1
|
Wang C, Ma X, Geng S, Ma H, Liu B. Zein/peach gum composite antibacterial absorbent pads loaded with thirteen-spices essential oil: Preparation, characterization and its application in pork preservation. Int J Biol Macromol 2025; 306:141661. [PMID: 40032106 DOI: 10.1016/j.ijbiomac.2025.141661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Thirteen-spices essential oil (TSEO) is an extract derived from a blend of thirteen traditional Chinese spices "Shisan Xiang". It has garnered significant interest for its application in meat preservation, owing to its distinctive flavor profile and potent antibacterial properties. In this study, we developed monolayer and multilayer biocomposite films composed of zein (ZN) and peach gum (PG), integrated with TSEO, utilizing a continuous casting method, to address plastic pollution and food safety by developing innovative, biodegradable packaging from food byproducts. These films were designed to function as antibacterial absorbent pads (TSEO-ZN/PG) aimed at extending the shelf life of chilled pork. The self-assembly behavior of TSEO-doped ZN within a continuous PG matrix is influenced by the casting layers. The TSEO-ZN/PG film exhibited a heterogeneous cross-sectional structure characterized by cavities that entrapped TSEO droplets and ZN microspheres. This morphology influenced swelling (2609.43 %), water vapor permeability (1.63 ± 0.23), and TSEO retention-release behavior. By adjusting the ZN/PG ratio in the intermediate layer, the films demonstrated enhanced resistance to breakage (8.969 ± 0.744 %) and thermal stability (285.00 °C). Furthermore, these films significantly impeded the proliferation of Staphylococcus aureus (53.13 %) and Escherichia coli (72.64 %). An extended shelf life of 2 days was observed in the preservation test of chilled pork characterized by significantly lower TVC, pH, and color changes compared to the control. The TSEO-ZN/PG absorbent pads developed in this study exhibited antimicrobial and adsorption properties that potentially enhance the storage quality of chilled pork.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xinxin Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
2
|
Li N, Zhang Y, Gao M, Yan C, Wei Y. Progress in the technology of solvent flotation. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1249:124370. [PMID: 39550902 DOI: 10.1016/j.jchromb.2024.124370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
Solvent flotation primarily relies on the variations in the activity of substances to adsorb target compounds onto the surface of bubbles, thereby facilitating the process of separation and extraction. This technology has the advantages of high separation efficiency, gentle process, and simple operation, making it widely applicable across various fields. This article reviews relevant research from the past decade to analyze the factors influencing this technology. Additionally, it provides a comprehensive overview of its applications in detecting organic matter in environmental samples and extracting bioactive compounds from natural products, while also anticipating upcoming trends in its development.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, PR China; Paris Curie Engineer School, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, PR China
| | - Yuchi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, PR China; Paris Curie Engineer School, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, PR China
| | - Mengyao Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, PR China
| | - Chen Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, PR China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
3
|
Gross IP, Lima AL, Sousa EC, Souza MS, Cunha-Filho M, da Silva ICR, Orsi DC, Sá-Barreto LL. Antimicrobial and acaricide sanitizer tablets produced by wet granulation of spray-dried soap and clove oil-loaded microemulsion. PLoS One 2024; 19:e0313517. [PMID: 39527597 PMCID: PMC11554217 DOI: 10.1371/journal.pone.0313517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
A novel sanitizer tablet containing clove essential oil (CO) microemulsion was developed. A preformulation study using nuclear magnetic resonance and thermal analyses showed component compatibility. The main components of the samples remained intact despite a color change, probably due to a strong acid-base interaction between eugenol and diethanolamine. The CO microemulsion showed acaricidal and larvicidal activities superior to the commercial product, with product efficacy of 99.9% and larvae mortality of 94%. Optimal spray-drying conditions were achieved with inlet and outlet temperatures of 50°C and 40°C, respectively, an aspiration rate of 1 m3 min⁻1, and a 0.25 L h⁻1 injection flow. The feed suspension comprised 50% (v/v) liquid soap, 37.5% (v/v) water, 12.5% (v/v) ethanol, and 5.0% (w/v) silica. This formulation and processing parameters allowed for successful free-flow powder formation, providing a suitable matrix for incorporating the CO microemulsion via wet granulation without heating. Finally, sanitizer tablets produced from such granules resulted in a uniform product with low weight variation (coefficient of variation of 0.15%), eugenol content of 95.5% ± 3.3, and friability of 0.58%. Furthermore, the tablets showed rapid aqueous dispersion, forming a colloidal system with particle sizes of 221 nm and a zeta potential of -17.2 mV. Antimicrobial activity tests demonstrated the effectiveness of the sanitizer tablet against bacteria and fungi, exhibiting comparable antimicrobial potency to isolated CO. Hence, the sanitizer tablet developed represents a promising candidate as a practical and efficient solution for pest control, offering strong antimicrobial and acaricidal activity.
Collapse
Affiliation(s)
- Idejan P. Gross
- Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Ana Luiza Lima
- Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Evalina C. Sousa
- Faculty of Ceilandia, University of Brasilia (UnB), Brasília, DF, Brazil
| | - Maiane S. Souza
- Faculty of Ceilandia, University of Brasilia (UnB), Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | | | | | | |
Collapse
|
4
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
5
|
Supercritical carbon dioxide extraction of Cosmos sulphureus seed oil with ultrasound assistance. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
6
|
Pannusch VB, Viebahn L, Briesen H, Minceva M. Predicting the essential oil composition in supercritical carbon dioxide extracts from hop pellets using mathematical modeling. Heliyon 2023; 9:e13030. [PMID: 36747572 PMCID: PMC9898609 DOI: 10.1016/j.heliyon.2023.e13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Supercritical fluid extraction from hops (Humulus lupulus L.) can be used to extract essential oil for the flavoring of beer. With a special focus on the oil composition being linked to the hop aroma, the influence of pressure and temperature on the extraction kinetics of seven oil components (β-myrcene, α-humulene, β-caryophyllene, 2-methylbutyl isobutyrate, undecanone, linalool, and α-pinene) is analyzed and modeled in this article. Supercritical CO2 extraction from hop pellets was conducted at pressure-temperature combinations of 90/100/110 bar and 40/45/50 °C. The extract composition over time, analyzed by gas chromatography, was used for the parameterization of two existing mechanistic models: an internal-mass-transfer-control (IMTC), and a broken-and-intact-cells (BIC) model. The IMTC model was found to effectively describe most extraction kinetics and hence applied in this study. In contrast to previous studies, the IMTC model parameters were not only fitted to individual extraction curves from different experiments but also correlated to temperature and pressure as a further step towards model-based prediction. Using the parameterized model, the extract composition was predicted at 95 bar/48 °C, 105 bar/42 °C, and 105 bar/48 °C. Extraction yields were found to be higher at lower temperatures and higher pressures in general. The sensitivity towards pressure was observed to differ between components and to be particularly higher for β-myrcene compared with α-humulene. Changes of the essential oil composition with a variation in pressure and temperature were predicted correctly by the model with a mean relative deviation from experimental data of 11.7% (min. 1.2%, max. 36.2%).
Collapse
Affiliation(s)
| | - Lukas Viebahn
- Biothermodynamics, Technical University of Munich, Freising, Germany
| | - Heiko Briesen
- Process Systems Engineering, Technical University of Munich, Freising, Germany
| | - Mirjana Minceva
- Biothermodynamics, Technical University of Munich, Freising, Germany
- Corresponding author.
| |
Collapse
|
7
|
Guo Q, Peng QQ, Chen YY, Song P, Ji XJ, Huang H, Shi TQ. High-yield α-humulene production in Yarrowia lipolytica from waste cooking oil based on transcriptome analysis and metabolic engineering. Microb Cell Fact 2022; 21:271. [PMID: 36566177 DOI: 10.1186/s12934-022-01986-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND α-Humulene is an important biologically active sesquiterpene, whose heterologous production in microorganisms is a promising alternative biotechnological process to plant extraction and chemical synthesis. In addition, the reduction of production expenses is also an extremely critical factor in the sustainable and industrial production of α-humulene. In order to meet the requirements of industrialization, finding renewable substitute feedstocks such as low cost or waste substrates for terpenoids production remains an area of active research. RESULTS In this study, we investigated the feasibility of peroxisome-engineering strain to utilize waste cooking oil (WCO) for high production of α-humulene while reducing the cost. Subsequently, transcriptome analysis revealed differences in gene expression levels with different carbon sources. The results showed that single or combination regulations of target genes identified by transcriptome were effective to enhance the α-humulene titer. Finally, the engineered strain could produce 5.9 g/L α-humulene in a 5-L bioreactor. CONCLUSION To the best of our knowledge, this is the first report that converted WCO to α-humulene in peroxisome-engineering strain. These findings provide valuable insights into the high-level production of α-humulene in Y. lipolytica and its utilization in WCO bioconversion.
Collapse
Affiliation(s)
- Qi Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Qian-Qian Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Ying-Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China. .,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China. .,College of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China.
| |
Collapse
|
8
|
Supercritical CO2 Impregnation of Clove Extract in Polycarbonate: Effects of Operational Conditions on the Loading and Composition. Processes (Basel) 2022. [DOI: 10.3390/pr10122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The development of active packaging for food storage containers is possible through impregnation of natural extracts by supercritical CO2-assisted impregnation processes. The challenge of scCO2-impregnation of natural extracts is to control the total loading and to ensure that the composition of the loaded extract may preserve the properties of the crude extract. This study aimed at investigating the scCO2-impregnation of clove extract (CE) in polycarbonate (PC) to develop antibacterial packaging. A design of experiments was applied to evaluate the influences of temperature (35–60 °C) and pressure (10–30 MPa) on the clove loading (CL%) and on the composition of the loaded extract. The CL% ranged from 6.8 to 18.5%, and the highest CL% was reached at 60 °C and 10 MPa. The composition of the impregnated extract was dependent on the impregnation conditions, and it differed from the crude extract, being richer in eugenol (81.31–86.28% compared to 70.06 in the crude extract). Differential scanning calorimetry showed a high plasticizing effect of CE on PC, and high CL% led to the cracking of the PC surface. Due to the high loading of eugenol, which is responsible for the antibacterial properties of the CE, the impregnated PC is promising for producing antibacterial food containers.
Collapse
|
9
|
Zhang L, Yang H, Xia Y, Shen W, Liu L, Li Q, Chen X. Engineering the oleaginous yeast Candida tropicalis for α-humulene overproduction. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:59. [PMID: 35619177 PMCID: PMC9137083 DOI: 10.1186/s13068-022-02160-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
α-Humulene is a plant-derived monocyclic sesquiterpenoid with multiple pharmacological activities, and far-reaching potential for the development of new drugs. Currently, the production of α-humulene is typically achieved via plant extraction, which is not sustainable and limited by low yields. The oleaginous yeast Candida tropicalis has recently emerged as a valuable host for producing high-value-added chemicals. However, the potential of C. tropicalis for terpenoid production has not been exploited.
Results
In this study, C. tropicalis was engineered for de novo synthesis of α-humulene from glucose. To improve α-humulene production, the codon-optimised α-humulene synthase gene and the entire endogenous farnesyl diphosphate synthesis pathway were co-overexpressed. Furthermore, bottlenecks in the α-humulene synthase pathway were identified and relieved by overexpressing α-humulene synthase, acetoacetyl-CoA thiolase and NADH-dependent HMG-CoA reductase. Combined with fermentation medium optimisation, the engineered strain produced 195.31 mg/L of α-humulene in shake flasks and 4115.42 mg/L in a bioreactor through fed-batch fermentation, a 253- and 5345-fold increase over the initial production, respectively.
Conclusions
This study demonstrates the potential of C. tropicalis for α-humulene production, and presents a platform for the biosynthesis of other terpenoids.
Collapse
|
10
|
Xue Q, Xiang Z, Wang S, Cong Z, Gao P, Liu X. Recent advances in nutritional composition, phytochemistry, bioactive, and potential applications of Syzygium aromaticum L. (Myrtaceae). Front Nutr 2022; 9:1002147. [PMID: 36313111 PMCID: PMC9614275 DOI: 10.3389/fnut.2022.1002147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023] Open
Abstract
Syzygium aromaticum is an aromatic plant native to Indonesia, and introduced to tropical regions worldwide. As an ingredient in perfumes, lotions, and food preservation, it is widely used in the food and cosmetic industries. Also, it is used to treat toothache, ulcers, type 2 diabetes, etc. A variety of nutrients such as amino acids, proteins, fatty acids, and vitamins are found in S. aromaticum. In addition to eugenol, isoeugenol, eugenol acetate, β-caryophyllene and α-humulene are the main chemical constituents. The chemical constituents of S. aromaticum exhibit a wide range of bioactivities, such as antioxidant, antitumor, hypoglycemic, immunomodulatory, analgesic, neuroprotective, anti-obesity, antiulcer, etc. This review aims to comprehend the information on its taxonomy and botany, nutritional composition, chemical composition, bioactivities and their mechanisms, toxicity, and potential applications. This review will be a comprehensive scientific resource for those interested in pursuing further research to explore its value in food.
Collapse
Affiliation(s)
- Qing Xue
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zedong Xiang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengguang Wang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhufeng Cong
- Shandong Provincial Institute of Cancer Prevention and Treatmen, Jinan, Shandong, China
| | - Peng Gao
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,Peng Gao,
| | - Xiaonan Liu
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Xiaonan Liu,
| |
Collapse
|
11
|
Zhou Z, Yang D. Economical and eco-friendly isolation of anthocyanins from grape pomace with higher efficiency. Food Chem X 2022; 15:100419. [PMID: 36211793 PMCID: PMC9532796 DOI: 10.1016/j.fochx.2022.100419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Ultrasonication temperature and time were optimized with RSM. More anthocyanins and their derivatives were identified from grape pomace. Optimized method obtained nearly-two folds anthocyanin yield. Harmless reagents were used along all the industrial friendly steps.
Isolating anthocyanins from grape pomace, byproduct of red wine, becomes attracting for the multiple health beneficial effects of anthocyanins. Here in the ultrasound assisted anthocyanin isolation, parameters of time, ethanol concentration and pH, as well as temperature were individually optimized first. Then, surface response methodology was employed to further optimize the interactive and synergistic effect of these parameters. Optimal isolation condition was identified as the following: at the material liquid ratio of 1:15, 78.9 % of ethanol of pH 7.0 was utilized to extract at 63.8 °C for ∼48 min. Experimental yield with the optimal isolation conditions was 193.547 mg/100 g anthocyanin from grape pomace, almost twice as much as previously reported. Two more anthocyanins, delphinidin-acetylglucoside and cyanidin-coumaroylglucoside, were identified in the extract. With ethanol as the only organic solvent used, this isolation method is an economical, eco-friendly and more efficient, anthocyanin preparation method with simpler instrument setups.
Collapse
|
12
|
Solubility of Rosmarinic Acid in Supercritical Carbon Dioxide Extraction from Orthosiphon stamineus Leaves. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6040059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rosmarinic acid (RA) is present in a broad variety of plants, including those in the Lamiaceae family, and has a wide range of pharmacological effects, particularly antioxidant activity. To extract RA from Orthosiphon stamineus (OS) leaves, a Lamiaceae plant, a suitable extraction process is necessary. The present study used a green extraction method of supercritical carbon dioxide (SCCO2) extraction with the addition of ethanol as a modifier to objectively measure and correlate the solubility of RA from OS leaves. The solubility of RA in SCCO2 was determined using a dynamic extraction approach, and the solubility data were correlated using three density-based semi-empirical models developed by Chrastil, del Valle-Aguilera, and Gonzalez. Temperatures of 40, 60, and 80 °C and pressures of 10, 20, and 30 MPa were used in the experiments. The maximum RA solubility was found at 80 °C and 10 MPa with 2.004 mg of rosmarinic acid/L solvent. The RA solubility data correlated strongly with the three semi-empirical models with less than 10% AARD. Furthermore, the fastest RA extraction rate of 0.0061 mg/g min−1 was recorded at 80 °C and 10 MPa, and the correlation using the Patricelli model was in strong agreement with experimental results with less than 15% AARD.
Collapse
|
13
|
Evaluation of the ethanolic ultrasound-assisted extraction from clove (Syzygium aromaticum) leaves and chemical characterization of the extracts. Food Chem 2022; 373:131351. [PMID: 34710680 DOI: 10.1016/j.foodchem.2021.131351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023]
Abstract
In this study, clove leaves (Syzygium aromaticum) were subjected to ultrasound-assisted extraction (UAE) with ethanol as the solvent, following a central composite design to evaluate the effects of time, amplitude, solvent/sample ratio, and temperature on the yield, eugenol content, and antioxidant capacity of the extracts. The results were compared with those obtained using the conventional method of maceration (ME). The optimum conditions for extract yield were achieved with an extraction time of 25 min,amplitude of 85%, solvent/sample ratio of 35 mL g-1, and temperature of 70 °C, and the result (14.63 wt%) was three times higher than that of conventional extraction. Eugenol was detected in the extracts obtained by both methods, with the highest yield of 2.94 g eugenol kg leaves-1obtained in the UAE method, while the ME method achieved 1.36 g eugenol kg leaves-1.In general, the extracts exhibited high antioxidant capacities.
Collapse
|
14
|
Deng Y, Wang W, Zhao S, Yang X, Xu W, Guo M, Xu E, Ding T, Ye X, Liu D. Ultrasound-assisted extraction of lipids as food components: Mechanism, solvent, feedstock, quality evaluation and coupled technologies – A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Clove Essential Oil ( Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021; 26:molecules26216387. [PMID: 34770801 PMCID: PMC8588428 DOI: 10.3390/molecules26216387] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 01/08/2023] Open
Abstract
Clove (Syzygium aromaticum L. Myrtaceae) is an aromatic plant widely cultivated in tropical and subtropical countries, rich in volatile compounds and antioxidants such as eugenol, β-caryophyllene, and α-humulene. Clove essential oil has received considerable interest due to its wide application in the perfume, cosmetic, health, medical, flavoring, and food industries. Clove essential oil has biological activity relevant to human health, including antimicrobial, antioxidant, and insecticidal activity. The impacts of the extraction method (hydrodistillation, steam distillation, ultrasound-assisted extraction, microwave-assisted extraction, cold pressing, and supercritical fluid extraction) on the concentration of the main volatile compounds in clove essential oil and organic clove extracts are shown. Eugenol is the major compound, accounting for at least 50%. The remaining 10-40% consists of eugenyl acetate, β-caryophyllene, and α-humulene. The main biological activities reported are summarized. Furthermore, the main applications in clove essential oil in the food industry are presented. This review presents new biological applications beneficial for human health, such as anti-inflammatory, analgesic, anesthetic, antinociceptive, and anticancer activity. This review aims to describe the effects of different methods of extracting clove essential oil on its chemical composition and food applications and the biological activities of interest to human health.
Collapse
|
16
|
Rao MV, Sengar AS, C K S, Rawson A. Ultrasonication - A green technology extraction technique for spices: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants (Basel) 2021; 10:1465. [PMID: 34573097 PMCID: PMC8466011 DOI: 10.3390/antiox10091465] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Plant extracts are rich in various bioactive compounds exerting antioxidants effects, such as phenolics, catechins, flavonoids, quercetin, anthocyanin, tocopherol, rutin, chlorogenic acid, lycopene, caffeic acid, ferulic acid, p-coumaric acid, vitamin C, protocatechuic acid, vitamin E, carotenoids, β-carotene, myricetin, kaempferol, carnosine, zeaxanthin, sesamol, rosmarinic acid, carnosic acid, and carnosol. The extraction processing protocols such as solvent, time, temperature, and plant powder should be optimized to obtain the optimum yield with the maximum concentration of active ingredients. The application of novel green extraction technologies has improved extraction yields with a high concentration of active compounds, heat-labile compounds at a lower environmental cost, in a short duration, and with efficient utilization of the solvent. The application of various combinations of extraction technologies has proved to exert a synergistic effect or to act as an adjunct. There is a need for proper identification, segregation, and purification of the active ingredients in plant extracts for their efficient utilization in the meat industry, as natural antioxidants. The present review has critically analyzed the conventional and green extraction technologies in extracting bioactive compounds from plant biomass and their utilization in meat as natural antioxidants.
Collapse
Affiliation(s)
- Alzaidi Mohammed Awad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (A.M.A.); (P.K.)
| | - Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (A.M.A.); (P.K.)
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia;
| | - Shokri Jusoh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (S.J.); (M.F.A.A.)
| | - Muhamad Faris Ab Aziz
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (S.J.); (M.F.A.A.)
| | - Awis Qurni Sazili
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (A.M.A.); (P.K.)
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (S.J.); (M.F.A.A.)
| |
Collapse
|
18
|
Abdul Aziz AH, Putra NR, Zaini AS, Idham Z, Ahmad MZ, Che Yunus MA. Solubility of sinensetin and isosinensetin from Cat’s Whiskers (Orthosiphon stamineus) leaves in ethanol-assisted supercritical carbon dioxide extraction: experimental and modeling. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01822-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Dias ALB, de Aguiar AC, Rostagno MA. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: Current status and trends. ULTRASONICS SONOCHEMISTRY 2021; 74:105584. [PMID: 33975187 PMCID: PMC8122360 DOI: 10.1016/j.ultsonch.2021.105584] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 05/16/2023]
Abstract
Natural products are a source of a wide range of chemical compounds, from pigments to bioactive compounds, which can be extracted and used in different applications. Due to consumer awareness, the interest in natural compounds significantly increased in the last decades, prompting the search for more efficient and environmentally friendly extraction techniques and methods. Pressurized liquids and fluids (sub and supercritical) are being explored to extract natural compounds within the green process concept. The combination of these techniques with ultrasound has emerged as an alternative to intensify the extraction process efficiently. In this context, this work presents a comprehensive review and current insights into the use of high-pressure systems, specifically supercritical fluid extraction and pressurized liquid extraction assisted by ultrasound, as emerging technologies for extracting bioactive compounds from natural products. The extraction mechanisms, applications, and the influence of operational parameters in the process are addressed, in addition to an analysis of the main challenges to be overcome for widespread application.
Collapse
Affiliation(s)
- Arthur Luiz Baião Dias
- Laboratory of High Pressure in Food Engineering, Department of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Ana Carolina de Aguiar
- Laboratory of High Pressure in Food Engineering, Department of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Maurício A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, UNICAMP, 13484-350 Limeira, SP, Brazil.
| |
Collapse
|
20
|
Environmentally Friendly Techniques and Their Comparison in the Extraction of Natural Antioxidants from Green Tea, Rosemary, Clove, and Oregano. Molecules 2021; 26:molecules26071869. [PMID: 33810281 PMCID: PMC8036828 DOI: 10.3390/molecules26071869] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Many current food and health trends demand the use of more ecological, sustainable, and environmentally friendly techniques for the extraction of bioactive compounds, including antioxidants. However, extraction yields and final antioxidant activities vary between sources and are highly influenced by the given extraction method and nature and ratio of the employed solvent, especially for total polyphenols, flavonoids, and anthocyanins, which are well recognized as natural antioxidants with food applications. This review focused on the most common extraction techniques and potential antioxidant activity in the food industry for various natural antioxidant sources, such as green tea, rosemary, clove, and oregano. Green extraction techniques have been proven to be far more efficient, environmentally friendly, and economical. In general, these techniques include the use of microwaves, ultrasound, high hydrostatic pressure, pulsed electric fields, enzymes, and deep eutectic solvents, among others. These extraction methods are described here, including their advantages, disadvantages, and applications.
Collapse
|
21
|
Insights into the Supercritical CO2 Extraction of Perilla Oil and Its Theoretical Solubility. Processes (Basel) 2021. [DOI: 10.3390/pr9020239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the current research, the supercritical carbon dioxide (SCCO2) procedure was used to extract volatile oils from perilla leaves. The yields of the volatile oils and the four main constituents, limonene, perillaldehyde, β-caryophyllene, and (Z,E)-α-farnesene obtained by the SCCO2 procedure were 1.31-, 1.12-, 1.04-, 1.05-, and 1.07-fold higher than those obtained by the hydrodistillation technique, respectively. Furthermore, the duration and temperature of extraction were 40 min and 45 °C lower, respectively, in the former procedure compared to the latter technique. These advantages reveal that SCCO2 not only obtains high-quality extracts, but also meets the requirements of green environmental protection. The theoretical solubilities of the volatile oils acquired by the SCCO2 dynamic extraction at various temperatures and pressures were 1.385 × 10−3–8.971 × 10−3 (g oil/g CO2). Moreover, the three density-based models were well correlated with these theoretical solubility data, with a high coefficient of determination and low average absolute relative deviation.
Collapse
|
22
|
Tunç MT, Koca İ. Optimization of ohmic heating assisted hydrodistillation of cinnamon and bay leaf essential oil. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Merve Tuğçe Tunç
- Gümüşhane University Faculty of Engineering and Natural Sciences, Department of Food Engineering Gümüşhane Turkey
- Ondokuz Mayıs University Faculty of Engineering, Department of Food Engineering Samsun Turkey
| | - İlkay Koca
- Ondokuz Mayıs University Faculty of Engineering, Department of Food Engineering Samsun Turkey
| |
Collapse
|
23
|
Sun Y, Zhang M, Fang Z. Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.02.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Yang YC, Wang CS, Wei MC. A green approach for the extraction and characterization of oridonin and ursolic and oleanolic acids from Rabdosia rubescens and its kinetic behavior. Food Chem 2020; 319:126582. [PMID: 32199144 DOI: 10.1016/j.foodchem.2020.126582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/14/2019] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
An ultrasound-assisted supercritical carbon dioxide (USC-CO2) procedure was developed for the extraction of ursolic acid, oleanolic acid and oridonin from Rabdosia rubescens, with yields that were 9.84-10.46 and 15.43-21.10% higher than those of the conventional SC-CO2 and heat-reflux extractions, respectively. USC-CO2 uses a shorter extraction time (1.83-2.09 times) and less organic solvent (3.39-173.25 times) to operate at a lower extraction temperature (5-16 °C). The dominant component in the extract was oridonin, which may indicate that the kinetic behavior in the extraction system is predominated by that of oridonin. Furthermore, the USC-CO2 and conventional SC-CO2 dynamic extraction kinetics of oridonin from R. rubescens were well described by the second-order rate and Fick's second law models. The extraction rate constant, energy of activation for diffusion, Biot number and thermodynamic parameters were deduced from the data obtained. These results provide valuable insights into the USC-CO2 and conventional SC-CO2 procedures.
Collapse
Affiliation(s)
- Yu-Chiao Yang
- Department and Graduate Institute of Pharmacology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chia-Sui Wang
- Department of Applied Geoinformatics, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Ming-Chi Wei
- Department of Applied Geoinformatics, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| |
Collapse
|
25
|
Yang YC, Wang CS, Wei MC. Development and validation of an ultrasound-assisted supercritical carbon-dioxide procedure for the production of essential oils from Perilla frutescens. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Xi J, Li Z, Fan Y. Recent advances in continuous extraction of bioactive ingredients from food-processing wastes by pulsed electric fields. Crit Rev Food Sci Nutr 2020; 61:1738-1750. [PMID: 32406247 DOI: 10.1080/10408398.2020.1765308] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The food processing produces a great amount of wastes that are rich in nutrients. Extraction is the first and most important step in recovery and purification of active ingredients from these wastes. The traditional extraction technologies are known to be laborious and time-consuming, require large volumes of organic solvent, have high temperature and energy costs, and obtain relatively low extraction efficiency. In recent 10 years, a novel, efficient and green extraction method, pulsed electric fields (PEFs) continuous extraction, which is emerging non-thermal food-processing technology, has shown great promise in extracting these food wastes. This work gives an overview of development in the use of PEF continuous extraction for obtaining bioactive ingredients from food-processing wastes. The technology is described in detail with respect to the mechanism, equipment, critical parameters. The protocols and applications of the technology in the extraction of food-processing wastes are comprehensively summarized. Finally, the degradation of bioactive ingredients, industrial applications, problem of novel food, consumer acceptance, and future trends of the technology are discussed. The PEF continuous extraction is considered as the ideal technology of high efficiency and low temperature for natural ingredients extraction. The technology possesses many remarkable potential applications in the food-processing industries compared to the conventional extraction methods.
Collapse
Affiliation(s)
- Jun Xi
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Zongming Li
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yang Fan
- School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Abdul Aziz AH, Putra NR, Kong H, Che Yunus MA. Supercritical Carbon Dioxide Extraction of Sinensetin, Isosinensetin, and Rosmarinic Acid from Orthosiphon stamineus Leaves: Optimization and Modeling. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04584-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Characterization and Biological Activities of Seed Oil Extracted from Berberis dasystachya Maxim. by the Supercritical Carbon Dioxide Extraction Method. Molecules 2020; 25:molecules25081836. [PMID: 32316267 PMCID: PMC7221573 DOI: 10.3390/molecules25081836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
Characterization of the structure and pharmacological activity of Berberis dasystachya Maxim., a traditional Tibetan medicinal and edible fruit, has not yet been reported. In this study, central composite design (CCD) combined with response surface methodology (RSM) was applied to optimize the extraction conditions of B. dasystachya oil (BDSO) using the supercritical carbon dioxide (SC-CO2) extraction method, and the results were compared with those obtained by the petroleum ether extraction (PEE) method. The chemical characteristics of BDSO were analyzed, and its antioxidant activity and in vitro cellular viability were studied by DPPH, ABTS, reducing power assay, and MTT assay. The results showed that the maximum yield of 12.54 ± 0.56 g/100 g was obtained at the optimal extraction conditions, which were: pressure, 25.00 MPa; temperature 59.03 °C; and CO2 flow rate, 2.25 SL/min. The Gas chromatography (GC) analysis results showed that BDSO extracted by the SC-CO2 method had higher contents of unsaturated fatty acids (85.62%) and polyunsaturated fatty acids (57.90%) than that extracted by the PEE method. The gas chromatography used in conjunction with ion mobility spectrometry (GC-IMS) results showed that the main volatile compounds in BDSO were aldehydes and esters. BDSO also exhibited antioxidant ability in a dose-dependent manner. Moreover, normal and cancer cells incubated with BDSO had survival rates of more than 85%, which indicates that BDSO is not cytotoxic. Based on these results, the BDSO extracted by the SC-CO2 method could potentially be used in other applications, e.g., those that involve using berries of B. dasystachya.
Collapse
|
29
|
Separation and quantification of bioactive flavonoids from Scutellaria barbata using a green procedure. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Recent advances of modern sample preparation techniques for traditional Chinese medicines. J Chromatogr A 2019; 1606:460377. [DOI: 10.1016/j.chroma.2019.460377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
|
31
|
IFST Winning Articles. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1002/fsat.3303_4.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Kinetics and mass transfer considerations for an ultrasound-assisted supercritical CO2 procedure to produce extracts enriched in flavonoids from Scutellaria barbata. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Dassoff ES, Li YO. Mechanisms and effects of ultrasound-assisted supercritical CO2 extraction. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Abstract
Abstract
In China, the rapid development greatly promotes the national economic power and living standard but also inevitably brings a series of environmental problems. In order to resolve these problems fundamentally, Chinese scientists have been undertaking research in the area of green chemical engineering (GCE) for many years and achieved great progresses. In this paper, we reviewed the research progresses related to GCE in China and screened four typical topics related to the Chinese resources characteristics and environmental requirements, i.e. ionic liquids and their applications, biomass utilization and bio-based materials/products, green solvent-mediated extraction technologies, and cold plasmas for coal conversion. Afterwards, the perspectives and development tendencies of GCE were proposed, and the challenges which will be faced while developing available industrial technologies in China were mentioned.
Collapse
|
35
|
Ferreira SL, Silva Junior MM, Felix CS, da Silva DL, Santos AS, Santos Neto JH, de Souza CT, Cruz Junior RA, Souza AS. Multivariate optimization techniques in food analysis – A review. Food Chem 2019; 273:3-8. [DOI: 10.1016/j.foodchem.2017.11.114] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/27/2017] [Accepted: 11/30/2017] [Indexed: 02/04/2023]
|
36
|
Supercritical fluid extraction assisted by cold pressing from clove buds: Extraction performance, volatile oil composition, and economic evaluation. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Knez Hrnčič M, Španinger E, Košir IJ, Knez Ž, Bren U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients 2019; 11:E257. [PMID: 30678345 PMCID: PMC6412513 DOI: 10.3390/nu11020257] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
Hop plants comprise a variety of natural compounds greatly differing in their structure and properties. A wide range of methods have been developed for their isolation and chemical analysis, as well as for determining their antioxidative, antimicrobial, and antigenotoxic potentials. This contribution provides an overview of extraction and fractionation techniques of the most important hop compounds known for their health-promoting features. Although hops remain the principal ingredient for providing the taste, stability, and antimicrobial protection of beer, they have found applications in the pharmaceutical and other food industries as well. This review focuses on numerous health-promoting effects of hops raging from antioxidative, sedative, and anti-inflammatory potentials, over anticarcinogenic features to estrogenic activity. Therefore, hops should be exploited for the prevention and even healing of several prevalent diseases like cardiovascular disorders and various cancer types. New ideas for future studies on hops are finally presented: computational investigations of chemical reactivities of hop compounds, nanoencapsulation, and synergistic effects leading to a higher bioavailability of biologically active substances as well as the application of waste hop biomass from breweries for the production of high-added-value products in accordance with the biorefinery concept.
Collapse
Affiliation(s)
- Maša Knez Hrnčič
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Eva Španinger
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Iztok Jože Košir
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia.
| | - Željko Knez
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| |
Collapse
|
38
|
Gavahian M, Chu YH, Lorenzo JM, Mousavi Khaneghah A, Barba FJ. Essential oils as natural preservatives for bakery products: Understanding the mechanisms of action, recent findings, and applications. Crit Rev Food Sci Nutr 2018; 60:310-321. [PMID: 30431327 DOI: 10.1080/10408398.2018.1525601] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bakery products, as an important part of a healthy diet, are characterized by their limited shelf-life. Microbiological spoilage of these products not only affects the quality characteristics and result in the economic loss but also threatens consumer's health. Incorporation of chemical preservatives, as one of the most conventional preserving techniques, lost its popularity due to the increasing consumer's health awareness. Therefore, the bakery industry is seeking alternatives to harmful antimicrobial agents that can be accepted by health-conscious customers. In this regard, essential oils have been previously used as either a part of product ingredient or a part of the packaging system. Therefore, the antimicrobial aspect of essential oils and their ability in delaying the microbiological spoilage of bakery products have been reviewed. Several types of essential oils, including thyme, cinnamon, oregano, and lemongrass, can inhibit the growth of harmful microorganisms in bakery products, resulting in a product with extended shelf-life and enhanced safety. Research revealed that several bioactive compounds are involved in the antimicrobial activity of essential oils. However, some limitations, such as the possible negative effects of essential oils on sensory parameters, may limit their applications, especially in high concentrations. In this case, they can be used in combination with other preservation techniques such as using appropriate packaging materials. Further research regarding the commercial production of the bakery products formulated with essential oils is required in this area.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, 30062, Republic of China
| | - Yan-Hwa Chu
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, 30062, Republic of China
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
39
|
Johner JC, Hatami T, Carvalho PIN, Meireles MAA. Impact of Grinding Procedure on the Yield and Quality of the Extract from Clove Buds Using Supercritical Fluid Extraction. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1874256401810010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
The effects of the grinding procedure on the supercritical fluid extraction (SFE) yields of eugenol, β-caryophyllene, α-humulene, and eugenyl acetate from clove are discussed in detail in this paper.
Methods:
For this purpose, five grinding procedures were employed: 1) continuous 1-min grinding, 2) continuous 2-min grinding, 3) two 1-min grinding periods with 6-min stop in between 4) continuous 4-min grinding, and 5) four 1-min grinding periods with 6-min stops in between. After that, the extractor was filled with 12 g of milled clove obtained using one of the grinding procedures while the other SFE parameters were kept constant (pressure of 150 bar, temperature of 40 °C, supercritical CO2 flow rate of 1.03×10−4 kg/s, static time of 20 min, and dynamic extraction time of 15 min). Then, the composition of the extract was evaluated by gas chromatography (GC).
Conclusion:
It was found that the grinding procedure has considerable effects on the recoveries of eugenol, β-caryophyllene, α-humulene, and eugenyl acetate from clove, and employing four 1-min grinding periods with 6-min stops in between as the grinding procedure gave the highest content of the aforementioned components in the extract.
Collapse
|
40
|
Taghizadeh SF, Davarynejad G, Asili J, Riahi-Zanjani B, Nemati SH, Karimi G. Chemical composition, antibacterial, antioxidant and cytotoxic evaluation of the essential oil from pistachio (Pistacia khinjuk) hull. Microb Pathog 2018; 124:76-81. [PMID: 30138753 DOI: 10.1016/j.micpath.2018.08.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/25/2018] [Accepted: 08/18/2018] [Indexed: 11/30/2022]
Abstract
Chemical composition, antibacterial, antioxidant and cytotoxic activities of (Pistacia khinjuk) hull essential oil (EO) were evaluated in this study. The EO was isolated and analyzed by gas chromatography-mass spectrometry. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined using 6 strains of Gram-positive and negative bacteria. DPPH radical scavenging (DPPH) and β-Caroten Bleaching (BCB) assays were used to measure antioxidant activity of the EO. In vitro cytotoxic activity was measured using MTT assay. Fifty-six compounds representing 99.5% of the total oil composition were identified. In the antibacterial results, Staphylococcus aureus was found to be the most susceptible strain (MIC and MBC = 16 μg/ml). Antioxidant IC50 values were respectively 19.03 ± 0.001 and 49.22 ± 0.005 μg/mL. The IC50 indexes of cytotoxic tests were 29.6, 37.3 and 41.1 μg/mL for MCF-7, PC3 and DU-145 cell lines, respectively.
Collapse
Affiliation(s)
- Seyedeh Faezeh Taghizadeh
- Department of Horticulture and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamhossein Davarynejad
- Department of Horticulture and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Javad Asili
- Department of Pharmacognosy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hossein Nemati
- Department of Horticulture and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Development and characterization of a green procedure for apigenin extraction from Scutellaria barbata D. Don. Food Chem 2018; 252:381-389. [DOI: 10.1016/j.foodchem.2017.12.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/23/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022]
|
42
|
Hu Q, Zhou M, Wei S. Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food Antisepsis Field. J Food Sci 2018; 83:1476-1483. [PMID: 29802735 DOI: 10.1111/1750-3841.14180] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 01/23/2023]
Abstract
As potential and valuable antiseptics in the food industry, clove oil and its main effective composition eugenol show beneficial advantages on antibacterial and antifungal activity, aromaticity, and safety. Researches find that both clove oil and eugenol express significantly inhibitory effects on numerous kinds of food source microorganisms, and the mechanisms are associated with reducing the migratory and adhesion and inhibiting the synthesis of biofilm and various virulence factors of these microorganisms. Clove oil and eugenol are generally regarded as safe in vivo experiments. However, they may express certain cytotoxicity on fibroblasts and other cells in vitro. Studies on the quality and additive standard of clove oil and eugenol should be strengthened to promote the antiseptic effects of them in the food antiseptic field.
Collapse
Affiliation(s)
- Qiao Hu
- College of Animal Science and Chongqing Engineering Research Center of Veterinary Science, Southwest Univ., Chongqing Rongchang, 402460, China
| | - Meifang Zhou
- College of Animal Science and Chongqing Engineering Research Center of Veterinary Science, Southwest Univ., Chongqing Rongchang, 402460, China
| | - Shuyong Wei
- College of Animal Science and Chongqing Engineering Research Center of Veterinary Science, Southwest Univ., Chongqing Rongchang, 402460, China
| |
Collapse
|
43
|
Yang YC, Lin PH, Wei MC. Production of oridonin-rich extracts from Rabdosia rubescens using hyphenated ultrasound-assisted supercritical carbon dioxide extraction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3323-3332. [PMID: 27981601 DOI: 10.1002/jsfa.8182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 11/05/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Among active components in Rabdosia rubescens, oridonin has been considered a key component and the most valuable compound because it has a wide range of activities beneficial to human health. To produce a high-quality oridonin extract, an alternative hyphenated procedure involving an ultrasound-assisted and supercritical carbon dioxide (HSC-CO2 ) extraction method to extract oridonin from R. rubescens was developed in this study. Fictitious solubilities of oridonin in supercritical CO2 (SC-CO2 ) with ultrasound assistance were measured by using the dynamic method at temperatures ranging from 305.15 K to 342.15 K over a pressure range of 11.5 to 33.5 MPa. RESULTS Fictitious solubilities of oridonin at different temperatures and pressures were over the range of 2.13 × 10-6 to 10.09 × 10-6 (mole fraction) and correlated well with the density-based models, including the Bartle model, the Chrastil model, the Kumar and Johnston model and the Mendez-Santiago and Teja model, with overall average absolute relative deviations (AARDs) of 6.29%, 4.39%, 3.12% and 5.07%, respectively. CONCLUSION Oridonin exhibits retrograde solubility behaviour in the supercritical state. Fictitious solubility data were further determined and obtained a good fit with four semi-empirical models. Simultaneously, the values of the total heat of solution, vaporisation and solvation of oridonin were estimated. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Chiao Yang
- Department and Graduate Institute of Pharmacology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Pei-Hui Lin
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ming-Chi Wei
- Department of Applied Geoinformatics, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
44
|
Khaw KY, Parat MO, Shaw PN, Falconer JR. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Molecules 2017; 22:molecules22071186. [PMID: 28708073 PMCID: PMC6152233 DOI: 10.3390/molecules22071186] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022] Open
Abstract
Supercritical fluid technologies offer a propitious method for drug discovery from natural sources. Such methods require relatively short processing times, produce extracts with little or no organic co-solvent, and are able to extract bioactive molecules whilst minimising degradation. Supercritical fluid extraction (SFE) provides a range of benefits, as well as offering routes to overcome some of the limitations that exist with the conventional methods of extraction. Unfortunately, SFE-based methods are not without their own shortcomings; two major ones being: (1) the high establishment cost; and (2) the selective solvent nature of CO2, i.e., that CO2 only dissolves small non-polar molecules, although this can be viewed as a positive outcome provided bioactive molecules are extracted during solvent-based SFE. This review provides an update of SFE methods for natural products and outlines the main operating parameters for extract recovery. Selected processing considerations are presented regarding supercritical fluids and the development and application of ultrasonic-assisted SFE methods, as well as providing some of the key aspects of SFE scalability.
Collapse
Affiliation(s)
- Kooi-Yeong Khaw
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Brisbane, QLD 4102, Australia.
| | - Marie-Odile Parat
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Brisbane, QLD 4102, Australia.
| | - Paul Nicholas Shaw
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Brisbane, QLD 4102, Australia.
| | - James Robert Falconer
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
45
|
Isolation of triterpenic acid-rich extracts from Hedyotis corymbosa using ultrasound-assisted supercritical carbon dioxide extraction and determination of their fictitious solubilities. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Killiny N, Jones SE. Profiling of volatile organic compounds released from individual intact juvenile and mature citrus leaves. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:47-51. [PMID: 27889520 DOI: 10.1016/j.jplph.2016.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 05/03/2023]
Abstract
Plants release volatiles to communicate with each other and to attract or repel insects. The methods used to collect volatiles are varied. Here, we describe a simple solvent-less, solid phase microextraction-based method to collect the volatiles released from intact citrus leaves. We were able to collect up to 39 volatiles from both juvenile and mature leaves. Our results indicated that juvenile leaves produced both monoterpenes and sesquiterpenes, and while mature leaves continued to produce a variety of monoterpenes, their release of sesquiterpenes decreased dramatically. The finding that juvenile leaves emitted higher levels of sesquiterpenes while mature leaves released mostly monoterpenes suggests that younger leaves of plants may be involved in a more complex chemical communication system.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, United States.
| | - Shelley E Jones
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, United States
| |
Collapse
|