1) of zinc oxide nanoparticles (ZnO NPs) and boron (H3BO3). Four different treatment solutions were applied in a completely randomised design with six replications per treatment (24 trees in total). Zinc and B treatments were applied before pistil receptivity (3 weeks before anthesis) and at stem elongation stage 31, 39/60; flowering stage 69; fruit stages 7-75 and continued for a total of five applications at 14-day intervals. We evaluated enzyme activities (SOD, H2O2, CAT and GPx), AC, phenols, flavonoids, leaf area, chlorophyll, total anthocyanins and nut yield and quality (nut weight and % kernel). The mineral concentrations in the leaflets were also determined. The mineral concentrations (N, P, K, Ca, Mg, Fe, Cu, Mn, Ni, Zn and B) in the leaflets were also determined. Spraying ZnO NPs and B increased SOD activity, CA, chlorophyll concentration, mineral nutrients (N, K, Ca, Zn and B) and yield. However, reductions were observed for CAT activity, nut quality and concentrations of phenol, flavonoid, anthocyanin and Fe. Boron increased GPx activity and P concentration. These results demonstrate that spraying low doses (50 mg L-1) of ZnO NPs and B can help reduce oxidative stress and increase yield, nut quality and leaf concentrations of Zn and B in young cv. Wichita pecan trees established on a calcareous soil.
Collapse
Affiliation(s)
- O. Cruz-Álvarez
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31350, Mexico
| | - E. Sánchez-Chávez
- Unidad Delicias, Centro de Investigación en Alimentación y Desarrollo, Delicias, Chihuahua, 33089, Mexico
| | - A. Benavides-Mendoza
- Departamento de Horticultura, Universidad Agraria Antonio Narro, Buenavista, Saltillo, 25315, Mexico
| | - O.A. Hernández-Rodríguez
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31350, Mexico
| | - R.A. Parra-Quezada
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31350, Mexico
| | - J.P. Ciscomani-Larios
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31350, Mexico
| | - M.T. Martínez-Damián
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Texcoco de Mora, Estado de México, 56230, Mexico
| | - D.L. Ojeda-Barrios
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31350, Mexico
| |
Collapse
|
4
|
Divya K, Thangaraj M, Krishna Radhika N. CRISPR/Cas9: an advanced platform for root and tuber crops improvement. Front Genome Ed 2024; 5:1242510. [PMID: 38312197 PMCID: PMC10836405 DOI: 10.3389/fgeed.2023.1242510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
Root and tuber crops (RTCs), which include cassava, potato, sweet potato, and yams, principally function as staple crops for a considerable fraction of the world population, in addition to their diverse applications in nutrition, industry, and bioenergy sectors. Even then, RTCs are an underutilized group considering their potential as industrial raw material. Complexities in conventional RTC improvement programs curb the extensive exploitation of the potentials of this group of crop species for food, energy production, value addition, and sustainable development. Now, with the advent of whole-genome sequencing, sufficient sequence data are available for cassava, sweet potato, and potato. These genomic resources provide enormous scope for the improvement of tuber crops, to make them better suited for agronomic and industrial applications. There has been remarkable progress in RTC improvement through the deployment of new strategies like gene editing over the last decade. This review brings out the major areas where CRISPR/Cas technology has improved tuber crops. Strategies for genetic transformation of RTCs with CRISPR/Cas9 constructs and regeneration of edited lines and the bottlenecks encountered in their establishment are also discussed. Certain attributes of tuber crops requiring focus in future research along with putative editing targets are also indicated. Altogether, this review provides a comprehensive account of developments achieved, future lines of research, bottlenecks, and major experimental concerns regarding the establishment of CRISPR/Cas9-based gene editing in RTCs.
Collapse
Affiliation(s)
- K Divya
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | | | - N Krishna Radhika
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| |
Collapse
|
5
|
Ngatsi PZ, Ndongo B, Ambang Z, Eke P, Kuate WNT, Dida SLL, Manga JN, Djiéto-Lordon C. Response of cassava ( Manihot esculenta Crantz) genotypes to natural infestation by scale insect pest Stictococcus vayssierei Richard (Hemiptera: Stictococcidae). CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100071. [PMID: 38317863 PMCID: PMC10840324 DOI: 10.1016/j.cris.2024.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Cassava is mostly grown for its starchy roots, which ensure food security. However, it is heavily attacked by the African root and tuber scale (ARTS) Stictococcus vayssierei in Central Africa. This pest is a severe constraint to the production of cassava, food and income security for smallholder farmers. Crop resistance development through the selection of varieties with resistant traits against targeted pests is a promising approach to pest control. This study investigated cassava genotypes' response to natural infestation and determined their resistance levels against S. vayssierei. Six cassava genotypes (two local and four improved) were planted in a completely randomized block design with four replicates. Agronomic parameters and ARTS density were evaluated at 3, 6, 9 and 12 months after planting (MAP). Biochemical content was determined on the pith and cortex of 12 MAP aged tuberous roots. As a result, the improved Excel variety recorded the highest scale density per plant with 102.83 ± 4.14 ARTS/P at 9 MAP. At 12 MAP, high activity of total cyanide (69.18 ± 0.88 and 69.16 ± 1.44 mg/kg) and phenylalanine ammonia-lyase (0.142 ± 0.020 and 0.145 ± 0.010 ΔA/min/mg) were observed in the cortex of the tuberous roots of the improved varieties TMS 96/0023 and TMS 92/0057 which were colonized by the lowest ARTS density. The local variety (Douma) had a high content of total phenols (44.87 ± 1.15 µg/g) in the pith. It also produced the highest yield (23.8 ± 2.9 t ha-1). Varieties TMS 96/0023, TMS 92/0057 and Douma may be the most suitable varieties for the control of ARTS stress.
Collapse
Affiliation(s)
- Patrice Zemko Ngatsi
- Department of Plant Biology, Laboratory of Biotechnologies and Environment, Phytopathology and Plant Protection Unit, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Bekolo Ndongo
- Department of Plant Biology, Laboratory of Biotechnologies and Environment, Phytopathology and Plant Protection Unit, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Zachée Ambang
- Department of Plant Biology, Laboratory of Biotechnologies and Environment, Phytopathology and Plant Protection Unit, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Pierre Eke
- Department of Biochemistry, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
- Department of Crop Production Technology, College of Technology, University of Bamenda, Cameroon
| | - William Norbert Tueguem Kuate
- Department of Plant Biology, Laboratory of Biotechnologies and Environment, Phytopathology and Plant Protection Unit, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Sylvere Landry Lontsi Dida
- Department of Plant Biology, Laboratory of Biotechnologies and Environment, Phytopathology and Plant Protection Unit, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Jude Ndjaga Manga
- Department of Plant Biology, Laboratory of Biotechnologies and Environment, Phytopathology and Plant Protection Unit, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Champlain Djiéto-Lordon
- Department of Animal Biology and Physiology, Laboratory of Zoology, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| |
Collapse
|
6
|
Wang C, Chen Y, Chen S, Min Y, Tang Y, Ma X, Li H, Li J, Liu Z. Spraying chitosan on cassava roots reduces postharvest deterioration by promoting wound healing and inducing disease resistance. Carbohydr Polym 2023; 318:121133. [PMID: 37479443 DOI: 10.1016/j.carbpol.2023.121133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023]
Abstract
Postharvest damage makes cassava roots vulnerable to pathogen infections and decay, which significantly hinders the development of the cassava industry. The objective of this study was to assess the antibacterial properties of chitosan in vitro, as well as its effect on wound healing and resistance in cassava roots. The findings demonstrated that the bacteriostatic effect of chitosan became increasingly prominent as the concentration of chitosan enhanced. Chitosan at a concentration of 0.5 mg/mL was revealed to significantly inhibit the germination of P. palmivora spores and damage to their structure. Moreover, chitosan activated the transcription of crucial genes and enzyme activities associated with the phenylpropane metabolism pathway in cassava roots, thus promoting rapid lignin accumulation and resulting in the early formation of a fracture layer. Chitosan was also found to enhance cassava root resistance by promoting the expression of pathogenesis-related proteins and the accumulation of flavonoids and total phenols. After 48 h of inoculation, cassava roots treated with chitosan exhibited a 51.4 % and 53.4 % decrease in lesion area for SC9 and SC6 varieties, respectively. The findings of this study offer a novel approach for managing postharvest deterioration of cassava roots.
Collapse
Affiliation(s)
- Congcong Wang
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Hainan, China
| | - Yi Min
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Xiang Ma
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Hong Li
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
Baş O, İlhan H, Hancı H, Çelikkan H, Ekinci D, Değermenci M, Karapınar BO, Warille AA, Çankaya S, Özkasapoğlu S. To what extent are orally ingested nanoplastics toxic to the hippocampus in young adult rats? J Chem Neuroanat 2023; 132:102314. [PMID: 37473873 DOI: 10.1016/j.jchemneu.2023.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
As the use of plastic-containing materials in our daily lives becomes increasingly common, exposure to nanoplastics accordingly becomes inevitable. Micro and nanoplastics released from large amounts of plastic waste constitute a serious environmental problem. Therefore, this study aimed to examine the effects of polystyrene nanoplastic (PS-NP) on the hippocampus. MATERIAL AND METHOD: Thirty Wistar albino rats, 15 male and 15 female, aged 6-8 weeks, were used in the research. These were randomly divided into three groups of five males and five females each. A five-minute open field test was applied to all rats on the first and last days of the study. Three groups of rats (Control, NP1 and NP2) received the standard chow and water. Additionally, rats in the first neoplastic group (NP1) received 25 mg/kg PS-NP and rats in the second nanoplastic group (NP2) received 50 mg/kg PS-NP, at the same time each day by oral gavage. The rats were sacrificed under deep anesthesia at the end of four weeks. The hippocampi were removed and subjected to histopathological and biochemical analyses. RESULTS: Green fluorescent dots were detected in the hippocampi of both dose groups receiving nanoplastics (NPs) administered orally to female and male rats. Histopathological examination revealed neuronal degeneration in the hippocampi of male and female rats from both dose groups. However, while no significant difference was observed among the groups in terms of changes in antioxidant enzyme values and open-field test data in male rats, significant differences in peroxidase (POD) and glutathione S-transferase (GST) values and fecal boli and grooming numbers were determined in female rats exposed to NPs. In conclusion, exposure to NP substances extend as far as the hippocampus, causing neuronal damage and behavioral problems.
Collapse
Affiliation(s)
- Orhan Baş
- Department of Anatomy, Faculty of Medicine, Samsun University, Samsun, Turkey.
| | - Hasan İlhan
- Department of Chemistry, Faculty of Science, Ordu University, Ordu, Turkey
| | - Hatice Hancı
- Department of Histology and Embryology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Hüseyin Çelikkan
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Deniz Ekinci
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | | | - Burak Oğuzhan Karapınar
- Department of Medical Services and Techniques, Vocational School of Health Services, Ondokuz Mayıs University, Samsun, Turkey
| | - Aymen A Warille
- Department of Anatomy, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Soner Çankaya
- Department of Sports Management, Faculty of Sport Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Sezgin Özkasapoğlu
- Turkish Energy, Nuclear and Mineral Research Agency Boron Research Institute, Ankara, Turkey
| |
Collapse
|
8
|
Wahengbam ED, Devi CP, Sharma SK, Roy SS, Maibam A, Dasgupta M, Luikham S, Chongtham T, Ningombam A, Bhupenchandra I, Singh LK, Devi YP, Thokchom S, Khaba CI, Singh NB, Rajashekar Y, Das S, Mohanty S, Sahoo MR. Reactive oxygen species turnover, phenolics metabolism, and some key gene expressions modulate postharvest physiological deterioration in cassava tubers. Front Microbiol 2023; 14:1148464. [PMID: 36925477 PMCID: PMC10011484 DOI: 10.3389/fmicb.2023.1148464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Rapid postharvest physiological deterioration (PPD) in cassava (Manihot esculenta Crantz) tuber is a significant concern during storage. The freshly harvested tubers start spoiling within 24 to 72 h. Accumulation of H2O2 is one of the earliest biochemical events that occurred during PPD, which was detected using the 3,3 diaminobenzidine (DAB) in two contrast cassava genotypes, MNP Local A (29-57 μg g-1) and Sree Prakash (64-141 μg g-1). Accumulating the fluorescence hydroxycoumarin compounds emitted by the cassava tubers observed under an ultraviolet (UV) lamp showed significant variations at 0, 3, 6, 9, 12, and 15 days of storage. The total phenolics and carotenoids significantly and negatively correlated with PPD progression; however, the anthocyanin and flavonoids positively correlated with the PPD-anchored ROS accumulation. The primary compound, Phthalic acid, di(2-propylpentyl) ester, was identified in both the cassava tubers, Sree Prakash (57.21 and 35.21%), and MNP Local A (75.58 and 60.21%) at 0, and 72 h of PPD, respectively. The expression of PPD-associated genes APX-2, APX-3, PAL, and AP was higher at 6-12 days of PPD, which signified the synthesis of ROS turnover and phenylpropanoid biosynthesis. A significant, strong, and positive correlation was established between the secondary metabolites and PPD signaling gene expression, which was inversely correlated with hydroxycoumarin and H2O2 accumulation. MNP Local A tubers exhibited longer storage life of 15 days with a low PPD score, higher metabolites synthesis, and gene expression. The PPD-resistant lines may be used to augment cassava breeding strategies for large-scale commercial and industrial use.
Collapse
Affiliation(s)
| | | | | | - Subhra Saikat Roy
- ICAR Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Albert Maibam
- ICAR Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Madhumita Dasgupta
- ICAR Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Star Luikham
- ICAR Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Tania Chongtham
- ICAR Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Arati Ningombam
- ICAR Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Ingudam Bhupenchandra
- Farm Science Centre, ICAR Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Laishram Kanta Singh
- Farm Science Centre, ICAR Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Yumnam Prabhabati Devi
- Farm Science Centre, ICAR Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | | | | | | | - Yallappa Rajashekar
- Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
| | - Sudripta Das
- Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
| | - Sansuta Mohanty
- Central Horticultural Experiment Station, ICAR–Indian Institute of Horticultural Research, Bhubaneswar, Odisha, India
| | - Manas Ranjan Sahoo
- ICAR Research Complex for North Eastern Hill Region, Imphal, Manipur, India
- Central Horticultural Experiment Station, ICAR–Indian Institute of Horticultural Research, Bhubaneswar, Odisha, India
| |
Collapse
|
9
|
Li D, Dai T, Chen M, Liang R, Liu W, Liu C, Sun J, Chen J, Deng L. Role of maturity status on the quality and volatile properties of mango fruits dried by infrared radiation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
10
|
Chavan SN, De Kesel J, Desmedt W, Degroote E, Singh RR, Nguyen GT, Demeestere K, De Meyer T, Kyndt T. Dehydroascorbate induces plant resistance in rice against root-knot nematode Meloidogyne graminicola. MOLECULAR PLANT PATHOLOGY 2022; 23:1303-1319. [PMID: 35587614 PMCID: PMC9366072 DOI: 10.1111/mpp.13230] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/01/2023]
Abstract
Ascorbic acid (AsA) is an important antioxidant in plants and regulates various physiological processes. In this study, we show that exogenous treatments with the oxidized form of AsA, that is, dehydroascorbate (DHA), activates induced systemic resistance in rice against the root-knot nematode Meloidogyne graminicola, and investigate the molecular and biochemical mechanisms underlying this phenotype. Detailed transcriptome analysis on roots of rice plants showed an early and robust transcriptional response on foliar DHA treatment, with induction of several genes related to plant stress responses, immunity, antioxidant activity, and secondary metabolism already at 1 day after treatment. Quantitative and qualitative evaluation of H2 O2 levels confirmed the appearance of a reactive oxygen species (ROS) burst on DHA treatment, both at the site of treatment and systemically. Experiments using chemical ROS inhibitors or scavengers confirmed that H2 O2 accumulation contributes to DHA-based induced resistance. Furthermore, hormone measurements in DHA-treated plants showed a significant systemic accumulation of the defence hormone salicylic acid (SA). The role of the SA pathway in DHA-based induced resistance was confirmed by nematode infection experiments using an SA-signalling deficient WRKY45-RNAi line and reverse transcription-quantitative PCR on SA marker genes. Our results collectively reveal that DHA activates induced systemic resistance in rice against the root-knot nematode M. graminicola, mediated through the production of ROS and activation of the SA pathway.
Collapse
Affiliation(s)
- Satish Namdeo Chavan
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- ICAR – Indian Institute of Rice ResearchHyderabadIndia
| | - Jonas De Kesel
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Willem Desmedt
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Eva Degroote
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Richard Raj Singh
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Department Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Giang Thu Nguyen
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical ModellingGhent UniversityGhentBelgium
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
11
|
Ding X, Zhang H, Qian T, He L, Jin H, Zhou Q, Yu J. Nutrient Concentrations Induced Abiotic Stresses to Sweet Pepper Seedlings in Hydroponic Culture. PLANTS (BASEL, SWITZERLAND) 2022; 11:1098. [PMID: 35448826 PMCID: PMC9027179 DOI: 10.3390/plants11081098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 05/16/2023]
Abstract
The primary goal of this experiment was to investigate the effects of nutrient electrical conductivity (EC) on the growth and physiological responses of sweet pepper (Capsicum annuum L.) in hydroponic culture in a greenhouse. The plant growth parameters, leaf photosynthesis, root activity, soluble protein, malondialdehyde (MDA), proline, activities of antioxidant enzymes (AE), and the contents of plant mineral elements (PME) were measured in six different EC treatments. The results showed that very high or low EC treatments clearly decreased the plant height, stem diameter, shoot dry weight, and leaf net photosynthetic rate, while increasing the content of MDA and the activities of ascorbate peroxidase and guaiacol peroxidase. The contents of proline and soluble protein increased gradually from the low to high EC treatments. The root activities decreased significantly, and the main PME clearly did not increase or even decreased at high EC levels. Very high EC treatments suppressed growth even more than those of very low EC. Treatments that were too low or high EC suppressed plant growth, owing to abiotic stress (either nutrient deficiency or salinity), since the plants had to regulate the activities of AE and increase the accumulation of osmolytes to adjust to the abiotic stresses.
Collapse
Affiliation(s)
- Xiaotao Ding
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
- Shanghai Dushi Green Engineering Co., Ltd., Shanghai 201106, China
| | - Hongmei Zhang
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| | - Tingting Qian
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| | - Lizhong He
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| | - Haijun Jin
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| | - Qiang Zhou
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
- Shanghai Dushi Green Engineering Co., Ltd., Shanghai 201106, China
| | - Jizhu Yu
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (H.Z.); (T.Q.); (L.H.); (H.J.)
| |
Collapse
|
12
|
Jańczak-Pieniążek M, Migut D, Piechowiak T, Balawejder M. Assessment of the Impact of the Application of a Quercetin-Copper Complex on the Course of Physiological and Biochemical Processes in Wheat Plants ( Triticum aestivum L.) Growing under Saline Conditions. Cells 2022; 11:cells11071141. [PMID: 35406704 PMCID: PMC8997712 DOI: 10.3390/cells11071141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salt stress is one of the main stressors limiting plant growth and yield. As a result of salt stress, unfavorable changes in the photosynthesis process take place, leading to a decrease in plant productivity. Therefore, it is necessary to use biologically active substances that reduce the effects of this stress. An example of such a substance is quercetin, classified as a flavonoid, which plays an important role in alleviating the effects of salt stress, mainly by the inactivation of reactive oxygen species (ROS) and by improvement of the photosynthesis process. A study was made of the effect of the quercetin–copper complex (Q-Cu (II)), which has a stronger antioxidant effect than pure quercetin. By means of a pot experiment, the influence of solutions of the Q-Cu (II) complex (100 mg∙L−1 [Q1], 500 mg∙L−1 [Q2] and 1000 mg∙L−1 [Q3]) on the physiological and biochemical processes occurring in wheat plants subjected to salt stress was investigated. The plants were given two sprays of Q-Cu (II) solution, and their physiological parameters were examined both 1 and 7 days after each application of this solution. The level of ROS and the activity of antioxidant enzymes (catalase [CAT], superoxide dismutase [SOD] and guaiacol peroxidase [GPOX]) were also determined. It has been shown that spraying with Q2 and Q3 solutions improves the chlorophyll content, the values of chlorophyll fluorescence parameters (the photochemical efficiency of PS II [Fv/Fm], the maximum quantum yield of primary photochemistry [Fv/F0], and the performance index of PS II [PI]), and gas exchange (net photosynthetic rate [Pn], stomatal conductance [gs], transpiration rate [E] and intercellular CO2 concentration [Ci]). As a result of the application of Q2 and Q3 solutions, the level of ROS and the activity of the antioxidant enzymes tested decreased, which means that these concentrations are most effective in counteracting the effects of salt stress.
Collapse
Affiliation(s)
- Marta Jańczak-Pieniążek
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
- Correspondence:
| | - Dagmara Migut
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Tomasz Piechowiak
- Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland; (T.P.); (M.B.)
| | - Maciej Balawejder
- Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland; (T.P.); (M.B.)
| |
Collapse
|
13
|
Ren H, Li X, Guo L, Wang L, Hao X, Zeng J. Integrative Transcriptome and Proteome Analysis Reveals the Absorption and Metabolism of Selenium in Tea Plants [ Camellia sinensis (L.) O. Kuntze]. FRONTIERS IN PLANT SCIENCE 2022; 13:848349. [PMID: 35283867 PMCID: PMC8908381 DOI: 10.3389/fpls.2022.848349] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 05/28/2023]
Abstract
Certain tea plants (Camellia sinensis) have the ability to accumulate selenium. In plants, the predominant forms of bioavailable Se are selenite (SeO3 2-) and selenate (SeO4 2-). We applied transcriptomics and proteomics to hydroponically grown plants treated with selenite or selenate for 48 h in the attempt to elucidate the selenium absorption and assimilation mechanisms in tea. A total of 1,844 differentially expressed genes (DEGs) and 691 differentially expressed proteins (DEPs) were obtained by comparing the Na2SeO3 and Na2SeO4 treatments against the control. A GO analysis showed that the genes related to amino acid and protein metabolism and redox reaction were strongly upregulated in the plants under the Na2SeO3 treatment. A KEGG pathway analysis revealed that numerous genes involved in amino acid and glutathione metabolism were upregulated, genes and proteins associated with glutathione metabolism and ubiquinone and terpenoid-quinone biosynthesis were highly expressed. Genes participating in DNA and RNA metabolism were identified and proteins related to glutathione metabolism were detected in tea plants supplemented with Na2SeO4. ABC, nitrate and sugar transporter genes were differentially expressed in response to selenite and selenate. Phosphate transporter (PHT3;1a, PHT1;3b, and PHT1;8) and aquaporin (NIP2;1) genes were upregulated in the presence of selenite. Sulfate transporter (SULTR1;1 and SULTR2;1) expression increased in response to selenate exposure. The results of the present study have clarified Se absorption and metabolism in tea plants, and play an important theoretical reference significance for the breeding and cultivation of selenium-enriched tea varieties.
Collapse
Affiliation(s)
- Hengze Ren
- National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoman Li
- National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lina Guo
- National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lu Wang
- National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyuan Hao
- National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zeng
- National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
14
|
Odoch M, Buys EM, Taylor JR. Effects of vacuum packaging storage of minimally processed cassava roots at various temperatures on microflora, tissue structure, starch extraction by wet milling and granule quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6347-6354. [PMID: 33969893 DOI: 10.1002/jsfa.11305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Vacuum package storage is commonly applied to reduce postharvest deterioration in minimally processed cassava roots. However, the influence of vacuum packaging conditions on root end-use quality is poorly understood. Hence, the effects of vacuum packaged storage at ambient, refrigerated and freezing temperatures on microflora, cassava tissue structure and starch extraction by wet milling were studied. RESULTS Vacuum packaged storage temperature strongly affected cassava root quality. Minimal adverse effects were obtained with frozen storage. With refrigerated storage, there was negligible microbial growth but some disruption of the parenchyma cell wall structure suggestive of chilling injury. With ambient temperature storage, there was considerable Lactobacilli dominated fermentation. This caused substantial cell degradation, probably due to the production of extracellular cellulolytic and other cell wall degrading enzymes. A benefit of this cell wall breakdown was that it substantially improved starch extraction with wet milling from the stored cassava pieces; by 18% with pieces that had been ambient vacuum packaged and wet milled using a 2000 μm opening screen. However, ambient temperature storage resulted in some starch granule pitting due to the action of extracellular amylases from the fermenting microorganisms. CONCLUSION The best vacuum packaging storage conditions for minimally processed cassava depends on application and cost. For short-term storage, refrigeration would be best for vegetable-type products. For several months storage, freezing is best. For wet milling applications, this could be combined with subsequent short-term ambient temperature storage as it improves starch extraction efficiency and could reduce distribution energy costs. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Martin Odoch
- Department of Consumer and Food Sciences and Institute for Food, Nutrition and Well-being, University of Pretoria, Pretoria, South Africa
- Department of Food Science and Post-Harvest Technology, Gulu University, Gulu, Uganda
| | - Elna M Buys
- Department of Consumer and Food Sciences and Institute for Food, Nutrition and Well-being, University of Pretoria, Pretoria, South Africa
| | - John Rn Taylor
- Department of Consumer and Food Sciences and Institute for Food, Nutrition and Well-being, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
15
|
Liu G, Zhang J, Hou T, An S, Guo B, Liu C, Hu L, Huang Y, Zhang S, Song M, Cao Y. Extraction kinetics, physicochemical properties and immunomodulatory activity of the novel continuous phase transition extraction of polysaccharides from Ganoderma lucidum. Food Funct 2021; 12:9708-9718. [PMID: 34664607 DOI: 10.1039/d1fo02185k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ganoderma lucidum polysaccharides (GLP) possess remarkable bioactivity and have been studied widely. However, the application of new technologies in the polysaccharide extraction has not been investigated. Herein, a novel continuous phase transition extraction (CPTE) technology was applied for the extraction of polysaccharides from Ganoderma lucidum. The extraction kinetics, physicochemical properties and immunomodulatory activity of GLP were evaluated. The kinetics results showed that the extraction process could be fitted to a two-site kinetic model due to the high R2 values in the range of 0.9939-0.9999. Polysaccharides extracted by different technologies showed that GLP yield by CPTE could be significantly improved, which was 3.34 times and 2.68 times that of hot water and ultrasonic-assisted extraction, respectively. Molecular weight distribution analysis indicated that high molecular mass polysaccharide proportion by CPTE was the highest among the three extraction methods, which was 2.03 times and 3.41 times as much as that of the hot water and ultrasonic-assisted extraction. Morphology analysis showed that CPTE treatment caused disruption of most of the cells and effective release of intracellular components, implying that CPTE was beneficial to extract polysaccharides. Furthermore, the immunomodulatory assays demonstrated that GLP significantly enhanced the proliferation and production of NO, TNF-α and IL-6 in macrophages. Therefore, CPTE was more effective for extracting polysaccharides from Ganoderma lucidum than the common extraction.
Collapse
Affiliation(s)
- Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China. .,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Tao Hou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Siyu An
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Baoyan Guo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China. .,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Cencen Liu
- Infinitus China Co Ltd, Guangzhou, 510623, China
| | - Liuyun Hu
- Infinitus China Co Ltd, Guangzhou, 510623, China
| | - Yahui Huang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Shuai Zhang
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Kayode BI, Kayode RM, Salami KO, Obilana AO, George TT, Dudu OE, Adebo OA, Njobeh PB, Diarra SS, Oyeyinka SA. Morphology and physicochemical properties of starch isolated from frozen cassava root. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Yadav P, Srivastava S, Patil T, Raghuvanshi R, Srivastava AK, Suprasanna P. Tracking the time-dependent and tissue-specific processes of arsenic accumulation and stress responses in rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124307. [PMID: 33221079 DOI: 10.1016/j.jhazmat.2020.124307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The present study analysed time (0.5 h to 24 h) and tissue [roots, old leaves (OL) and young leaves (YL)] dependent nature of arsenic (As) accumulation and ensuing responses in two contrasting varieties of rice (Oryza sativa L.); Pooja (tolerant) and CO-50 (moderately sensitive). Arsenic accumulation was 5.4-, 4.7- and 7.3-fold higher at 24 h in roots, OL and YL, respectively of var. CO-50 than that in var. Pooja. Arsenic accumulation in YL depicted a delayed accumulation; at 2 h onwards in var. Pooja (0.23 µg g-1 dw) while at 1 h onwards in var. CO50 (0.26 µg g-1 dw). The responses of oxidative stress parameters, antioxidant enzymes, metabolites and ions were also found to be tissue- and time-dependent and depicted differential pattern in the two varieties. Among hormone, salicylic acid and abscisic acid showed variable response in var. Pooja and var. CO-50. Metabolite analysis depicted an involvement of various metabolites in As stress responses of two varieties. In conclusion, an early sensing of the As stress, proper coordination of hormones, biochemical responses, ionic and metabolic profiles allowed var. Pooja to resist As stress and reduce As accumulation more effectively as compared to that of var. CO-50.
Collapse
Affiliation(s)
- Poonam Yadav
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India.
| | - Tanmayi Patil
- Centre for Cellular and Molecular Platforms, GKVK Post, Bengaluru 560065, India
| | - Rishiraj Raghuvanshi
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Ashish K Srivastava
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
18
|
Alam MZ, Carpenter-Boggs L, Hoque MA, Ahammed GJ. Effect of soil amendments on antioxidant activity and photosynthetic pigments in pea crops grown in arsenic contaminated soil. Heliyon 2020; 6:e05475. [PMID: 33241149 PMCID: PMC7672278 DOI: 10.1016/j.heliyon.2020.e05475] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/21/2020] [Accepted: 11/06/2020] [Indexed: 01/24/2023] Open
Abstract
The mechanism of arsenic (As) immobilization in soils is crucial for improving photosynthetic pigments and antioxidants in food crops. The effects of soil amendments with arbuscular mycorrhizal fungi (AMF), biochar (BC), selenium (Se), sulfur (S) and Si-gel on the concentrations of chlorophyll, carotenoid, proline, malondialdehyde (MDA), and the activity of ascorbate peroxidase (APX), guaiacol peroxidase (POD), and catalase (CAT) were studied in BARI pea (Pisum sativum) under As stress. Soil amendments with AMF, Se, Si-gel and S enhanced chlorophyll a and total chlorophyll contents by 31–35% and 60–75%, respectively. Likewise, CAT activity was increased by 24–46% in BC, AMF, Se, Si-gel and S-treated pea, respectively. APX and POD activity was also found to be enriched with the treatment of BC, AMF and Se. In contrast, the content of MDA and proline was found lower than that of control in peas. These findings indicate that oxidative damage, osmotic stress and cell injury were possibly reduced in As-stressed peas. Particularly, AMF and Se both were comparatively more potential in comparison to BC. Thus, soil amendments with AMF, BC and Se are significantly important for improving antioxidant enzyme activity of food crops grown in soil with elevated As levels.
Collapse
Affiliation(s)
- Mohammad Zahangeer Alam
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Lynne Carpenter-Boggs
- Department of Crop and Soil Sciences, Washington State University (WSU), Pullman, WA, 99164-6420, USA
| | - Md Anamul Hoque
- Department of Soil Science, Bangladesh Agricultural University (BAU), Mymensingh, 2202, Bangladesh
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, PR China
| |
Collapse
|
19
|
Augustyniak A, Pawłowicz I, Lechowicz K, Izbiańska-Jankowska K, Arasimowicz-Jelonek M, Rapacz M, Perlikowski D, Kosmala A. Freezing Tolerance of Lolium multiflorum/Festuca arundinacea Introgression Forms is Associated with the High Activity of Antioxidant System and Adjustment of Photosynthetic Activity under Cold Acclimation. Int J Mol Sci 2020; 21:ijms21165899. [PMID: 32824486 PMCID: PMC7460622 DOI: 10.3390/ijms21165899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022] Open
Abstract
Though winter-hardiness is a complex trait, freezing tolerance was proved to be its main component. Species from temperate regions acquire tolerance to freezing in a process of cold acclimation, which is associated with the exposure of plants to low but non-freezing temperatures. However, mechanisms of cold acclimation in Lolium-Festuca grasses, important for forage production in Europe, have not been fully recognized. Thus, two L. multiflorum/F. arundinacea introgression forms with distinct freezing tolerance were used herein as models in the comprehensive research to dissect these mechanisms in that group of plants. The work was focused on: (i) analysis of cellular membranes' integrity; (ii) analysis of plant photosynthetic capacity (chlorophyll fluorescence; gas exchange; gene expression, protein accumulation, and activity of selected enzymes of the Calvin cycle); (iii) analysis of plant antioxidant capacity (reactive oxygen species generation; gene expression, protein accumulation, and activity of selected enzymes); and (iv) analysis of Cor14b accumulation, under cold acclimation. The more freezing tolerant introgression form revealed a higher integrity of membranes, an ability to cold acclimate its photosynthetic apparatus and higher water use efficiency after three weeks of cold acclimation, as well as a higher capacity of the antioxidant system and a lower content of reactive oxygen species in low temperature.
Collapse
Affiliation(s)
- Adam Augustyniak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
| | - Izabela Pawłowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
| | - Katarzyna Lechowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
| | - Karolina Izbiańska-Jankowska
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (K.I.-J.); (M.A.-J.)
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (K.I.-J.); (M.A.-J.)
| | - Marcin Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239 Kraków, Poland;
| | - Dawid Perlikowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
| | - Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
- Correspondence:
| |
Collapse
|
20
|
Martinez S, Sáenz ME, Alberdi JL, Di Marzio WD. Comparative ecotoxicity of single and binary mixtures exposures of cadmium and zinc on growth and biomarkers of Lemna gibba. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:571-583. [PMID: 32342293 DOI: 10.1007/s10646-020-02213-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
In the present study, single and mixture effects of cadmium (Cd) and zinc (Zn) on Lemna gibba were analyzed and compared using growth parameters, based on frond number and fresh weight, and biochemical parameters, such as pigment, protein content and activity of antioxidant enzymes. Plants were exposed for 7 days to these metals in nutrient solution. Single and mixture exposures affected plant growth and the biomarkers of the antioxidant response. Considering the growth parameters, Cd was found to be much more toxic than Zn. IC50-7d, based on growth rate calculated on frond number, were 17.8 and 76.73 mg/L, and on fresh weight were 1.08 and 76.93 mg/L, for Cd and Zn respectively. For Cd, LOEC values were obtained at 2.06 and 1.03 mg/L, for frond number and fresh weight respectively; while for Zn, at 20.1 and 74.6 mg/L. A high toxicity effect, considering the same response variables, was observed in plants exposed to the mixtures. Three fixed ratios, based on toxic units (TU) were assayed, ratio 1: 2/3 Cd-1/3 Zn, ratio 2: 1/2 Cd-1/2 Zn and ratio 3: 1/3 Cd-2/3 Zn. Ratio 3 (where Zn was added in higher proportion) was the less toxic. All concentrations of Ratio 1 and 2 significantly inhibited plant growth, showing a 100% inhibition of growth rate at the highest concentrations when based on frond number. Catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APOX; EC 1.11.1.11) and guaiacol peroxidase (GPOX; EC 1.11.1.7) activities in single metals assays were higher than controls. In mixture tests, the activity of APOX and GPOX was significantly stimulated in plants exposed to all evaluated combinations, while CAT was mainly stimulated in Ratio 3. It was observed that the activity of the enzymes was increased in the mixtures compared with similar concentrations evaluated individually. APOX activity was observed to fit the CA model and following a concentration-response pattern. The response of this antioxidant enzyme could serve as a sensitive stressor biomarker for Cd-Zn interactions. Frond number in Cd-Zn mixtures was not well predicted from dissolved metal concentration in solution using concentration addition (CA) as reference model, as results showed that toxicity was more than additive, with an average of ΣTU = 0.75. This synergistic effect was observed up to 50 mg Zn/L in the mixture, but when it was present in higher concentrations a less than additive effect was observed, indicating a protective effect of Zn. A synergistic and dose-ratio deviations from CA model were also observed.
Collapse
Affiliation(s)
- S Martinez
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Programa de Investigación en Ecotoxicología, Universidad Nacional de Luján, Luján, Argentina
| | - M E Sáenz
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Programa de Investigación en Ecotoxicología, Universidad Nacional de Luján, Luján, Argentina
| | - J L Alberdi
- Departamento de Ciencias Básicas, Programa de Investigación en Ecotoxicología, Universidad Nacional de Luján, Luján, Argentina
| | - W D Di Marzio
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
- Departamento de Ciencias Básicas, Programa de Investigación en Ecotoxicología, Universidad Nacional de Luján, Luján, Argentina.
| |
Collapse
|
21
|
Li H, Liu JX, Wang Y, Zhuang J. The ascorbate peroxidase 1 regulates ascorbic acid metabolism in fresh-cut leaves of tea plant during postharvest storage under light/dark conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110500. [PMID: 32540018 DOI: 10.1016/j.plantsci.2020.110500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/22/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Postharvest storage conditions affect the ascorbic acid (AsA) levels in fresh-cut leaves of horticultural crops. However, the detailed mechanism of AsA metabolism in the fresh-cut leaves of tea plant (Camellia sinensis) during postharvest storage under light/dark conditions remains unclear. To investigate the AsA mechanism, we treated fresh-cut tea leaves with light/dark during postharvest storage. An ascorbate peroxidase 1 (CsAPX1) protein involved in AsA metabolism was identified by iTRAQ analysis. Gene expression profile of CsAPX1 encoding ascorbate peroxidase (APX) was regulated by light/dark conditions. AsA accumulation and APX activity were suppressed by light/dark conditions. SDS-PAGE analysis showed that the molecular mass of recombinant CsAPX1 protein was about 34.45 kDa. Subcellular localization indicated that CsAPX1 protein was a cytosol ascorbate peroxidase. Overexpression CsAPX1 in Arabidopsis indicated that the decrease of AsA content and APX activity in transgenic lines were less significant than that of WT during postharvest storage under light/dark conditions. These data suggested that CsAPX1 involved in regulating AsA metabolism through effecting on the changes of AsA accumulation and APX activity in fresh-cut tea leaves during postharvest storage under light/dark conditions.
Collapse
Affiliation(s)
- Hui Li
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Wang
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
22
|
Liu J, Chang M, Meng J, Liu J, Cheng Y, Feng C. Effect of ozone treatment on the quality and enzyme activity of
Lentinus edodes
during cold storage. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jing Liu
- College of Food Science and EngineeringShanxi Agricultural University Taigu PR China
| | - Ming‐chang Chang
- College of Food Science and EngineeringShanxi Agricultural University Taigu PR China
- Shanxi Research Station for Engineering Technology of Edible Fungi Taigu PR China
| | - Jun‐long Meng
- College of Food Science and EngineeringShanxi Agricultural University Taigu PR China
| | - Jing‐yu Liu
- College of Food Science and EngineeringShanxi Agricultural University Taigu PR China
| | - Yan‐Feng Cheng
- College of Food Science and EngineeringShanxi Agricultural University Taigu PR China
| | - Cui‐ping Feng
- College of Food Science and EngineeringShanxi Agricultural University Taigu PR China
| |
Collapse
|
23
|
Oyeyinka SA, Salako MO, Akintayo OA, Adeloye AA, Nidoni U, Dudu OE, Diarra SS. Structural, functional, and pasting properties of starch from refrigerated cassava root. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Samson A. Oyeyinka
- Department of Biotechnology and Food Technology University of Johannesburg Gauteng South Africa
- School of Agriculture and Food Technology University of South Pacific Suva Fiji
| | - Michael O. Salako
- Department of Home Economics and Food Science University of Ilorin Ilorin Nigeria
| | - Olaide A. Akintayo
- Department of Home Economics and Food Science University of Ilorin Ilorin Nigeria
| | | | - Udaykumar Nidoni
- Department of Processing and Food Engineering University of Agricultural Sciences Raichur India
| | - Olayemi E. Dudu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Siaka S. Diarra
- School of Agriculture and Food Technology University of South Pacific Suva Fiji
| |
Collapse
|
24
|
Jamshidi Goharrizi K, Moosavi SS, Amirmahani F, Salehi F, Nazari M. Assessment of changes in growth traits, oxidative stress parameters, and enzymatic and non-enzymatic antioxidant defense mechanisms in Lepidium draba plant under osmotic stress induced by polyethylene glycol. PROTOPLASMA 2020; 257:459-473. [PMID: 31776775 DOI: 10.1007/s00709-019-01457-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Lepidium draba is a weed with the medicinal properties which few researches have been done on it. In this study, some traits, related to the osmotic stress, in 14-day-old L. draba sprouts that were grown 9 days in the presence of various doses of polyethylene glycol 6000 (PEG 6000) including 0, 3, 6, 9, and 12%, with different osmotic potentials (- 0.04, - 0.12, - 0.23, - 0.34, and - 0.48 MPa, respectively) were investigated. Based on our results, germination percentage besides stem and root lengths decreased with increasing the concentrations of PEG. The contents of electrolyte leakage, malondialdehyde, other aldehydes, total protein, free amino acids, total soluble carbohydrate as well as free proline increased with increasing the concentrations of PEG. Also, for the first time, our results have proven that under osmotic stress, there is an adverse relationship between hydrogen peroxide content and the activity of catalase, peroxidase, ascorbate peroxidase, and guaiacol peroxidase enzymes, such that hydrogen peroxide content decreased with induction of PEG up to 6% and after that increased, while the activity of catalase, peroxidase, ascorbate peroxidase, and guaiacol peroxidase enzymes increased up to 6% PEG and after that decreased. The expression levels of catalase, peroxidase, ascorbate peroxidase, and guaiacol peroxidase genes showed the same pattern as was seen for these enzyme activities. According to the results of this study, it can be deduced that decreasing H2O2 content cannot be the main reason for other oxidative stress parameters to decrease. In this study, P5CS and P5CR gene expression levels increased with increasing levels of PEG up to 12% which was completely similar to free proline content. Based on our results, L. draba can be considered as a semi-tolerant plant to osmotic stress.
Collapse
Affiliation(s)
| | - Sayyed Saeed Moosavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Farzane Amirmahani
- Genetic Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Fatemeh Salehi
- Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Maryam Nazari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
25
|
Zhao Y, Li QJ, Li YS, Gao XF. Simultaneous quantification of peroxidase and ascorbic acid in biosamples with an automatic system based on a Fe(iii)/methylthymol blue-carbon dot simulative enzyme. Analyst 2020; 145:5438-5449. [PMID: 32573604 DOI: 10.1039/d0an00291g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Simultaneous and automatic quantification of peroxidase and ascorbic acid based on one reaction system and application of a carbon dot simulative enzyme.
Collapse
Affiliation(s)
- Yang Zhao
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Qiao-Jing Li
- Department of Chemistry
- School of Science
- The University of Tokyo
- Japan
| | - Yong-Sheng Li
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xiu-Feng Gao
- West China School of Basic Medical Sciences & Forensic Medicine
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
26
|
Banerjee A, Hazra A, Das S, Sengupta C. Groundwater inhabited Bacillus and Paenibacillus strains alleviate arsenic-induced phytotoxicity of rice plant. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1048-1058. [PMID: 32062985 DOI: 10.1080/15226514.2020.1725871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arsenic contamination in agricultural soil now imposing a major threat to crop productivity and causing several hazardous health effects through percolation in food chain. Bioremediation, an efficient way of soil health restoration toward sustainability offered by some soil-borne microorganisms, has been reported. The present work deals with application of two potent arsenic-tolerant bacterial strains (Bacillus thuringiensis A01 and Paenibacillus glucanolyticus B05), obtained from natural sources in modulating overall growth and antioxidant defense against arsenic-treated rice plants. Between the two, former could reduce arsenic uptake up to 56% (roots) and 85% (shoots), and the preceding one up to 31% (roots) and 65% (shoots) in a hydroponic environment. Germination percentage was noted to be enhanced significantly (p ≤ 0.05). Expression of oxidative stress defensive enzymes such as superoxide dismutase, peroxidase and catalase have been augmented at seedling stages (21 days) toward detoxification of arsenic imposed excess ROS generation. Increment of leaf Thiobarbituric acid reactive substances due to arsenic exposure have been ameliorated by both the bacterial application. Phenolic and flavonoid mediated free radical scavenging ability of the test plants elevated significantly (p ≤ 0.05). The present work revealed that, selected bacterial strains can perform efficient bioremediation against arsenic pollutant rice cultivation.
Collapse
Affiliation(s)
| | - Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata, India
| | - Sauren Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
27
|
Dudziak K, Zapalska M, Börner A, Szczerba H, Kowalczyk K, Nowak M. Analysis of wheat gene expression related to the oxidative stress response and signal transduction under short-term osmotic stress. Sci Rep 2019; 9:2743. [PMID: 30808876 PMCID: PMC6391441 DOI: 10.1038/s41598-019-39154-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/18/2019] [Indexed: 01/10/2023] Open
Abstract
Water shortage is a major environmental stress that causes the generation of reactive oxygen species (ROS). The increase in ROS production induces molecular responses, which are key factors in determining the level of plant tolerance to stresses, including drought. The aim of this study was to determine the expression levels of genes encoding MAPKs (MAPK3 and MAPK6), antioxidant enzymes (CAT, APX and GPX) and enzymes involved in proline biosynthesis (P5CS and P5CR) in Triticum aestivum L. seedlings in response to short-term drought conditions. A series of wheat intervarietal substitution lines (ISCSLs) obtained by the substitution of single chromosomes from a drought-sensitive cultivar into the genetic background of a drought-tolerant cultivar was used. This source material allowed the chromosomal localization of the genetic elements involved in the response to the analyzed stress factor (drought). The results indicated that the initial plant response to drought stress resulted notably in changes in the expression of MAPK6 and CAT and both the P5CS and P5CR genes. Our results showed that the substitution of chromosomes 3B, 5A, 7B and 7D had the greatest impact on the expression level of all tested genes, which indicates that they contain genetic elements that have a significant function in controlling tolerance to water deficits in the wheat genome.
Collapse
Affiliation(s)
- Karolina Dudziak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, 15 Akademicka St., 20-950, Lublin, Poland
| | - Magdalena Zapalska
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, 15 Akademicka St., 20-950, Lublin, Poland
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Stadt Seeland, Gatersleben, Germany
| | - Hubert Szczerba
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna St., 20-704, Lublin, Poland
| | - Krzysztof Kowalczyk
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, 15 Akademicka St., 20-950, Lublin, Poland
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, 15 Akademicka St., 20-950, Lublin, Poland.
| |
Collapse
|
28
|
Yu Y, Wang Y, Li M. Reliable method for the detection of horseradish peroxidase activity and enzyme kinetics. Analyst 2019; 144:1442-1447. [PMID: 30608085 DOI: 10.1039/c8an02072h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme-catalyzed reactions are complicated and their kinetics depend on various chemical and physical factors. In a simple enzyme-catalyzed reaction, the enzyme kinetics often involve two or more substrates. However, this complexity is often ignored when studying enzyme kinetics or determining enzyme activity. Such an example is horseradish peroxidase (HRP), whose activity and kinetics in the reduction of H2O2 are usually detected and studied using spectroanalysis, with guaiacol (GA) as the hydrogen donor. In this process, the concentrations of two substrates, GA and H2O2, both change, which makes the practical detection, based on determination of the GA oxydate, GA(O), totally wrong. In this study, we introduce a new electrochemical method for detecting the specific activity (SA) and studying the enzyme kinetics of HRP. This electrochemical method was used to directly detect one substrate (H2O2) while the concentration of the other substrate (GA) was kept constant by adding ascorbic acid to the system to reduce GA(O) and regenerate GA. For the first time, this HRP-catalyzed reaction, including the mechanism and kinetics, was investigated precisely using a simple electrochemical method. The maximum SA and reaction rate constant k1 were reliably detected and calculated. The proposed method indicated that the SA of commercially available HRP (300 U mg-1 detected by spectroanalysis) was 1228.8 U mg-1 at a GA concentration of 4.5 mM, and up to 2049.9 U mg-1 as the GA concentration tended toward infinity. Our results suggest that reported methods for detecting enzyme activity and/or kinetics should be re-examined according to the catalytic mechanism of the enzyme.
Collapse
Affiliation(s)
- Yizhe Yu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| | - Yinling Wang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| | - Maoguo Li
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
29
|
Ma YL, Zhu DY, Thakur K, Wang CH, Wang H, Ren YF, Zhang JG, Wei ZJ. Antioxidant and antibacterial evaluation of polysaccharides sequentially extracted from onion (Allium cepa L.). Int J Biol Macromol 2018; 111:92-101. [DOI: 10.1016/j.ijbiomac.2017.12.154] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/09/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022]
|
30
|
Qin Y, Djabou ASM, An F, Li K, Li Z, Yang L, Wang X, Chen S. Proteomic analysis of injured storage roots in cassava (Manihot esculenta Crantz) under postharvest physiological deterioration. PLoS One 2017; 12:e0174238. [PMID: 28339481 PMCID: PMC5365129 DOI: 10.1371/journal.pone.0174238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/06/2017] [Indexed: 11/23/2022] Open
Abstract
Postharvest physiological deterioration (PPD) is a global challenge in the improvement of cassava value chain. However, how to reduce cassava spoilage and reveal the mechanism of injured cassava storage roots in response to PPD were poorly understood. In the present study, we investigated the activities of antioxidant enzymes of cassava injured storage roots in PPD-susceptible (SC9) and PPD-tolerant (QZ1) genotypes at the time-points from 0h to 120h, and further analyzed their proteomic changes using two-dimensional electrophoresis (2-DE) in combination with MALDI-TOF-MS/MS. Ninety-nine differentially expressed proteins were identified from SC9 and QZ1 genotypes in the pairwise comparison of 24h/0h, 48h/0h, 72h/0h and 96h/0h. Of those proteins were associated with 13 biological functions, in which carbohydrate and energy metabolism related proteins were the biggest amount differential proteins in both genotypes, followed by chaperones, DNA and RNA metabolism, and defense system. We speculated that SOD in combination with CAT activities would be the first line of defense against PPD to support PPD-tolerant cassava varieties. The four hub proteins including CPN60B, LOS2, HSC70-1 and CPN20B, produced from the network of protein-protein interaction, will be the candidate key proteins linked with PPD. This study provides a new clue to improve cassava PPD-tolerant varieties and would be helpful to much better understand the molecular mechanism of PPD of cassava injured storage roots.
Collapse
Affiliation(s)
- Yuling Qin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
- Tropical Crops Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, China
| | - Astride Stéphanie Mouafi Djabou
- Laboratory of plant physiology, Department of Biological Science, Higher Teachers´ Training College, University of Yaounde I, Yaounde, Cameroon
| | - Feifei An
- Tropical Crops Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, China
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, China
| | - Zhaogui Li
- Agricultural Bureau of Wuming County, Wuming, China
| | - Long Yang
- Subtropical Crops Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Xingyi, China
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, China
- * E-mail:
| |
Collapse
|
31
|
Sachadyn-Król M, Materska M, Chilczuk B, Karaś M, Jakubczyk A, Perucka I, Jackowska I. Ozone-induced changes in the content of bioactive compounds and enzyme activity during storage of pepper fruits. Food Chem 2016; 211:59-67. [PMID: 27283607 DOI: 10.1016/j.foodchem.2016.05.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
This paper presents for the first time the results of investigations concerning the effect of treatment of whole pepper fruits with gaseous ozone and the refrigeration storage period conditions on pepper quality. The effects are reflected in changes in the flavonoid contents, the antioxidant activity of the phenolic compound fraction and the enzymes involved in phenylpropanoid metabolism. The investigations were carried out on a hot pepper fruit cultivar, Cyklon. It was found that the levels of a majority of flavonoids, in particular those of quercetin 3-O-rhamnoside and quercetin 3-O-rhamnoside-7-O-glucoside increased in the pericarp of fruits treated with ozone for 3h and stored for 20days (by 25% relative to the control). Simultaneously, reduced phenylalanine ammonia-lyase and tyrosine ammonia-lyase activity were noted, which implies slight degradation of enzymes caused by the ozone treatment and enhancement of the polyphenol oxidase and guaiacol oxidase activity involved in response to increased oxidative stress.
Collapse
Affiliation(s)
- Monika Sachadyn-Król
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Poland.
| | - Małgorzata Materska
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Poland
| | - Barbara Chilczuk
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Poland
| | - Monika Karaś
- Department of Biochemistry and Food Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Poland
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Poland
| | - Irena Perucka
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Poland
| | - Izabella Jackowska
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Poland
| |
Collapse
|
32
|
Uarrota VG, Moresco R, Schmidt EC, Bouzon ZL, da Costa Nunes E, de Oliveira Neubert E, Peruch LAM, Rocha M, Maraschin M. Data supporting the role of enzymes and polysaccharides during cassava postharvest physiological deterioration. Data Brief 2016; 6:503-6. [PMID: 26900596 PMCID: PMC4716459 DOI: 10.1016/j.dib.2015.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/11/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022] Open
Abstract
This data article is referred to the research article entitled The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration by Uarrota et al. (2015). Food Chemistry 197, Part A, 737–746. The stress duo to PPD of cassava roots leads to the formation of ROS which are extremely harmful and accelerates cassava spoiling. To prevent or alleviate injuries from ROS, plants have evolved antioxidant systems that include non-enzymatic and enzymatic defence systems such as ascorbate peroxidase, guaiacol peroxidase and polysaccharides. In this data article can be found a dataset called “newdata”, in RData format, with 60 observations and 06 variables. The first 02 variables (Samples and Cultivars) and the last 04, spectrophotometric data of ascorbate peroxidase, guaiacol peroxidase, tocopherol, total proteins and arcsined data of cassava PPD scoring. For further interpretation and analysis in R software, a report is also provided. Means of all variables and standard deviations are also provided in the Supplementary tables (“data.long3.RData, data.long4.RData and meansEnzymes.RData”), raw data of PPD scoring without transformation (PPDmeans.RData) and days of storage (days.RData) are also provided for data analysis reproducibility in R software.
Collapse
Affiliation(s)
- Virgílio Gavicho Uarrota
- Federal University of Santa Catarina, Plant Science Center, Plant Morphogenesis and Biochemistry Laboratory, 1346 Admar Gonzaga Road, Florianópolis, SC 88034-001, Brazil
| | - Rodolfo Moresco
- Federal University of Santa Catarina, Plant Science Center, Plant Morphogenesis and Biochemistry Laboratory, 1346 Admar Gonzaga Road, Florianópolis, SC 88034-001, Brazil
| | - Eder Carlos Schmidt
- Federal University of Santa Catarina, Laboratory of Plant Cell Biology, Centre for Biological Sciences, Department of Cell Biology, Embryology and Genetics, Florianópolis, SC 88040-900, Brazil
| | - Zenilda Laurita Bouzon
- Federal University of Santa Catarina, Laboratory of Plant Cell Biology, Centre for Biological Sciences, Department of Cell Biology, Embryology and Genetics, Florianópolis, SC 88040-900, Brazil
| | - Eduardo da Costa Nunes
- Santa Catarina State Agricultural Research and Rural Extension Agency (EPAGRI), Experimental Station of Urussanga (EEUR), SC 446 Road, Km 19, Urussanga, SC 88840-000, Brazil
| | - Enilto de Oliveira Neubert
- Santa Catarina State Agricultural Research and Rural Extension Agency (EPAGRI), Experimental Station of Urussanga (EEUR), SC 446 Road, Km 19, Urussanga, SC 88840-000, Brazil
| | - Luiz Augusto Martins Peruch
- Santa Catarina State Agricultural Research and Rural Extension Agency (EPAGRI), Experimental Station of Urussanga (EEUR), SC 446 Road, Km 19, Urussanga, SC 88840-000, Brazil
| | - Miguel Rocha
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Marcelo Maraschin
- Federal University of Santa Catarina, Plant Science Center, Plant Morphogenesis and Biochemistry Laboratory, 1346 Admar Gonzaga Road, Florianópolis, SC 88034-001, Brazil
| |
Collapse
|
33
|
Hu W, Kong H, Guo Y, Zhang Y, Ding Z, Tie W, Yan Y, Huang Q, Peng M, Shi H, Guo A. Comparative Physiological and Transcriptomic Analyses Reveal the Actions of Melatonin in the Delay of Postharvest Physiological Deterioration of Cassava. FRONTIERS IN PLANT SCIENCE 2016; 7:736. [PMID: 27303428 PMCID: PMC4882330 DOI: 10.3389/fpls.2016.00736] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/12/2016] [Indexed: 05/18/2023]
Abstract
Melatonin plays important roles in various aspects of biological processes. However, it is less known on the effects and mechanism of melatonin on the postharvest physiological deterioration (PPD) process of cassava, which largely restricts the potential of cassava as a food and industrial crop. In this study, we found that exogenous application of melatonin significantly delayed PPD of cassava tuberous roots by reducing H2O2 content and improving activities of catalase and peroxidase. Moreover, 3425 differentially expressed genes by melatonin during the PPD process were identified by transcriptomic analysis. Several pathways were markedly affected by melatonin treatments, including metabolic-, ion homeostasis-, and enzyme activity-related processes. Further detailed analysis revealed that melatonin acted through activation of ROS-scavenging and ROS signal transduction pathways, including antioxidant enzymes, calcium signaling, MAPK cascades, and transcription factors at early stages. Notably, the starch degradation pathway was also activated at early stages, whereas it was repressed by melatonin at middle and late stages, thereby indicating its regulatory role in starch metabolism during PPD. Taken together, this study yields new insights into the effect and underlying mechanism of melatonin on the delay of PPD and provides a good strategy for extending shelf life and improvement of cassava tuberous roots.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Hua Kong
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yunling Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yuliang Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Qixing Huang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan UniversityHaikou, China
- *Correspondence: Haitao Shi, ; Anping Guo,
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- *Correspondence: Haitao Shi, ; Anping Guo,
| |
Collapse
|