1
|
Yang Z, Yan J, Xie J. Effect of vacuum and modified atmosphere packaging on moisture state, quality, and microbial communities of grouper (Epinephelus coioides) fillets during cold storage. Food Res Int 2023; 173:113340. [PMID: 37803649 DOI: 10.1016/j.foodres.2023.113340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 10/08/2023]
Abstract
The study aimed to assess the impact of different packaging methods on the moisture state, quality, and microbial composition of grouper fillets. The grouper fillets were packaged under the following four conditions: vacuum packaging (VP), 70% CO2/30% N2 (MAP1); 60% CO2/30% N2/10% O2 (MAP2); 40% CO2/30% N2/30% O2 (MAP3). Physicochemical and microbiological parameters were evaluated during 21 days of cold storage. The result demonstrated that MAP was effective in inhibiting microbial growth and accumulation of total volatile basic nitrogen (TVB-N), while also maintaining the water-holding capacity (WHC) of grouper fillets. Additionally, MAP1 effectively inhibited lipid and protein oxidation and protected the secondary structure of myofibrils compared to MAP2 and MAP3, with MAP1 samples having the lowest thiobarbituric acid reactive substances (TBARS) value (0.009-0.04 MDA/kg) and carbonyl content (0.20-0.26 μmol/g) and the highest sulfhydryl content (0.25-0.49 μmol/g) during cold storage. The results of high-throughput sequencing revealed that the presence of oxygen in the packaging system significantly influenced bacterial succession. Over time, Carnobacterium gradually became the dominant genera of fillets stored in MAP, and the presence of oxygen in MAP2 and MAP3 accelerated this transition by 9 days, compared to MAP1. In contrast, Enterobacteriaceae and Carnobacterium were the main dominant genera in VP. Remarkably, Enterobacteriaceae were virtually absent in MAP2 and MAP3 during storage, suggesting that the presence of oxygen exerted a significant inhibitory effect on Enterobacteriaceae. This study provides valuable insights into the application of MAP in the preservation of grouper fillets.
Collapse
Affiliation(s)
- Zhijun Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Yan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Ma Y, Chen S, Liu P, He Y, Chen F, Cai Y, Yang X. Gelatin Improves the Performance of Oregano Essential Oil Nanoparticle Composite Films-Application to the Preservation of Mullet. Foods 2023; 12:2542. [PMID: 37444279 DOI: 10.3390/foods12132542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, the addition of oregano oil chitosan nanoparticles (OEO-CSNPs) was conducted to enhance the comprehensive properties of gelatin films (GA), and the optimal addition ratio of nanoparticles was determined for its application in the preservation of mullet. Oregano oil chitosan nanoparticles were organically combined with gelatin at different concentrations (0%, 2%, 4%, 6% and 8%) to obtain oregano oil-chitosan nanoparticle-GA-based composite films (G/OEO-CSNPs), and thereafter G/OEO-CSNPs were characterized and investigated for their preservative effects on mullet. Subsequent analysis revealed that OEO-CSNPs were uniformly dispersed in the GA matrix, and that G/OEO-CSNPs had significantly improved mechanical ability, UV-visible light blocking performance and thermal stability. Furthermore, the nanoparticles exhibited excellent antioxidant and antibacterial properties, and they improved the films' suitability as edible packaging. The attributes of the G/OEO-CSNPs were optimized, the films had the strongest radical scavenging and lowest water solubility, and electron microscopy also showed nanoparticle penetration into the polymer when the concentration of OEO-CSNPs was 6% (thickness = 0.092 ± 0.001, TS = 47.62 ± 0.37, E = 4.06 ± 0.17, water solubility = 48.00 ± 1.11). Furthermore, the GA-based composite film containing 6% OEO-CSNPs was able to inhibit microbial growth, slow fat decomposition and protein oxidation, reduce endogenous enzyme activity, and delay the spoilage of mullet during the refrigeration process, all of which indicate its excellent potential for meat preservation application.
Collapse
Affiliation(s)
- Yuan Ma
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Siqi Chen
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ping Liu
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yezheng He
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Fang Chen
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yifan Cai
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xianqin Yang
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
3
|
Jiang Q, Huang S, Ma J, Du Y, Shi W, Wang M, Wang X, Zhao Y. Insight into mechanism of quality changes in tilapia fillets during salting from physicochemical and microstructural perspectives. Food Chem X 2023; 17:100589. [PMID: 36845512 PMCID: PMC9944559 DOI: 10.1016/j.fochx.2023.100589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
The effects and mechanisms of salting on quality properties of tilapia fillets were investigated in the present study. Salting under high NaCl concentrations (12 % and 15 %) resulted in low water content and decreased yields, due to the salting-out effects and low pH. Water in fillets increased in the later stage of salting in 3 % and 6 % NaCl solutions (p < 0.05). The released proteins accumulated with increasing time (p < 0.05). The TBARS value increased from 0.01 to 0.20 mg/kg after 10 h in 15 % NaCl solution (p < 0.05). The quality changes were mainly correlated to the shrinking or swelling of myofibers, extracellular spaces, and existential state of muscle proteins. In consideration of fish quality and increasing call for low sodium intake, it was recommended to prepare fillets below 9 % NaCl with short times. The finding provided instructions to obtain target quality properties from tilapia by controlling salting conditions.
Collapse
Affiliation(s)
- Qingqing Jiang
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China,Hunan Xiweijia Biotechnology Co. Ltd, Yueyang 414000, China
| | - Shiyu Huang
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Jianrong Ma
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Yufan Du
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518000, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China,Corresponding author.
| |
Collapse
|
4
|
Hassoun A, Anusha Siddiqui S, Smaoui S, Ucak İ, Arshad RN, Bhat ZF, Bhat HF, Carpena M, Prieto MA, Aït-Kaddour A, Pereira JA, Zacometti C, Tata A, Ibrahim SA, Ozogul F, Camara JS. Emerging Technological Advances in Improving the Safety of Muscle Foods: Framing in the Context of the Food Revolution 4.0. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2149776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdo Hassoun
- Univ. Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - İ̇lknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUASTof Jammu, Jammu, Kashmir, India
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUASTof Kashmir, Kashmir, India
| | - María Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, Bragança, Portugal
| | | | - Jorge A.M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Carmela Zacometti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Alessandra Tata
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - José S. Camara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
5
|
Ghnimi H, Karoui R, Attia H, Chénè C, Ennouri M. Use of front face fluorescence spectroscopy coupled with multivariate data analysis for monitoring biscuits' quality during aging. Food Sci Nutr 2022; 10:4380-4393. [PMID: 36514760 PMCID: PMC9731564 DOI: 10.1002/fsn3.3032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 12/16/2022] Open
Abstract
In this study, the potentiality of front face fluorescence spectroscopy (FFFS) for the evaluation of the quality of biscuits manufactured with butylated hydroxytoluene and pomegranate peel extract during aging was investigated. By using the principal component analysis, vitamin A and tryptophan spectra allowed a clear discrimination between biscuit samples according to the nature of antioxidants, while fluorescent Maillard reaction products spectra showed clear differentiation between samples according to the storage time. Clear differentiation between biscuits according to the used antioxidants and storage time was achieved by using common components and specific weights analysis. Using partial least-squares regression, excellent prediction of water activity (R 2 = 0.95), and L* values (R 2 = 0.92), and approximate prediction of hardness (R 2 = 0.78), b* values (R 2 = 0.74), and moisture content (R 2 = 0.74) were shown. However, the FFFS failed to predict a* values, primary and secondary oxidation products (R 2 < 0.6).
Collapse
Affiliation(s)
- Hayet Ghnimi
- University Artois,University Lille, University Littoral Côte d'Opale, University Picardie Jules Verne, University de Liège, INRAE, Junia, UMR‐ T 1158, BioEcoAgroLensFrance
- University Monastir, Higher Institute of Biotechnology of MonastirMonastirTunisia
- University Sfax, LR11ES45, National Engineering School of SfaxSfaxTunisia
| | - Romdhane Karoui
- University Artois,University Lille, University Littoral Côte d'Opale, University Picardie Jules Verne, University de Liège, INRAE, Junia, UMR‐ T 1158, BioEcoAgroLensFrance
| | - Hamadi Attia
- University Sfax, LR11ES45, National Engineering School of SfaxSfaxTunisia
| | | | - Monia Ennouri
- University Sfax, LR16IO01, Olive Tree InstituteSfaxTunisia
| |
Collapse
|
6
|
Wang S, Liu Z, Zhao M, Gao C, Wang J, Li C, Dong X, Liu Z, Zhou D. Chitosan-wampee seed essential oil composite film combined with cold plasma for refrigerated storage with modified atmosphere packaging: A promising technology for quality preservation of golden pompano fillets. Int J Biol Macromol 2022; 224:1266-1275. [DOI: 10.1016/j.ijbiomac.2022.10.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/03/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
|
7
|
Wang H, Pei Z, Zheng Q, Wen P, Li C, Xu Y, Xue C, Wang X, Shen X. Effect of Frying on the Quality and Protein Degradation in Mugil cephalus: A Comparative Study of Vacuum and Atmospheric Frying. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2102954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Huibo Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhisheng Pei
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
| | - Qianwen Zheng
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Pan Wen
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yunsheng Xu
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Changfeng Xue
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xiaoqin Wang
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
| | - Xuanri Shen
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
8
|
Çiçek S, Özoğul F. Nanotechnology-based preservation approaches for aquatic food products: A review with the current knowledge. Crit Rev Food Sci Nutr 2022:1-24. [DOI: 10.1080/10408398.2022.2096563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Semra Çiçek
- Department of Agriculture Biotechnology, Ataturk University, Erzurum, Turkey
| | - Fatih Özoğul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
9
|
Emerging Approach for Fish Freshness Evaluation: Principle, Application and Challenges. Foods 2022; 11:foods11131897. [PMID: 35804712 PMCID: PMC9265959 DOI: 10.3390/foods11131897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Affected by micro-organisms and endogenous enzymes, fish are highly perishable during storage, processing and transportation. Efficient evaluation of fish freshness to ensure consumer safety and reduce raw material losses has received an increasing amount of attention. Several of the conventional freshness assessment techniques have plenty of shortcomings, such as being destructive, time-consuming and laborious. Recently, various sensors and spectroscopic techniques have shown great potential due to rapid analysis, low sample preparation and cost-effectiveness, and some methods are especially non-destructive and suitable for online or large-scale operations. Non-destructive techniques typically respond to characteristic substances produced by fish during spoilage without destroying the sample. In this review, we summarize, in detail, the principles and applications of emerging approaches for assessing fish freshness including visual indicators derived from intelligent packaging, active sensors, nuclear magnetic resonance (NMR) and optical spectroscopic techniques. Recent developments in emerging technologies have demonstrated their advantages in detecting fish freshness, but some challenges remain in popularization, optimizing sensor selectivity and sensitivity, and the development of algorithms and chemometrics in spectroscopic techniques.
Collapse
|
10
|
Li X, Wang B, Xie T, Stankovski S, Hu J. Research progress on nondestructive testing technology for aquatic products freshness. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xinxing Li
- China Agricultural University Beijing China
- Nanchang Institute of Technology Nanchang China
| | - Biao Wang
- China Agricultural University Beijing China
| | | | | | - Jinyou Hu
- China Agricultural University Beijing China
| |
Collapse
|
11
|
Ye B, Chen J, Fu L, Wang Y. Application of nondestructive evaluation (NDE) technologies throughout cold chain logistics of seafood: Classification, innovations and research trends. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Vilkova D, Chèné C, Kondratenko E, Karoui R. A comprehensive review on the assessment of the quality and authenticity of the sturgeon species by different analytical techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
3D front face fluorescence spectroscopy as a tool for monitoring the oxidation level of edible vegetable oil during storage at 60 °C. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Classification of sea bream (Sparus aurata) fillets subjected to freeze-thaw cycles by using front-face fluorescence spectroscopy. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Vilkova D, Kondratenko E, Chèné C, Karoui R. Effect of multiple freeze–thaw cycles on the quality of Russian sturgeon (Acipenser gueldenstaedtii) determined by traditional and emerging techniques. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Recent Developments in Seafood Packaging Technologies. Foods 2021; 10:foods10050940. [PMID: 33923022 PMCID: PMC8145365 DOI: 10.3390/foods10050940] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Seafood products are highly perishable, owing to their high water activity, close to neutral pH, and high content of unsaturated lipids and non-protein nitrogenous compounds. Thus, such products require immediate processing and/or packaging to retain their safety and quality. At the same time, consumers prefer fresh, minimally processed seafood products that maintain their initial quality properties. The present article aims to review the literature over the past decade on: (i) innovative, individual packaging technologies applied to extend the shelf life of fish and fishery products, (ii) the most common combinations of the above technologies applied as multiple hurdles to maximize the shelf life of seafood products, and (iii) the respective food packaging legislation. Packaging technologies covered include: Modified atmosphere packaging; vacuum packaging; vacuum skin packaging; active food packaging, including oxygen scavengers; carbon dioxide emitters; moisture regulators; antioxidant and antimicrobial packaging; intelligent packaging, including freshness indicators; time–temperature indicators and leakage indicators; retort pouch processing and edible films; coatings/biodegradable packaging, used individually or in combination for maximum preservation potential.
Collapse
|
17
|
Chitosan-sodium alginate bioactive coatings containing ε-polylysine combined with high CO2 modified atmosphere packaging inhibit myofibril oxidation and degradation of farmed pufferfish (Takifugu obscurus) during cold storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110652] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Zaroual H, Chénè C, El Hadrami EM, Karoui R. Application of new emerging techniques in combination with classical methods for the determination of the quality and authenticity of olive oil: a review. Crit Rev Food Sci Nutr 2021; 62:4526-4549. [DOI: 10.1080/10408398.2021.1876624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hicham Zaroual
- Université d'Artois, UMRT 1158 BioEcoAgro, ICV-Institut Charles VIOLLETTE, Lens, France
- Sidi Mohamed Ben Abdellah University, Applied Organic Chemistry Laboratory, Fez, Morocco
| | | | - El Mestafa El Hadrami
- Sidi Mohamed Ben Abdellah University, Applied Organic Chemistry Laboratory, Fez, Morocco
| | - Romdhane Karoui
- Université d'Artois, UMRT 1158 BioEcoAgro, ICV-Institut Charles VIOLLETTE, Lens, France
- INRA, USC 1281,Lille, France
- Yncréa, Lille, France
- University of the Littoral Opal Coast (ULCO), Boulogne sur Mer, France
- University of Lille, Lille, France
| |
Collapse
|
19
|
The influence of endogenous cathepsin in different subcellular fractions on the quality deterioration of Northern pike ( Esox lucius) fillets during refrigeration and partial freezing storage. Food Sci Biotechnol 2020; 29:1331-1341. [PMID: 32999740 DOI: 10.1007/s10068-020-00781-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to investigate the endogenous cathepsin activity in each subcellular fraction and the effect of this activity on myofibrillar protein and texture during refrigeration and partial freezing storage of northern pike (Esox lucius) fillets. The results showed that fillets stored under the refrigerated condition were more susceptible to oxidation than partial freezing. Endogenous cathepsin activity indicated that partial freezing destroys the integrity of lysosomes more effectively than refrigeration and inhibits the increase in cathepsin B and B + L in lysosomes. The activity of cathepsin B and B + L in lysosomes, mitochondria and myofibrils under the partial freezing conditions was always lower than that under refrigeration. Texture analysis showed that refrigeration had a negative impact on hardness and springiness. In conclusion, the cathepsin activity in each subcellular fraction was effectively inhibited and better textural characteristics were obtained with partial freezing than refrigeration.
Collapse
|
20
|
Monitoring Thermal and Non-Thermal Treatments during Processing of Muscle Foods: A Comprehensive Review of Recent Technological Advances. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Muscle food products play a vital role in human nutrition due to their sensory quality and high nutritional value. One well-known challenge of such products is the high perishability and limited shelf life unless suitable preservation or processing techniques are applied. Thermal processing is one of the well-established treatments that has been most commonly used in order to prepare food and ensure its safety. However, the application of inappropriate or severe thermal treatments may lead to undesirable changes in the sensory and nutritional quality of heat-processed products, and especially so for foods that are sensitive to thermal treatments, such as fish and meat and their products. In recent years, novel thermal treatments (e.g., ohmic heating, microwave) and non-thermal processing (e.g., high pressure, cold plasma) have emerged and proved to cause less damage to the quality of treated products than do conventional techniques. Several traditional assessment approaches have been extensively applied in order to evaluate and monitor changes in quality resulting from the use of thermal and non-thermal processing methods. Recent advances, nonetheless, have shown tremendous potential of various emerging analytical methods. Among these, spectroscopic techniques have received considerable attention due to many favorable features compared to conventional analysis methods. This review paper will provide an updated overview of both processing (thermal and non-thermal) and analytical techniques (traditional methods and spectroscopic ones). The opportunities and limitations will be discussed and possible directions for future research studies and applications will be suggested.
Collapse
|
21
|
Hassoun A, Måge I, Schmidt WF, Temiz HT, Li L, Kim HY, Nilsen H, Biancolillo A, Aït-Kaddour A, Sikorski M, Sikorska E, Grassi S, Cozzolino D. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020; 9:E1069. [PMID: 32781687 PMCID: PMC7466239 DOI: 10.3390/foods9081069] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022] Open
Abstract
Animal origin food products, including fish and seafood, meat and poultry, milk and dairy foods, and other related products play significant roles in human nutrition. However, fraud in this food sector frequently occurs, leading to negative economic impacts on consumers and potential risks to public health and the environment. Therefore, the development of analytical techniques that can rapidly detect fraud and verify the authenticity of such products is of paramount importance. Traditionally, a wide variety of targeted approaches, such as chemical, chromatographic, molecular, and protein-based techniques, among others, have been frequently used to identify animal species, production methods, provenance, and processing of food products. Although these conventional methods are accurate and reliable, they are destructive, time-consuming, and can only be employed at the laboratory scale. On the contrary, alternative methods based mainly on spectroscopy have emerged in recent years as invaluable tools to overcome most of the limitations associated with traditional measurements. The number of scientific studies reporting on various authenticity issues investigated by vibrational spectroscopy, nuclear magnetic resonance, and fluorescence spectroscopy has increased substantially over the past few years, indicating the tremendous potential of these techniques in the fight against food fraud. It is the aim of the present manuscript to review the state-of-the-art research advances since 2015 regarding the use of analytical methods applied to detect fraud in food products of animal origin, with particular attention paid to spectroscopic measurements coupled with chemometric analysis. The opportunities and challenges surrounding the use of spectroscopic techniques and possible future directions will also be discussed.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Ingrid Måge
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Walter F. Schmidt
- United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705-2325, USA;
| | - Havva Tümay Temiz
- Department of Food Engineering, Bingol University, 12000 Bingol, Turkey;
| | - Li Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Heidi Nilsen
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 Via Vetoio, Coppito, L’Aquila, Italy;
| | | | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Ewa Sikorska
- Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy;
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia;
| |
Collapse
|
22
|
Investigation of antimicrobial properties of sage essential oil and its nanoemulsion as antimicrobial agent. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109669] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Chen Z, Feng A. The quality evaluation method of tilapia fillets stored at 3 and −2°C based on fractal dimension changes. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Zheng Chen
- College of Food Science and TechnologyHainan University Haikou City China
| | - Aiguo Feng
- College of Food Science and TechnologyHainan University Haikou City China
| |
Collapse
|
24
|
Effectiveness of Sodium Alginate Active Coatings Containing Bacteriocin EFL4 for the Quality Improvement of Ready-to-Eat Fresh Salmon Fillets during Cold Storage. COATINGS 2020. [DOI: 10.3390/coatings10060506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study developed a biopreservation method for ready-to-eat (RTE) fresh salmon fillets based on the use of bacteriocin EFL4 produced by bacteriocinogenic Enterococcus faecalis L04 previously isolated from Chinese sea bass (Lateolabrax maculatus). Bacteriocin EFL4 has the ability to inhibit the growth of several fish-spoilage bacteria and foodborne pathogens, including Staphylococcus aureus, Escherichia coli, Shewanella putrefaciens, Pseudomonas fluorescens and Listeria monocytogenes, and the minimal inhibitory concentration (MIC) for S. putrefaciens was 0.32 μg/mL. The biopreservation potential of bacteriocin EFL4 for RTE fresh salmon fillets during cold storage at 4 °C was tested for the first time on a laboratory scale. Microbiological and physicochemical properties, as well as organoleptic evaluations, have been done during the biopreservation trials. The results show that RTE fresh salmon fillets treated with 0.64 μg/mL bacteriocin EFL4 could significantly (p < 0.05) reduce the total viable count (TVC), total volatile basic nitrogen (TVB-N), K value and maintain the quality of RTE fresh salmon fillets during 8-day storage on the basis of the organoleptic evaluation results.
Collapse
|
25
|
Boughattas F, Vilkova D, Kondratenko E, Karoui R. Targeted and untargeted techniques coupled with chemometric tools for the evaluation of sturgeon (Acipenser gueldenstaedtii) freshness during storage at 4 °C. Food Chem 2020; 312:126000. [DOI: 10.1016/j.foodchem.2019.126000] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 10/26/2019] [Accepted: 12/01/2019] [Indexed: 11/17/2022]
|
26
|
Hassoun A, Cropotova J, Rustad T, Heia K, Lindberg SK, Nilsen H. Use of Spectroscopic Techniques for a Rapid and Non-Destructive Monitoring of Thermal Treatments and Storage Time of Sous-Vide Cooked Cod Fillets. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2410. [PMID: 32340297 PMCID: PMC7219502 DOI: 10.3390/s20082410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022]
Abstract
In this work, the potential of spectroscopic techniques was studied to investigate heat-induced changes occurring during the application of thermal treatments on cod (Gadus morhua L.) fillets. Vacuum-packed samples were thermally treated in a water bath at 50, 60, 70 and 80 °C for 5 and 10 min, and further stored for one, four, and eight days at 4 ± 1 °C before analysis. Several traditional (including cooking loss, drip loss, texture, protein solubility, protein oxidation, and color) and spectroscopic (fluorescence and diffuse reflectance hyperspectral imaging) measurements were conducted on the same samples. The results showed a decrease in fluorescence intensity with increasing cooking temperature and storage time, while the impact of cooking time was only noticeable at low temperatures. Diffuse reflectance data exhibited a decrease in absorbance, possibly as a result of protein denaturation and increased scattering at higher cooking temperatures. Both fluorescence and diffuse reflectance data were highly correlated with color parameters, whereas moderate correlations were observed with most other traditional parameters. Support vector machine models performed better than partial least square ones for both classification of cod samples cooked at different temperatures and in prediction of the cooking temperature. The best classification result was obtained on fluorescence data, achieving an accuracy of 92.5%, while the prediction models resulted in a root mean square error of prediction of cooking temperature lower than 5 °C. Overall, the classification and prediction models showed good results, indicating that spectroscopic techniques, especially fluorescence hyperspectral imaging, have a high potential for monitoring thermal treatments in cod fillets.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (K.H.); (S.-K.L.); (H.N.)
| | - Janna Cropotova
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7941 Trondheim, Norway; (J.C.); (T.R.)
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7941 Trondheim, Norway; (J.C.); (T.R.)
| | - Karsten Heia
- Nofima, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (K.H.); (S.-K.L.); (H.N.)
| | - Stein-Kato Lindberg
- Nofima, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (K.H.); (S.-K.L.); (H.N.)
| | - Heidi Nilsen
- Nofima, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (K.H.); (S.-K.L.); (H.N.)
| |
Collapse
|
27
|
Hassoun A, Heia K, Lindberg SK, Nilsen H. Performance of Fluorescence and Diffuse Reflectance Hyperspectral Imaging for Characterization of Lutefisk: A Traditional Norwegian Fish Dish. Molecules 2020; 25:molecules25051191. [PMID: 32155769 PMCID: PMC7179441 DOI: 10.3390/molecules25051191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 11/16/2022] Open
Abstract
Lutefisk is a traditional Norwegian fish dish made from dried fish, such as cod or other whitefish. In Norway and other Nordic countries, lutefisk is considered among the most popular dishes served during Christmas or other festive occasions. However, to date, little attention has been paid to this product, and available research on the quality, processing, and chemistry of lutefisk is still limited. The quality of this very delicate product, with a high pH value, depends on many factors, such as the initial quality of raw materials (stockfish), the quantity of lye used during the preparation process of lutefisk, and time during soaking in the lye and water, among others, making it challenging to both optimize processing and monitor the quality of lutefisk. In this study, four commercially available lutefisk brands (labelled as A, B, C, and D) were characterized using two online spectroscopic techniques, namely fluorescence and diffuse reflectance hyperspectral imaging, implemented on conveyor belts to mimic industrial applications. The samples were also analyzed by the use of an offline laboratory instrument based on visible/near infrared diffuse reflectance spectroscopy. Three traditional measurements, including texture, water content, and pH, were also conducted on the same samples. Supervised classification PLS-DA models were built with each dataset and relationships between the spectroscopic measurements and the traditional data were investigated using canonical correlations. The spectroscopic methods, especially fluorescence spectroscopy, demonstrated high performance for the discrimination between samples of the different brands, with high correlations between the spectral and traditional measurements. Although more validations of the results of this study are still required, these preliminary findings suggest that the destructive, laborious, and time-consuming traditional techniques can be replaced by rapid and nondestructive online measurements based on hyperspectral imaging used in fluorescence or diffuse reflectance mode.
Collapse
|
28
|
Li P, Chen Z, Tan M, Mei J, Xie J. Evaluation of weakly acidic electrolyzed water and modified atmosphere packaging on the shelf life and quality of farmed puffer fish (
Takifugu obscurus
) during cold storage. J Food Saf 2020. [DOI: 10.1111/jfs.12773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Peiyun Li
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Zhijie Chen
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Mingtang Tan
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| |
Collapse
|
29
|
Valbuena DC, Chacón SLO, Torregroza-Espinosa AC, Mahecha HS. Effect of vacuum pressure on Yamú fish (Brycon amazonicus) meat during cold storage. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.01219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract This study aimed to assess the cryoprotectant effect of vacuum packaging (35 and 45 kPa) on cold preserved (0 °C and -18 °C) fillets of Yamú (Brycon amazonicus), during 5 days of storage. We analyzed the physicochemical and microbiological changes in the fillets during storage time. Yamú’s water holding capacity, nitrogenated bases content (TVB-N) and texture (N) were affected (p ≤ 0.05) by time and temperature. Bacterial colonies in fillets did not represent a risk for human health after five days of storage. In conclusion, vacuum packing positively (p ≤ 0.05) reduces the effect of cold over Yamú fillets properties.
Collapse
|
30
|
Identification and quantification of tuna species in canned tunas with sunflower medium by means of a technique based on front face fluorescence spectroscopy (FFFS). Food Control 2019. [DOI: 10.1016/j.foodcont.2019.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Hassoun A, Sahar A, Lakhal L, Aït-Kaddour A. Fluorescence spectroscopy as a rapid and non-destructive method for monitoring quality and authenticity of fish and meat products: Impact of different preservation conditions. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Development of shelf life kinetic model for fresh rainbow trout ( Oncorhynchus mykiss) fillets stored under modified atmosphere packaging. Journal of Food Science and Technology 2019; 56:663-673. [PMID: 30906024 DOI: 10.1007/s13197-018-3521-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
The sensory, chemical (based on the thiobarbituric acid, total volatile basic nitrogen and trimethylamine), and microbial quality (based on the total viable count and lactic acid bacteria count) of the rainbow trout stored under modified atmosphere packaging (MAP) conditions was evaluated. Four different gas combinations, including P1 (80% CO2, 10% N2, 10% O2), P2 (60% CO2, 20% N2, 20% O2), P3 (60% CO2, 40% N2, 0% O2), and P4 (40% CO2, 30% N2, 30% O2), were used. Also, the fish packages were stored at four constant temperatures (including 0, 5, 10, and 15 °C) for 12 days. The absence of oxygen in P3 and high concentration of carbon dioxide in P1 extended the shelf life by delaying the chemical, microbial, and sensory spoilage. Over the storage time of trout fillets in MAP, the rate of chemical reactions significantly increased while the sensory scores decreased. Based on the Arrhenius kinetic modeling for the spoilage reactions of the sensory (total acceptance) and chemical (total volatile basic nitrogen) indices, the shelf life was extended for P3 and succeedingly, for P1 packaging.
Collapse
|
33
|
De Aguiar Saldanha Pinheiro AC, Urbinati E, Tappi S, Picone G, Patrignani F, Lanciotti R, Romani S, Rocculi P. The impact of gas mixtures of Argon and Nitrous oxide (N2O) on quality parameters of sardine (Sardina pilchardus) fillets during refrigerated storage. Food Res Int 2019; 115:268-275. [DOI: 10.1016/j.foodres.2018.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 11/28/2022]
|
34
|
Tsironi TN, Taoukis PS. Current Practice and Innovations in Fish Packaging. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2018. [DOI: 10.1080/10498850.2018.1532479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Theofania N. Tsironi
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Petros S. Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
35
|
Azcarate SM, de Araújo Gomes A, Muñoz de la Peña A, Goicoechea HC. Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Santos JDSL, Mársico ET, Cinquini MA, Silva FAD, Conte Junior CA, Monteiro MLG. Physicochemical and sensory characterization of three different portions from commercial pirarucu (Arapaima gigas) fillets. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2018. [DOI: 10.1590/1981-6723.17817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The objective of the present study was to investigate the relevant physicochemical and sensory parameters of three different Arapaima gigas muscle portions. Cranial, medial and caudal portions were analysed regarding their proximate compositions, instrumental colour and texture parameters, and sensory evaluations. The medial and caudal portions exhibited the greatest (P < 0.05) lipid contents and energy values and the lowest (P < 0.05) moisture and carbohydrate levels. The protein contents were similar (P > 0.05) for the different muscle portions. Before cooking, the medial and caudal portions displayed the greatest (P < 0.05) values for lightness, redness, hardness and chewiness. After cooking, no differences ( P > 0.05) were observed between the different muscle portions for the instrumental colour parameters, while the medial portion exhibited lower (P < 0.05) values for hardness and chewiness as compared to the caudal portion. The cranial portion received the lowest (P < 0.05) scores for flavour and overall liking. Thus the Arapaima gigas medial and caudal muscle portions presented the greatest potentials to satisfy the consumer requirements.
Collapse
|
37
|
Sun Y, Ma L, Ma M, Zheng H, Zhang X, Cai L, Li J, Zhang Y. Texture characteristics of chilled prepared Mandarin fish (Siniperca chuatsi) during storage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1451343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yi Sun
- College of Food Science, Southwest University, Chongqing, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, China
| | - Mingsi Ma
- College of Food Science, Southwest University, Chongqing, China
| | - Hong Zheng
- College of Food Science, Southwest University, Chongqing, China
| | - Xiaojie Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Luyun Cai
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, Jinzhou, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
38
|
Xuan XT, Cui Y, Lin XD, Yu JF, Liao XJ, Ling JG, Shang HT. Impact of High Hydrostatic Pressure on the Shelling Efficacy, Physicochemical Properties, and Microstructure of Fresh Razor Clam (Sinonovacula constricta). J Food Sci 2018; 83:284-293. [PMID: 29355952 DOI: 10.1111/1750-3841.14032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/11/2017] [Accepted: 12/09/2017] [Indexed: 11/26/2022]
Abstract
The effects of high hydrostatic pressure (HHP) treatments (200, 300, and 400 MPa for 1, 3, 5 and 10 min) on the shelling efficacy (the rate of shelling, the rate of integrity and yield of razor clam meat) and the physicochemical (drip loss, water-holding capacity, pH, conductivity, lipid oxidation, Ca2+ -ATPase activity, myofibrillar protein content), microbiological (total viable counts) and microstructural properties of fresh razor clam (Sinonovacula constricta) were investigated. HHP treatments significantly (P < 0.05) increased shelling efficiency, water-holding capacity, pH, conductivity, and lipid oxidation, and HHP-treated razor clam showed lower levels of microorganisms and drip loss than untreated razor clam. Levels of thiobarbituric acid reacting substances (TBA) in HHP-treated razor clam were greatly increased (up to 0.93 ± 0.09 mg MDA/kg at 400 MPa for 10 min) which was caused by the formation of hydroperoxides during HHP treatment. All HHP treatments were found to have adverse effects on the activity of Ca2+ -ATPase and the content of myofibrillar protein (MP), which might be due to the substantial damage to the tertiary structure of proteins at high pressure. Moreover, scanning electron microscopy (SEM) revealed the compaction of the muscle fibers and a decrease in the extracellular space with increasing pressure and holding time. This phenomenon was mainly correlated with the compaction of muscle fibers and denaturation, aggregation, and gelation of muscle protein triggered by high pressure. In general, HHP could be applied as a safe and effective nonthermal technology to produce high-quality shelled razor clam. PRACTICAL APPLICATION High hydrostatic pressure (HHP) is now well known as a nonthermal processing technology and becoming increasingly acknowledged. However, it has not been widely applied to shell seafood due to its uncertain influence on its quality and shelling property. This study could provide valuable information regarding the shelling efficacy, physicochemical properties, and microstructure of razor clam treated by HHP. And it demonstrated that HHP showed a positive impact on quality of razor clam treated by HHP.
Collapse
Affiliation(s)
- Xiao-Ting Xuan
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315400, China
| | - Yan Cui
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315400, China
| | - Xu-Dong Lin
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315400, China
| | - Jing-Feng Yu
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315400, China
| | - Xiao-Jun Liao
- College of Food Science and Nutritional Engineering, China Agricultural Univ., Beijing 100083, China
| | - Jian-Gang Ling
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315400, China.,Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hai-Tao Shang
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315400, China
| |
Collapse
|
39
|
Mu G, Jonsson A, Bergsson AB, Thorarinsdottir KA. The Effects of Short-Time Temperature Abuse on the Microbial and Sensory Quality of Chilled Saithe (Pollachius virens) Fillets. J Food Sci 2017; 82:2690-2699. [PMID: 29030860 DOI: 10.1111/1750-3841.13926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 11/29/2022]
Abstract
Chilled fish products are highly perishable with a limited shelf life (10 to 14 d). For this reason, the control of the cold chain for fish is essential. This study´s objective was to investigate the effects of short-time temperature abuse during processing on spoilage of chilled saithe (Pollachius virens) fillets. Analysis of microbial growth, freshness grades, and sensory score by Quality Index method, as well as pH, were carried out during a 10-d storage period at 2 ± 2 °C. Before storage, the fillets were kept at 16 °C for 0, 1, and 2 h. The results showed that spoilage of the fillets was accelerated with longer holding time at 16 °C. The 1- and 2-h holding before packing and storage caused a 22% (2 d) and 44% (4 d) loss of shelf life, respectively, compared to fillets that were packed immediately after processing. These findings indicate how bottlenecks and delays during processing may result in loss of microbial and sensory quality of chilled fish products. PRACTICAL APPLICATION The observations show the importance of maintaining a low temperature in fish, even for a short period such as during processing. Any delays, such as due to buffering or mechanical failure, may accelerate spoilage of chilled products during subsequent storage. This effect is even more pronounced when products are packed in bulk volumes as the cooling rate is much slower than the piece-by-piece cooling rate.
Collapse
Affiliation(s)
- Gang Mu
- School of Mechanical Engineering, Dalian Univ. of Technology, Linggong Road 2, 116024, Dalian, China.,School of Mechanical and Power Engineering, Dalian Ocean Univ., Heishijiao Street 52, 116023, Dalian, China.,United Nations Univ., Fisheries Training Programme, Skulagata 4, IS-121 Reykjavik, Iceland
| | - Asbjorn Jonsson
- Implementation & Impact, Matis, Vinlandsleid 12, IS-113 Reykjavik, Iceland
| | | | | |
Collapse
|
40
|
Hassoun A, Emir Çoban Ö. Essential oils for antimicrobial and antioxidant applications in fish and other seafood products. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.07.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Cai L, Leng L, Cao A, Cheng X, Li J. The effect of chitosan‐essential oils complex coating on physicochemical, microbiological, and quality change of grass carp (
Ctenopharyhgodon idella
) fillets. J Food Saf 2017. [DOI: 10.1111/jfs.12399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luyun Cai
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning ProvinceJinzhou China
| | - Liping Leng
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning ProvinceJinzhou China
| | - Ailing Cao
- Department of animal and plant inspection and quarantine, Xiaoshan Entry‐Exit Inspection and Quarantine BureauHangzhou China
| | - Xuanru Cheng
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning ProvinceJinzhou China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning ProvinceJinzhou China
| |
Collapse
|
42
|
A novel fast quality control strategy for monitoring spoilage on mayonnaise based on modeling second-order front-face fluorescence spectroscopy data. Microchem J 2017. [DOI: 10.1016/j.microc.2017.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Karoui R, Hassoun A, Ethuin P. Front face fluorescence spectroscopy enables rapid differentiation of fresh and frozen-thawed sea bass (Dicentrarchus labrax) fillets. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Fluorescence Spectroscopy for the Monitoring of Food Processes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 161:121-151. [PMID: 28424827 DOI: 10.1007/10_2017_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Different analytical techniques have been used to examine the complexity of food samples. Among them, fluorescence spectroscopy cannot be ignored in developing rapid and non-invasive analytical methodologies. It is one of the most sensitive spectroscopic approaches employed in identification, classification, authentication, quantification, and optimization of different parameters during food handling, processing, and storage and uses different chemometric tools. Chemometrics helps to retrieve useful information from spectral data utilized in the characterization of food samples. This contribution discusses in detail the potential of fluorescence spectroscopy of different foods, such as dairy, meat, fish, eggs, edible oil, cereals, fruit, vegetables, etc., for qualitative and quantitative analysis with different chemometric approaches.
Collapse
|