1
|
Komatsu Y, Wada Y, Shibasaki T, Kitamura Y, Ehara T, Nakamura H, Miyaji K. Comparison of protein digestibility of human milk and infant formula using the INFOGEST method under infant digestion conditions. Br J Nutr 2024; 132:351-358. [PMID: 38826083 DOI: 10.1017/s0007114524001260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Many improvements have been made to bring infant formula (IF) closer to human milk (HM) regarding its nutritional and biological properties. Nevertheless, the protein components of HM and IF are still different, which may affect their digestibility. This study aimed to evaluate and compare the protein digestibility of HM and IF using the infant INFOGEST digestion method. Pooled HM and a commercial IF were subjected to the infant INFOGEST method, which simulates the physiological digestion conditions of infants, with multiple directions, i.e. the curd state, gel images of SDS-PAGE, molecular weight distribution, free amino acid concentrations and in vitro protein digestion rate. HM underwent proteolysis before digestion and tended to have a higher protein digestion rate with finer curds during gastric digestion, than the IF. However, multifaceted analyses showed that the protein digestibility of HM and IF was not significantly different after gastrointestinal digestion. In conclusion, the infant INFOGEST method showed that the digestibility of HM and IF proteins differed to some extent before digestion and after gastric digestion, but not at the end of gastrointestinal digestion. The findings of this study will contribute to the refinement of IF with better protein digestibility in infant stomach.
Collapse
Affiliation(s)
- Yosuke Komatsu
- Health Care & Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City252-8583, Kanagawa-Pref., Japan
| | - Yasuaki Wada
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City252-8583, Kanagawa-Pref., Japan
| | - Takuya Shibasaki
- Health Care & Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City252-8583, Kanagawa-Pref., Japan
| | - Yohei Kitamura
- Health Care & Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City252-8583, Kanagawa-Pref., Japan
| | - Tatsuya Ehara
- Health Care & Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City252-8583, Kanagawa-Pref., Japan
| | - Hirohiko Nakamura
- Health Care & Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City252-8583, Kanagawa-Pref., Japan
| | - Kazuhiro Miyaji
- Health Care & Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City252-8583, Kanagawa-Pref., Japan
| |
Collapse
|
2
|
Zhang J, Liu D, Xie Y, Yuan J, Wang K, Tao X, Hemar Y, Regenstein JM, Liu X, Zhou P. Gastrointestinal digestibility of micellar casein dispersions: Effects of caprine vs bovine origin, and partial colloidal calcium depletion using in vitro digestion models for the adults and elderly. Food Chem 2023; 416:135865. [PMID: 36905711 DOI: 10.1016/j.foodchem.2023.135865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
In vitro coagulation and digestion of caprine and bovine micellar casein concentrate (MCC) with or without partial colloidal calcium depletion (deCa) were studied under simulated adult and elderly conditions. Gastric clots were smaller and looser for caprine than bovine MCC, and were further looser with deCa and under elderly condition for both caprine and bovine MCC. Casein hydrolysis and concomitant formation of large peptides was faster for caprine than bovine MCC, and with deCa and under adult condition for caprine and bovine MCC. Formation of free amino groups and small peptides were faster for caprine MCC, and with deCa and under adult condition. Upon intestinal digestion, proteolysis occurred rapidly, and was faster under adult condition, but showed less differences with increasing digestion between caprine and bovine MCC, and with and without deCa. These results suggested weakened coagulation and greater digestibility for caprine MCC and MCC with deCa under both conditions.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Dasong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Yunqi Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Jiajie Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Keyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Xiumei Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Yacine Hemar
- Institute of Advanced Studies, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
3
|
The self-association properties of partially dephosphorylated bovine beta-casein. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Rodríguez-Vázquez R, Mouzo D, Zapata C. Phosphoproteome Analysis Using Two-Dimensional Electrophoresis Coupled with Chemical Dephosphorylation. Foods 2022; 11:3119. [PMID: 36230195 PMCID: PMC9562008 DOI: 10.3390/foods11193119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022] Open
Abstract
Protein phosphorylation is a reversible post-translational modification (PTM) with major regulatory roles in many cellular processes. However, the analysis of phosphoproteins remains the most challenging barrier in the prevailing proteome research. Recent technological advances in two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MS) have enabled the identification, characterization, and quantification of protein phosphorylation on a global scale. Most research on phosphoproteins with 2-DE has been conducted using phosphostains. Nevertheless, low-abundant and low-phosphorylated phosphoproteins are not necessarily detected using phosphostains and/or MS. In this study, we report a comparative analysis of 2-DE phosphoproteome profiles using Pro-Q Diamond phosphoprotein stain (Pro-Q DPS) and chemical dephosphorylation of proteins with HF-P from longissimus thoracis (LT) muscle samples of the Rubia Gallega cattle breed. We found statistically significant differences in the number of identified phosphoproteins between methods. More specifically, we found a three-fold increase in phosphoprotein detection with the HF-P method. Unlike Pro-Q DPS, phosphoprotein spots with low volume and phosphorylation rate were identified by HF-P technique. This is the first approach to assess meat phosphoproteome maps using HF-P at a global scale. The results open a new window for 2-DE gel-based phosphoproteome analysis.
Collapse
Affiliation(s)
- Raquel Rodríguez-Vázquez
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | | | | |
Collapse
|
5
|
Jiang H, Gallier S, Feng L, Han J, Liu W. Development of the digestive system in early infancy and nutritional management of digestive problems in breastfed and formula-fed infants. Food Funct 2022; 13:1062-1077. [DOI: 10.1039/d1fo03223b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food digestion and absorption in infants are closely related to early growth and long-term health. Human milk and infant formula are the main food sources for 0-6 month-old infants. Due...
Collapse
|
6
|
Ma Y, Hou Y, Xie K, Zhang L, Zhou P. Digestive differences in immunoglobulin G and lactoferrin among human, bovine, and caprine milk following in vitro digestion. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Ma Y, Hou Y, Han B, Xie K, Zhang L, Zhou P. Peptidome comparison following gastrointestinal digesta of bovine versus caprine milk serum. J Dairy Sci 2020; 104:47-60. [PMID: 33162096 DOI: 10.3168/jds.2020-18471] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022]
Abstract
Infant formula is used as a supplement for newborns. Although bovine milk-based infant formulas dominate the market, caprine milk-based infant formula has attracted increasing attention because of its lower allergenicity. This study compared the digestive peptidome of bovine and caprine milk serum proteins by using in vitro infant simulating conditions. The result showed that the degradation pattern of milk proteins was similar, whereas the digestive rates of milk proteins differed between bovine and caprine milks. Several proteins, such as α-lactalbumin (LALBA), β-lactoglobulin (LGB), serum amyloid A protein (SAA1), glycosylation-dependent cell adhesion molecule 1 (GLYCAM1), and lactotransferrin (LTF), released more peptides during digestion of caprine milk serum than during digestion of bovine milk serum; however, more peptides derived from αS1-casein (CSN1S1) were found in bovine digesta. In addition, antimicrobial-related peptides were mostly only found in caprine intestinal digesta. The results of this study may be useful in understanding the digestion characteristics of milk serum proteins and providing guidance on the improvement of infant formula.
Collapse
Affiliation(s)
- Ying Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha 410011, China
| | - Binsong Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kui Xie
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha 410011, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Lallès JP. Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutr Rev 2020; 77:710-724. [PMID: 31086953 DOI: 10.1093/nutrit/nuz015] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, much new data on intestinal alkaline phosphatase (IAP) have been published, and major breakthroughs have been disclosed. The aim of the present review is to critically analyze the publications released over the last 5 years. These breakthroughs include, for example, the direct implication of IAP in intestinal tight junction integrity and barrier function maintenance; chronic intestinal challenge with low concentrations of Salmonella generating long-lasting depletion of IAP and increased susceptibility to inflammation; the suggestion that genetic mutations in the IAP gene in humans contribute to some forms of chronic inflammatory diseases and loss of functional IAP along the gut and in stools; stool IAP as an early biomarker of incipient diabetes in humans; and omega-3 fatty acids as direct inducers of IAP in intestinal tissue. Many recent papers have also explored the prophylactic and therapeutic potential of IAP and other alkaline phosphatase (AP) isoforms in various experimental settings and diseases. Remarkably, nearly all data confirm the potent anti-inflammatory properties of (I)AP and the negative consequences of its inhibition on health. A simplified model of the body AP system integrating the IAP compartment is provided. Finally, the list of nutrients and food components stimulating IAP has continued to grow, thus emphasizing nutrition as a potent lever for limiting inflammation.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France, and the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| |
Collapse
|
9
|
Tian M, Han J, Ye A, Liu W, Xu X, Yao Y, Li K, Kong Y, Wei F, Zhou W. Structural characterization and biological fate of lactoferrin-loaded liposomes during simulated infant digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2677-2684. [PMID: 30338536 DOI: 10.1002/jsfa.9435] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/15/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Limited information is concerned on the structure changes of liposomal delivery system under infant conditions. Positively charged lactoferrin (LF)-loaded liposomes, with the entrapment efficiency (EE) of 52.3 ± 6.3%, were prepared from soybean-derived phospholipids using a thin-layer dispersion method. The structure changes and digestibility of LF-loaded liposomes under infant conditions, including simulated gastric fluid (SGF) and simulated small intestinal fluid (SIF), were characterized in terms of the average particle size, zeta potential, turbidity, fourier transform infrared, transmission electron microscopy, lipolysis and protein hydrolysis. RESULTS This study showed that the functional groups, favorable membrane structure and the EE of liposomes were slightly changed as a function of time when the liposome digested under SGF conditions. However, the intact bilayer structures were damaged and the EE of LF-loaded liposomes decreased to 28.5% after digestion in infant SIF. CONCLUSION These results suggested that liposomal membrane could prevent the gastric degradation and the structure of liposomes was not completely destroyed with a low concentration of pancreatin and bile salts under infant conditions. Present study provided information on the insight into the characteristics of liposomes during infant gastrointestinal digestion, which was useful for the development of microcapsule systems in infant diet. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengmeng Tian
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Aiqian Ye
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Weilin Liu
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiankang Xu
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yixin Yao
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Kexuan Li
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Youyu Kong
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Fuqiang Wei
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wei Zhou
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture, Zhanjiang, China
| |
Collapse
|
10
|
Membrane-based fractionation, enzymatic dephosphorylation, and gastrointestinal digestibility of β-casein enriched serum protein ingredients. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Power OM, Fenelon MA, O'Mahony JA, McCarthy NA. Dephosphorylation of caseins in milk protein concentrate alters their interactions with sodium hexametaphosphate. Food Chem 2019; 271:136-141. [DOI: 10.1016/j.foodchem.2018.07.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 11/26/2022]
|
12
|
Gan J, Bornhorst GM, Henrick BM, German JB. Protein Digestion of Baby Foods: Study Approaches and Implications for Infant Health. Mol Nutr Food Res 2018; 62:10.1002/mnfr.201700231. [PMID: 28891110 PMCID: PMC6435278 DOI: 10.1002/mnfr.201700231] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/12/2017] [Indexed: 12/24/2022]
Abstract
Protein digestion is critical for infants. Dissimilarities between infants and adults in food intake and digestive physiology lead to distinct patterns of proteolysis between individuals. However, such differences are not well represented in many studies on protein digestion of baby foods. The complex biological structures of baby foods and the physiology of the infant digestive system are key factors affecting proteolysis during the first two years of life. Well-controlled in vitro studies have demonstrated that varying digestion conditions alter the specificity, rate, and extent of proteolysis of baby foods. Nonetheless, these models do not completely replicate in vivo proteolysis or the complex biogeography of the gastrointestinal tract. Animal and clinical studies have revealed the fate of dietary proteins along the digestive tract and the overall health impact on subjects. Building comprehensive and annotated datasets from human infants will require innovative and standardized measurement. Now, more systematic evaluations of digestion are emerging to advance the knowledge and its translation as food design for effective diet and health management in infants.
Collapse
Affiliation(s)
- Junai Gan
- Department of Food Science and Technology, University of California Davis, USA
| | - Gail M. Bornhorst
- Department of Food Science and Technology, University of California Davis, USA
- Department of Biological and Agricultural Engineering, University of California Davis, USA
| | - Bethany M. Henrick
- Department of Food Science and Technology, University of California Davis, USA
- Foods for Health Institute, University of California Davis, USA
| | - J. Bruce German
- Department of Food Science and Technology, University of California Davis, USA
- Foods for Health Institute, University of California Davis, USA
| |
Collapse
|
13
|
Jeon JH, Yoo M, Jung TH, Jeon WM, Han KS. Evaluation of the Digestibility of Korean Hanwoo Beef Cuts Using the in vitro Physicochemical Upper Gastrointestinal System. Korean J Food Sci Anim Resour 2017; 37:682-689. [PMID: 29147091 PMCID: PMC5686326 DOI: 10.5851/kosfa.2017.37.5.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the digestibility of different Korean Hanwoo beef cuts using an in vitro digestion model, in vitro physicochemical upper gastrointestinal system (IPUGS). The four most commonly consumed cuts - tenderloin, sirloin, brisket and flank, and bottom round - were chosen for this study. Beef samples (75 g) were cooked and ingested into IPUGS, which was composed of mouth, esophagus, and stomach, thereby simulating the digestion conditions of humans. Digested samples were collected every 15 min for 4 h of simulation and their pH monitored. Samples were visualized under a scanning electron microscope (SEM) to examine changes in the smoothness of the surface after digestion. Analysis of the amino acid composition and molecular weight (MW) of peptides was performed using reverse-phase high performance liquid chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis, respectively. Following proteolysis by the gastric pepsin, beef proteins were digested into peptides. The amount of peptides with higher MW decreased over the course of digestion. SEM results revealed that the surface of the digested samples became visibly smoother. Total indispensable and dispensable amino acids were the highest for the bottom round cut prior to digestion simulation. However, the total amount of indispensable amino acids were maximum for the tenderloin cut after digestion. These results may provide guidelines for the elderly population to choose easily digestible meat cuts and products to improve their nutritional and health status.
Collapse
Affiliation(s)
- Ji-Hye Jeon
- Biomaterials Research Institute, Sahmyook University, Seoul 01792, Korea
| | - Michelle Yoo
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Tae-Hwan Jung
- Biomaterials Research Institute, Sahmyook University, Seoul 01792, Korea
| | - Woo-Min Jeon
- Department of Animal Biotechnology and Resource, Sahmyook University, Seoul 01792, Korea
| | - Kyoung-Sik Han
- Biomaterials Research Institute, Sahmyook University, Seoul 01792, Korea.,Department of Animal Biotechnology and Resource, Sahmyook University, Seoul 01792, Korea
| |
Collapse
|
14
|
|
15
|
Shani-Levi C, Alvito P, Andrés A, Assunção R, Barberá R, Blanquet-Diot S, Bourlieu C, Brodkorb A, Cilla A, Deglaire A, Denis S, Dupont D, Heredia A, Karakaya S, Giosafatto CVL, Mariniello L, Martins C, Ménard O, El SN, Vegarud GE, Ulleberg E, Lesmes U. Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.10.017] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Wada Y, Phinney BS, Weber D, Lönnerdal B. In vivo digestomics of milk proteins in human milk and infant formula using a suckling rat pup model. Peptides 2017; 88:18-31. [PMID: 27979737 DOI: 10.1016/j.peptides.2016.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/09/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022]
Abstract
Human milk is the optimal mode of infant feeding for the first several months of life, and infant formulas serve as an alternative when breast-feeding is not possible. Milk proteins have a balanced amino acid composition and some of them provide beneficial bioactivities in their intact forms. They also encrypt a variety of bioactive peptides, possibly contributing to infant health and growth. However, there is limited knowledge of how milk proteins are digested in the gastrointestinal tract and bioactive peptides are released in infants. A peptidomic analysis was conducted to identify peptides released from milk proteins in human milk and infant formula, using a suckling rat pup model. Among the major milk proteins targeted, α-lactalbumin and β-casein in human milk, and β-lactoglobulin and β-casein in infant formula were the main sources of peptides, and these peptides covered large parts of the parental proteins' sequences. Release of peptides was concentrated to specific regions, such as residues 70-92 of β-casein in human milk, residues 39-55 of β-lactoglobulin in infant formula, and residues 57-96 and 145-161 of β-CN in infant formula, where resistance to gastrointestinal digestion was suggested. In the context of bioactive peptides, release of fragments containing known bioactive peptides was confirmed, such as β-CN-derived opioid and antihypertensive peptides. It is therefore likely that these fragments are of biological significance in neonatal health and development.
Collapse
Affiliation(s)
- Yasuaki Wada
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, USA; Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa-Pref. 252-8583, Japan
| | - Brett S Phinney
- Genome Center Proteomics Core Facility, University of California, Davis, 451 E. Health Sciences Dr., Davis, CA 95616, USA
| | - Darren Weber
- Genome Center Proteomics Core Facility, University of California, Davis, 451 E. Health Sciences Dr., Davis, CA 95616, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|