1
|
Pan R, Huang Y, Wei T, Zheng L, Hu Z, Duan J, Hao X, Deng Z, Li J. The influence of temperature induced changes in the composition of MFGM on membrane phase transition and nanomechanical properties. Food Res Int 2025; 200:115310. [PMID: 39779156 DOI: 10.1016/j.foodres.2024.115310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025]
Abstract
Biomimetic membrane was investigated as model systems to mimic the structure of milk fat globule membrane (MFGM) and to study the effects of thermal processing-induced changes in MFGM fractions on membrane morphology and physical properties. Molecular docking was utilized to screen xanthine oxidase (XO) as the MFGM protein most likely to bind to phospholipid molecules on MFGM. Fluorescence spectroscopy verified that XO formed stable complexes with DOPE, DPPC, and PS 18:0-18:1, with the strongest binding to DOPE. Two types of artificial fat globule membrane (AFGM) were further constructed using XO with phospholipid molecules, including N-AFGM (simulating MFGM in raw milk) and P-AFGM (mimicking MFGM in ultra-pasteurized milk). The results of atomic force microscopy showed that the P-AFGM had significantly less liquid ordered phase (Lo), more aggregation of XO, smoother surface, higher Young's modulus, and more prone to rupture compared to N-AFGM. These results contribute to a better understanding of the relationship between changes of MFGM composition induced by thermal processing and fat globule stability.
Collapse
Affiliation(s)
- Ruize Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yingchao Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Teng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhenying Hu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jingjing Duan
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xian Hao
- School of Public Health & Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China.
| |
Collapse
|
2
|
Wang J, Xi Y, Sun B, Deng J, Ai N. Utilization of low-temperature heating method to improve skim milk production: Microstructure, stability, and constituents of milk fat globule membrane. Food Chem X 2024; 21:101187. [PMID: 38370307 PMCID: PMC10869298 DOI: 10.1016/j.fochx.2024.101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
In the process of defatting milk, preheating treatment is an important factor affecting the flavor of skim milk. Here, raw milk was preheated at different times and temperatures. Then laser confocal microscopy, multiple-light scattering instrument, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were used to analyze the microstructure of milk fat globule membrane (MFGM), milk stability, and MFGM protein (MFGMP) components. Results showed that phospholipid domain of MFGM changed from an ordered state (Lo) to a disordered state (Ld) with increase in treatment temperature and time, leading to an increase in MFGMP content in skim milk. During the stability test, the stability of raw milk decreased significantly with increase in preheating temperature, while the opposite was true for skim milk. Finally, the results of MFGMP differentiation analysis showed that, the content of ten taste-related MFGMPs in the control group samples was significantly lower compared to the optimal group (P < 0.05).
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Yanmei Xi
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Jianjun Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nasi Ai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| |
Collapse
|
3
|
Vasyankin AV, Panteleev SV, Steshin IS, Shirokova EA, Rozhkov AV, Livshits GD, Radchenko EV, Ignatov SK, Palyulin VA. Temperature-Induced Restructuring of Mycolic Acid Bilayers Modeling the Mycobacterium tuberculosis Outer Membrane: A Molecular Dynamics Study. Molecules 2024; 29:696. [PMID: 38338443 PMCID: PMC10856651 DOI: 10.3390/molecules29030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The emergence of new drug-resistant strains of the tuberculosis pathogen Mycobacterium tuberculosis (Mtb) is a new challenge for modern medicine. Its resistance capacity is closely related to the properties of the outer membrane of the Mtb cell wall, which is a bilayer membrane formed by mycolic acids (MAs) and their derivatives. To date, the molecular mechanisms of the response of the Mtb outer membrane to external factors and, in particular, elevated temperatures have not been sufficiently studied. In this work, we consider the temperature-induced changes in the structure, ordering, and molecular mobility of bilayer MA membranes of various chemical and conformational compositions. Using all-atom long-term molecular dynamics simulations of various MA membranes, we report the kinetic parameters of temperature-dependent changes in the MA self-diffusion coefficients and conformational compositions, including the apparent activation energies of these processes, as well as the characteristic times of ordering changes and the features of phase transitions occurring over a wide range of elevated temperatures. Understanding these effects could be useful for the prevention of drug resistance and the development of membrane-targeting pharmaceuticals, as well as in the design of membrane-based materials.
Collapse
Affiliation(s)
- Alexander V. Vasyankin
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
| | - Sergey V. Panteleev
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
| | - Ilya S. Steshin
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
| | - Ekaterina A. Shirokova
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
| | - Alexey V. Rozhkov
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
| | - Grigory D. Livshits
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
| | - Eugene V. Radchenko
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Stanislav K. Ignatov
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
| | - Vladimir A. Palyulin
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia; (A.V.V.); (S.V.P.); (I.S.S.); (E.A.S.); (A.V.R.); (G.D.L.); (E.V.R.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
4
|
Yang X, Zhu R, Song Z, Shi D, Huang J. Diversity in Cell Morphology, Composition, and Function among Adipose Depots in River Buffaloes. Int J Mol Sci 2023; 24:ijms24098410. [PMID: 37176117 PMCID: PMC10179058 DOI: 10.3390/ijms24098410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Fat deposition is a significant economic trait in livestock animals. Adipose tissues (ATs) developed in subcutaneous and visceral depots are considered waste whereas those within muscle are highly valued. In river buffaloes, lipogenesis is highly active in subcutaneous (especially in the sternum subcutaneous) and visceral depots but not in muscle tissue. Revealing the features and functions of ATs in different depots is significant for the regulation of their development. Here, we characterize the cell size, composition, and function of six AT depots in river buffaloes. Our data support that the subcutaneous AT depots have a larger cell size than visceral AT depots, and the subcutaneous AT depots, especially the sternum subcutaneous AT, are mainly associated with the extracellular matrix whereas the visceral AT depots are mainly associated with immunity. We found that sternum subcutaneous AT is significantly different from ATs in other depots, due to the high unsaturated fatty acid content and the significant association with metabolic protection. The perirenal AT is more active in FA oxidation for energy supply. In addition, the expression of HOX paralogs supports the variable origins of ATs in different depots, indicating that the development of ATs in different depots is mediated by their progenitor cells. The present study enhances our understanding of the cellular and molecular features, metabolism, and origin of AT depots in buffaloes, which is significant for the regulation of fat deposition and provides new insights into the features of AT depots in multiple discrete locations.
Collapse
Affiliation(s)
- Xintong Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530005, China
| | - Ruirui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530005, China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530005, China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530005, China
| |
Collapse
|
5
|
Characterization of Cow, Goat, and Water Buffalo Milk Fat Globule Lipids by High-Performance Thin Layer Chromatography. DAIRY 2023. [DOI: 10.3390/dairy4010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Ruminant milk is an essential part of the human diet and is widely accepted as a major nutrient source in developing countries. However, the polar and neutral lipid content variation in milk fat globules (MFG)among cow, goat, and water buffalo is poorly understood. This study used high-performance thin layer chromatography to identify and quantify five major polar (PL) and three neutral lipids (NL) from the MFG of cow, goat, and water buffalo. Optimal separation was achieved for PLs using chloroform: methanol: water (65:25:4), and hexane: diethyl ether: acetic acid (70:30:1) for NLs. The lower detectable (0.12 to 1.53 μg/mL) and quantification (0.12 to 1.53 μg/mL) limits indicated the high sensitivity of the method. Quantification at 540 nm showed the highest abundance of phosphatidylethanolamine and triglycerides. Fat globules were further characterized for size and microstructural properties, which revealed smaller globules in goats (0.99 ± 0.04 μm) than cows (1.85 ± 0.03 μm) and water buffaloes (2.91 ± 0.08 μm), indicating a negative correlation with PL but a positive correlation with NL. The variation in lipid quantity among different animal species suggests more research to support their selection as a suitable source for developing functional food to impact human health positively.
Collapse
|
6
|
Wei T, Huang Y, Weng C, Chen F, Tan C, Liu W, Deng Z, Li J. Lipid rafts may affect the coalescence of milk fat globules through phase transition after thermal treatment. Food Chem 2023; 399:133867. [DOI: 10.1016/j.foodchem.2022.133867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
|
7
|
|
8
|
Zhao L, Wang J, Mao X. Composition and interfacial properties play key roles in different lipid digestion between goat and cow milk fat globules in vitro. Food Chem 2021; 374:131538. [PMID: 34839970 DOI: 10.1016/j.foodchem.2021.131538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022]
Abstract
The different TAG, interfacial properties and digestion rate between goat and cow milk fat globules were investigated. The mechanism of their different lipid digestion was also elucidated. Raw goat milk fat globules had smaller size, less large molecular weight and unsaturated TAG, larger liquid-ordered region and fewer glycoproteins, which contributed to the higher digestion rate than cow milk. After homogenization, the goat lipids also had higher digestion rate that was attributed to the special structure of easy-to-digest TAG and less glycosylated molecules not globule size. More integrated phospholipid layers and glycosylated molecules of HTST milk fat globules resulted in a lower lipid digestion rate than other processed milks. No difference in digestion rate between pasteurized goat and cow milk fat globules might be explained by the more denatured proteins and glycosylated molecules, respectively. Therefore, the TAG and interfacial properties contributed to different digestion between goat and cow milk fat globules.
Collapse
Affiliation(s)
- Lili Zhao
- College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jun Wang
- College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xueying Mao
- College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Mou B, Liu Y, Yang W, Song S, Shen C, Lai OM, Tan CP, Cheong LZ. Effects of dairy processing on phospholipidome, in-vitro digestion and Caco-2 cellular uptake of bovine milk. Food Chem 2021; 364:130426. [PMID: 34175616 DOI: 10.1016/j.foodchem.2021.130426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
Present work investigated the effects of processing (homogenization, sterilization) and cold storage on physicochemical properties, in vitro digestion and Caco-2 cellular uptake of bovine milk. Extreme heat sterilization and low temperature storage have significant impact on particle size and phospholipidome of bovine milk. In addition, cold storage of bovine milks led to formation of β' polymorphs crystals and endothermic peak with Toffset higher than body temperature. Processing and cold storage also increased the initial digestibility but reduced the overall digestibility of bovine milk. This might be related to the decreased particle size of the milk fat globules, changed in the phospholipidome of the MFGM and formation of β' polymorphs crystals in frozen milk. It is interesting to note that PE has relatively faster digestion meanwhile SM has relatively slower digestion. HTST milk which demonstrated lesser changed in terms of phospholipidome demonstrated highest cellular uptakes of most fatty acids.
Collapse
Affiliation(s)
- Bolin Mou
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yuanyuan Liu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Wenqing Yang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Shuang Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Cai Shen
- Institute of Materials Technology and Engineering, Chinses Academy of Sciences, 1219 Zhongguan Road, Ningbo 315201, China
| | - Oi-Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology and Bimolecular Sciences, University Putra Malaysia UPM, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, University Putra Malaysia UPM, 43400 Serdang, Selangor, Malaysia
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Malaysia
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Bovine Milk Fat Globule Epidermal Growth Factor VIII activates PI3K/Akt signaling pathway and attenuates sarcopenia in rat model induced by d-galactose. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Lu J, Pickova J, Daniel G, Langton M. The role of key process steps on microstructural organisation of fat globules and lipid profiles in UHT milk processed in a pilot plant unit. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Pérez-Gálvez A, Calvo MV, Megino-Tello J, Aguayo-Maldonado J, Jiménez-Flores R, Fontecha J. Effect of gestational age (preterm or full term) on lipid composition of the milk fat globule and its membrane in human colostrum. J Dairy Sci 2020; 103:7742-7751. [PMID: 32622597 DOI: 10.3168/jds.2020-18428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/20/2020] [Indexed: 02/05/2023]
Abstract
Human colostrum is the first milk secreted by the mother after birth and constitutes the ideal food for the newborn, because its chemical composition, rich in immunoglobulins, antimicrobial peptides, growth factors, bioactive lipids, and other important molecules, is perfectly adapted to the metabolic, digestive, and immunological immaturity of the newborn. An incomplete gestational period can affect the maturity of the mammary gland and its ability to secrete milk with the proper composition for the newborn's condition. Previous studies indicate that the mammary gland modulates the profiles of bioactive lipids present in the different phases of lactation from colostrum to mature milk. Given the key role played by the polar lipids (PL) (phospho- and sphingolipids) of the milk fat globule membrane (MFGM) in the immune system and cognitive development of the newborn, it is crucial to analyze whether the content and distribution of the PL are affected by gestation period. Therefore, this study aimed to determine the milk fat globule (MFG) and MFGM lipid compositions of human colostrum samples from 20 healthy preterm and full-term mothers. Lipid characterization using chromatographic techniques (gas chromatograph mass spectrometry and HPLC-evaporative light-scattering detection) revealed differences related to length of gestation in the profiles of lipid classes and fatty acid and triacylglyceride contents of colostrum. This comparative analysis leads to noteworthy outcomes about the changing roles of the PL, considering the preterm or full-term condition. We found a lack of correlation of some PL (such as phosphatidylcholine, phosphatidylinositol, and phosphatidylserine) with the delivery term; these could be denoted as structural category lipids. However, sphingomyelin and phosphatidyl-ethanolamine exhibited trends to decrease in full-term colostrum, indicating that in the final stage of pregnancy specific accretion of some PL occurs, which should be denoted as a nutritional redistribution.
Collapse
Affiliation(s)
- Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013, Sevilla, Spain
| | - María V Calvo
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049, Madrid, Spain
| | - Javier Megino-Tello
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049, Madrid, Spain
| | | | | | - Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049, Madrid, Spain.
| |
Collapse
|
13
|
Zhao L, Du M, Mao X. Change in interfacial properties of milk fat globules by homogenization and thermal processing plays a key role in their in vitro gastrointestinal digestion. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Et-Thakafy O, Guyomarc'h F, Lopez C. Young modulus of supported lipid membranes containing milk sphingomyelin in the gel, fluid or liquid-ordered phase, determined using AFM force spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1523-1532. [DOI: 10.1016/j.bbamem.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/12/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
|
15
|
Jukkola A, Hokkanen S, Kämäräinen T, Partanen R, Heino A, Rojas OJ. Changes in milk fat globules and membrane lipids under the shear fields of microfiltration and centrifugation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Lopez C, Cauty C, Guyomarc'h F. Unraveling the Complexity of Milk Fat Globules to Tailor Bioinspired Emulsions Providing Health Benefits: The Key Role Played by the Biological Membrane. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800201] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Vezočnik V, Hodnik V, Sitar S, Okur HI, Tušek-Žnidarič M, Lütgebaucks C, Sepčić K, Kogej K, Roke S, Žagar E, Maček P. Kinetically Stable Triglyceride-Based Nanodroplets and Their Interactions with Lipid-Specific Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8983-8993. [PMID: 29983071 DOI: 10.1021/acs.langmuir.8b02180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding of the interactions between proteins and natural and artificially prepared lipid membrane surfaces and embedded nonpolar cores is important in studies of physiological processes and their pathologies and is applicable to nanotechnologies. In particular, rapidly growing interest in cellular droplets defines the need for simplified biomimetic lipid model systems to overcome in vivo complexity and variability. We present a protocol for the preparation of kinetically stable nanoemulsions with nanodroplets composed of sphingomyelin (SM) and cholesterol (Chol), as amphiphilic surfactants, and trioleoylglycerol (TOG), at various molar ratios. To prepare stable SM/Chol-coated monodisperse lipid nanodroplets, we modified a reverse phase evaporation method and combined it with ultrasonication. Lipid composition, ζ-potential, gyration and hydrodynamic radius, shape, and temporal stability of the lipid nanodroplets were characterized and compared to extruded SM/Chol large unilamellar vesicles. Lipid nanodroplets and large unilamellar vesicles with theoretical SM/Chol/TOG molar ratios of 1/1/4.7 and 4/1/11.7 were further investigated for the orientational order of their interfacial water molecules using a second harmonic scattering technique, and for interactions with the SM-binding and Chol-binding pore-forming toxins equinatoxin II and perfringolysin O, respectively. The surface characteristics (ζ-potential, orientational order of interfacial water molecules) and binding of these proteins to the nanodroplet SM/Chol monolayers were similar to those for the SM/Chol bilayers of the large unilamellar vesicles and SM/Chol Langmuir monolayers, in terms of their surface structures. We propose that such SM/Chol/TOG nanoparticles with the required lipid compositions can serve as experimental models for monolayer membrane to provide a system that imitates the natural lipid droplets.
Collapse
Affiliation(s)
- Valerija Vezočnik
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Simona Sitar
- Department of Polymer Chemistry and Technology , National Institute of Chemistry , Hajdrihova 19 , Ljubljana 1000 , Slovenia
| | - Halil I Okur
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | | | - Cornelis Lütgebaucks
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Ksenija Kogej
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , Ljubljana 1000 , Slovenia
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Ema Žagar
- Department of Polymer Chemistry and Technology , National Institute of Chemistry , Hajdrihova 19 , Ljubljana 1000 , Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| |
Collapse
|
18
|
Bhojoo U, Chen M, Zou S. Temperature induced lipid membrane restructuring and changes in nanomechanics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:700-709. [DOI: 10.1016/j.bbamem.2017.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/17/2017] [Accepted: 12/08/2017] [Indexed: 11/26/2022]
|
19
|
Luo J, Huang Z, Liu H, Zhang Y, Ren F. Yak milk fat globules from the Qinghai-Tibetan Plateau: Membrane lipid composition and morphological properties. Food Chem 2017; 245:731-737. [PMID: 29287434 DOI: 10.1016/j.foodchem.2017.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/29/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
Abstract
Yak milk fat products constitute the base of Qinghai-Tibetan pastoralists' daily food intake. Despite the great importance of fat in processing and pastoralists' health, studies about yak milk fat are scarce. In this study, the lipid composition and the morphological properties of milk fat globule membranes (MFGMs) of yak milk were investigated. The results demonstrated that the yak milk had a higher cholesterol and sphingomyelin content compared to cow milk. In situ structural investigations performed at 25 °C by confocal microscopy showed the presence of lipid domains in yak MFGM, with a larger number and wider size range compared to cow milk. Moreover, the simultaneous localization of glycosylated molecules and polar lipids indicated that glycosylated molecules could be integrated into the lipid domains in yak MFGM. Different characteristics in yak MFGM could be related to the lipid composition and may affect the functions of yak milk lipids during processing and digestion.
Collapse
Affiliation(s)
- Jie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ziyu Huang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China.
| | - Hongna Liu
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou 730070, China.
| | - Yan Zhang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China.
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
20
|
Nguyen HT, Ong L, Lopez C, Kentish SE, Gras SL. Microstructure and physicochemical properties reveal differences between high moisture buffalo and bovine Mozzarella cheeses. Food Res Int 2017; 102:458-467. [DOI: 10.1016/j.foodres.2017.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 11/25/2022]
|
21
|
Jukkola A, Rojas OJ. Milk fat globules and associated membranes: Colloidal properties and processing effects. Adv Colloid Interface Sci 2017; 245:92-101. [PMID: 28457499 DOI: 10.1016/j.cis.2017.04.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 02/07/2023]
Abstract
The composition and physical-chemical properties of the milk fat globule membrane (MFGM) is a subject that has gained increased interest in the field of food colloids, mainly because the nutritional and technological value of the MFGM. In fact, related changes in integrity and structure during milk processing pose a huge challenge as far as efforts directed to isolate the components of the fat globule membrane. MFGM characteristics and potential utilization are subjects of dissension. Thus, the effects of processing and the colloidal interactions that exist with other milk constituents need to be better understood in order to exploit milk fat and MFGM, their functionality as colloids as well as those of their components. These are the main subjects of this review, which also reports on the results of recent inquiries into MFGM structure and colloidal behavior.
Collapse
|
22
|
Cheng K, Ropers MH, Lopez C. The miscibility of milk sphingomyelin and cholesterol is affected by temperature and surface pressure in mixed Langmuir monolayers. Food Chem 2017; 224:114-123. [DOI: 10.1016/j.foodchem.2016.12.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/12/2016] [Accepted: 12/12/2016] [Indexed: 12/30/2022]
|
23
|
Lipid domains in the milk fat globule membrane: Dynamics investigated in situ in milk in relation to temperature and time. Food Chem 2017; 220:352-361. [DOI: 10.1016/j.foodchem.2016.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 11/24/2022]
|
24
|
Arranz E, Corredig M. Invited review: Milk phospholipid vesicles, their colloidal properties, and potential as delivery vehicles for bioactive molecules. J Dairy Sci 2017; 100:4213-4222. [PMID: 28343627 DOI: 10.3168/jds.2016-12236] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/07/2016] [Indexed: 11/19/2022]
Abstract
The milk fat globule membrane (MFGM) is a unique colloidal assembly of phospholipids and proteins, with numerous potential applications as functional ingredient. The phospholipid components of the MFGM are gaining interest as they are a useful matrix for use as a constituent of delivery systems such as liposomes. Liposomes formulated with milk phospholipids are becoming an alternative to other sources of phospholipids such as soybean or egg yolk. However, incorporation of phospholipids fractionated from the milk fat globule membrane in dairy products requires an in-depth understanding of the functional properties of phospholipids. In particular, it is critical to understand which factors play a role in their stability and bioefficacy as delivery systems. Moreover, chemical and physical modifications of phospholipid liposomes occurring during digestion and the fate of the encapsulated compounds are very important to understand. This review discusses recent findings on the structure and functionality of MFGM, the bioactivity of the phospholipids fraction, their utilization as delivery systems, and their stability through gastrointestinal transit.
Collapse
Affiliation(s)
- E Arranz
- Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M Corredig
- Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada; Gay Lea Foods, Research and Development, Speedvale Avenue W, Guelph, ON, N1H 1J5, Canada.
| |
Collapse
|
25
|
Brijesha N, Aparna HS. Comprehensive characterization of bioactive peptides from Buffalo (Bubalus bubalis) colostrum and milk fat globule membrane proteins. Food Res Int 2017; 97:95-103. [PMID: 28578070 DOI: 10.1016/j.foodres.2017.03.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 03/19/2017] [Indexed: 11/19/2022]
Abstract
Milk fat is dispersed in milk as small spherical globules stabilized in the form of emulsion by its surrounding membrane, often referred to as fat globule membrane (FGM). Buffalo, a major milking mammal of Asia and second most milking mammal across the globe presents physicochemical features different from that of other ruminant species containing higher content of lipids and proteins. The present study describes characterization of FGM proteins isolated from both buffalo milk and colostrum. A detailed proteomic analysis of peptides generated by in vitro gastrointestinal simulation digestion of buffalo milk and colostrum FGM fractions was performed by nLC-ESI MS/MS. The peptide based clustering of FGM proteins unravelled association of membrane proteins in fat transport, enzymatic activity, general transport, defence, cell signalling, membrane/protein trafficking protein synthesis/binding/folding including unknown functions. Gene annotation, STRING and YLoc analyses provided putative insights into major secretory pathways in milk and colostrum FGM peptides, interactive protein networks including their sub cellular localization. The peptides of milk and colostrum FGM offered cellular protection as powerful antioxidants indicated their promising perspectives in commercial formulations and nutraceuticals.
Collapse
Affiliation(s)
- N Brijesha
- DOS in Biotechnology, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - H S Aparna
- DOS in Biotechnology, University of Mysore, Manasagangotri, Mysore 570 006, India.
| |
Collapse
|
26
|
Murthy AVR, Guyomarc'h F, Lopez C. Cholesterol Decreases the Size and the Mechanical Resistance to Rupture of Sphingomyelin Rich Domains, in Lipid Bilayers Studied as a Model of the Milk Fat Globule Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6757-6765. [PMID: 27300157 DOI: 10.1021/acs.langmuir.6b01040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sphingomyelin-rich microdomains have been observed in the biological membrane surrounding milk fat globules (MFGM). The role played by cholesterol in these domains and in the physical properties and functions of the MFGM remains poorly understood. The objective of this work was therefore to investigate the phase state, topography, and mechanical properties of MFGM polar lipid bilayers as a function of cholesterol concentration, by combining X-ray diffraction, atomic force microscopy imaging, and force spectroscopy. At room temperature, i.e. below the phase transition temperature of the MFGM polar lipids, the bilayers showed the formation of sphingomyelin-rich domains in the solid ordered (so) phase that protruded about 1 nm above the liquid disordered (ld) phase. These so phase domains have a higher mechanical resistance to rupture than the ld phase (30 nN versus 15 nN). Addition of cholesterol in the MFGM polar lipid bilayers (i) induced the formation of liquid ordered (lo) phase for up to 27 mol % in the bilayers, (ii) decreased the height difference between the thicker ordered domains and the surrounding ld phase, (iii) promoted the formation of small sized domains, and (iv) decreased the mechanical resistance to rupture of the sphingomyelin-rich domains down to ∼5 nN. The biological and functional relevance of the lo phase cholesterol/sphingomyelin-rich domains in the membrane surrounding fat globules in milk remains to be elucidated. This study brought new insight about the functional role of cholesterol in milk polar lipid ingredients, which can be used in the preparation of food emulsions, e.g. infant milk formulas.
Collapse
|