1
|
Qi L, Wang Z, Yin Z, Liu K, Meenu M, Lu H, Zhao H, Yuan C, Tian Y. Rapid and slow thawing of Takifugu rubripes fillets: TMT-labeled proteomics analysis, biochemical and morphological comparison. Food Chem 2025; 476:143389. [PMID: 39977997 DOI: 10.1016/j.foodchem.2025.143389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
This study aimed to investigate how running water (rapid, R) and ice-water (slow, I) thawing methods affect the quality of Takifugu rubripes fillets. Thawing shrinkage and changes in extractable proteins quantified by tandem mass tag (TMT)-labeled quantitative proteomics were compared. The results showed that the rapidly thawed fillets were quickly underwent greater shrinkage, and the smaller gap areas were reduced by 7.5 % compared to slow thawing. Compared with fresh fish fillets, the outflow of proteins such as ATP synthase, NADH dehydrogenase, and aconitase within mitochondria increased in both thawing methods that presents cell membrane damage and significant disruptions in mitochondrial structure. The pyruvate dehydrogenase and cytochrome c were significantly upregulated in slow-thawing group. Whereas myosin and structural proteins including the Z-line related were significantly upregulated in the rapid-thawing group. These differential proteins serve as crucial markers for elucidating mechanism involved in muscle quality deterioration under different thawing conditions.
Collapse
Affiliation(s)
- Lin Qi
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China; United Graduate School of Agricultural Sciences, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan
| | - Zhuolin Wang
- Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan
| | - Zhongzhuan Yin
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China; Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8477, Japan
| | - Kaisheng Liu
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China
| | - Maninder Meenu
- College of Biosystems Engineering and Food Science, Zhejiang University, Yuhangtang Road, Hangzhou 310058, China
| | - Hang Lu
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China
| | - Hui Zhao
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China
| | - Chunhong Yuan
- Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan; Agri - Innovation Center, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan
| | - Yuanyong Tian
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China.
| |
Collapse
|
2
|
Wu J, Ding Z, Tu J, Osama A, Nie Q, Cai W, Zhang B. Unveiling the anticancer potential of plumbagin: targeting pyruvate kinase M2 to induce oxidative stress and apoptosis in hepatoma cells. RSC Med Chem 2024:d4md00519h. [PMID: 39363929 PMCID: PMC11446330 DOI: 10.1039/d4md00519h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Pyruvate kinase M2 (PKM2), a crucial enzyme in the glycolysis pathway, is commonly documented as being overexpressed in cancer cells. Inhibiting PKM2, a strategy to mitigate cancer cell-dependent glycolysis, has demonstrated efficacy in anticancer treatment. In this study, plumbagin, which was originally extracted from the plant Plumbago zeylanica L., was discovered as a novel PKM2 inhibitor and it could bind to PKM2 to inhibit the enzymatic activity. Treatment with plumbagin in HepG2 cells resulted in the decrease of PKM2 expression, which in turn reduced the protein kinase function. The mRNA levels of its downstream genes, such as LDHA and MYC, were suppressed. Additionally, plumbagin downregulated the expression of intracellular antioxidant proteins, which induced oxidative stress and mitochondrial damage, ultimately triggering apoptosis. Moreover, plumbagin also reduced the migration and proliferation of HepG2 cells. This study offered valuable insights into the molecular mechanism of plumbagin and advocated for the exploration of PKM2 inhibitors as viable possibilities for anticancer therapeutics.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Zhenjiang Ding
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Beijing 100015 China
| | - Jingwen Tu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Qiuying Nie
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Wenqing Cai
- Regor Therapeutics Inc 1206 Zhangjiang Road, Building C, Pu Dong New District Shanghai 201210 China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
3
|
Atanassova S, Yorgov D, Stratev D, Veleva P, Stoyanchev T. Near-Infrared Spectroscopy for Rapid Differentiation of Fresh and Frozen-Thawed Common Carp ( Cyprinus carpio). SENSORS (BASEL, SWITZERLAND) 2024; 24:3620. [PMID: 38894411 PMCID: PMC11175329 DOI: 10.3390/s24113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
This study aimed to investigate near-infrared spectroscopy (NIRS) in combination with classification methods for the discrimination of fresh and once- or twice-freeze-thawed fish. An experiment was carried out with common carp (Cyprinus carpio). From each fish, test pieces were cut from the dorsal and ventral regions and measured from the skin side as fresh, after single freezing at minus 18 °C for 15 ÷ 28 days and 15 ÷ 21 days for the second freezing after the freeze-thawing cycle. NIRS measurements were performed via a NIRQuest 512 spectrometer at the region of 900-1700 nm in Reflection mode. The Pirouette 4.5 software was used for data processing. SIMCA and PLS-DA models were developed for classification, and their performance was estimated using the F1 score and total accuracy. The predictive power of each model was evaluated for fish samples in the fresh, single-freezing, and second-freezing classes. Additionally, aquagrams were calculated. Differences in the spectra between fresh and frozen samples were observed. They might be assigned mainly to the O-H and N-H bands. The aquagrams confirmed changes in water organization in the fish samples due to freezing-thawing. The total accuracy of the SIMCA models for the dorsal samples was 98.23% for the calibration set and 90.55% for the validation set. For the ventral samples, respective values were 99.28 and 79.70%. Similar accuracy was found for the PLS-PA models. The NIR spectroscopy and tested classification methods have a potential for nondestructively discriminating fresh from frozen-thawed fish in as methods to protect against fish meat food fraud.
Collapse
Affiliation(s)
- Stefka Atanassova
- Department of Agricultural Engineering, Faculty of Agriculture, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria; (D.Y.); (P.V.)
| | - Dimitar Yorgov
- Department of Agricultural Engineering, Faculty of Agriculture, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria; (D.Y.); (P.V.)
| | - Deyan Stratev
- Department of Food Quality and Safety, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria; (D.S.); (T.S.)
| | - Petya Veleva
- Department of Agricultural Engineering, Faculty of Agriculture, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria; (D.Y.); (P.V.)
| | - Todor Stoyanchev
- Department of Food Quality and Safety, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria; (D.S.); (T.S.)
| |
Collapse
|
4
|
Gao Y, Li D. Antibacterial mode of action of garviecin LG34 against Gram-negative bacterium Salmonella typhimurium. FEMS Microbiol Lett 2024; 371:fnae066. [PMID: 39138064 DOI: 10.1093/femsle/fnae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024] Open
Abstract
Garviecin LG34 produced by Lactococcus garvieae LG34 exhibits wide-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria. This work aimed at clarifying the antibacterial mode of action of garviecin LG34 against Gram-negative bacterium Salmonella typhimurium. To determine the concentration for the bacteriocin antimicrobial mode experiments, the minimum inhibitory concentration of garviecin LG34 against S. typhimurium CICC21484 was determined as 0.25 mg/ml. Garviecin LG34 decreased the viable count of S. typhimurium CICC21484 and its antibacterial activity was the dose and time dependant. Garviecin LG34 led to the dissipation of transmembrane potential, the rise in the extracellular conductivity, UV-absorbing material at 260 nm, and LDH level of S. typhimurium CICC21484. Scanning electron micrographs results shown that garviecin LG34 cause dramatic deformation and fragmentation including the flagellum shedding, pores formation in surface, and even completely breakage of S. typhimurium cell. Moreover, garviecin LG34 decreased the intracellular ATP level. The results of this study demonstrated that garviecin LG34 can destroy cell structure, increase membrane permeability of S. typhimurium, thereby might be used as biopreservative for treating food borne and salmonellosis resulting from Gram-negative bacterium S. typhimurium.
Collapse
Affiliation(s)
- Yurong Gao
- School of Biological and Environmental Engineering, Chaohu University, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
| | - Dapeng Li
- School of Biological and Environmental Engineering, Chaohu University, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
| |
Collapse
|
5
|
Bouchendhomme T, Soret M, Grard T, Lencel P. Differentiating between fresh and frozen-thawed fish fillets by muscle fibre permeability measurement. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Bouchendhomme T, Soret M, Devin A, Pasdois P, Grard T, Lencel P. Differentiating between fresh and frozen-thawed fish fillets by mitochondrial permeability measurement. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Wang H, Shi W, Wang X. Differential proteomic analysis of frozen tilapia (Oreochromis niloticus) fillets with quality characteristics by a tandem mass tag (TMT)-based strategy. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Massaro A, Stella R, Negro A, Bragolusi M, Miano B, Arcangeli G, Biancotto G, Piro R, Tata A. New strategies for the differentiation of fresh and frozen/thawed fish: A rapid and accurate non-targeted method by ambient mass spectrometry and data fusion (part A). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108364] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Chen S, Gong P, Zhang J, Shan Y, Han X, Zhang L. Use of qPCR for the analysis of population heterogeneity and dynamics during Lactobacillus delbrueckii spp. bulgaricus batch fculture. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 49:1-10. [PMID: 33356615 DOI: 10.1080/21691401.2020.1860074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Direct molecular methods such as real-time polymerase chain reaction (qPCR) and propidium monoazide (PMA)-qPCR have been successfully used for quantifying viable microorganisms in the food industry. This study attempted to use qPCR and PMA-qPCR for quantifying Lactobacillus delbrueckii spp. bulgaricus sp1.1 physiological states. The qPCR standards of the 16S rRNA gene were employed to calibrate the qPCR assay, which contributed to an amplification efficiency of 98.42%. The number of copies of the 16S rRNA gene was linearly related to cell density, and this linear relationship was used to construct a quantitative curve (R2 =0.9981) with a detection limit of 15.1 colony-forming units mL-1·reaction-1. qPCR in combination with an optimal PMA concentration (60 μM) helped in discriminating and quantifying the viable cells, without any interference by heat-killed cells. Compared with the conventional methods, the population heterogeneity of viable, culturable, dormant-like and membrane-permeabilized cells were well identified and quantified using qPCR during L. delbrueckii spp. bulgaricus sp1.1 batch culture. Despite the restriction in the enumeration of lysed cells, qPCR-based methods facilitated reliable identification and quantification of bacterial physiological states and provided additional knowledge on the dynamics of L. delbrueckii spp. bulgaricus sp1.1 physiological states.
Collapse
Affiliation(s)
- Shiwei Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Pimin Gong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yujuan Shan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xue Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Lanwei Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.,College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
10
|
Imbalance between peptidoglycan synthases and hydrolases regulated lysis of Lactobacillus bulgaricus in batch culture. Arch Microbiol 2021; 203:4571-4578. [PMID: 34156502 DOI: 10.1007/s00203-021-02433-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Lactobacillus bulgaricus is an important starter culture in the dairy industry, cell lysis is negative to the high density of this strain. This work describes the response of peptidoglycan synthases and hydrolases in Lactobacillus bulgaricus sp1.1 when pH decreasing in batch culture. First, the cell lysis was investigated by measuring the cytosolic lactate dehydrogenase released to the fermentation broth, a continuous increase in extracellular lactate dehydrogenase was observed after the lag phase in batch culture. Then, the peptidoglycan hydrolases profile analyzed using the zymogram method showed that eight proteins have the ability of peptidoglycan hydrolysis, three of the eight proteins were considered to contribute lysis of L. bulgaricus sp1.1 according to the changes and extents of peptidoglycan hydrolysis. In silico analysis showed that three putative peptidoglycan hydrolases, including N-acetylmuramyl-L-Ala amidase (protein ID: ALT46642.1), amidase (protein ID: ALT46641.1), and N-acetylmuramidase (protein ID: WP_013439201.1) were compatible with these proteins. Finally, the transcription of the three putative peptidoglycan hydrolases was upregulated in batch culture, in contrast, the expression of four peptidoglycan synthases was downregulated. These observations suggested the imbalance between peptidoglycan synthases and hydrolases involved in the lysis of Lactobacillus bulgaricus sp1.1.
Collapse
|
11
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Bekaert K, Cropotova J, García MR, Messens W, Bover‐Cid S. The use of the so-called 'superchilling' technique for the transport of fresh fishery products. EFSA J 2021; 19:e06378. [PMID: 33552296 PMCID: PMC7842081 DOI: 10.2903/j.efsa.2021.6378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Superchilling entails lowering the fish temperature to between the initial freezing point of the fish and about 1-2°C lower. The temperature of superchilled fresh fishery products (SFFP) in boxes without ice was compared to that of products subject to the currently authorised practice in boxes with ice (CFFP) under the same conditions of on-land storage and/or transport. A heat transfer model was developed and made available as a tool to identify under which initial configurations of SFFP the fish temperature, at any time of storage/transport, is lower or equal to CFFP. A minimum degree of superchilling, corresponding to an ice fraction in the fish matrix of SFFP equal or higher than the proportion of ice added per mass of fish in CFFP, will ensure with 99-100% certainty (almost certain) that the fish temperature of SFFP and the consequent increase of relevant hazards will be lower or equal to that of CFFP. In practice, the degree of superchilling can be estimated using the fish temperature after superchilling and its initial freezing point, which are subject to uncertainties. The tool can be used as part of 'safety-by-design' approach, with the reliability of its outcome being dependent on the accuracy of the input data. An evaluation of methods capable of detecting whether a previously frozen fish is commercially presented as 'superchilled' was carried out based on, amongst others, their applicability for different fish species, ability to differentiate fresh fish from fish frozen at different temperatures, use as a stand-alone method, ease of use and classification performance. The methods that were considered 'fit for purpose' are Hydroxyacyl-coenzyme A dehydrogenase (HADH) test, α-glucosidase test, histology, ultraviolet-visible-near-infrared (UV-VIS/NIR) spectroscopy and hyperspectral imaging. These methods would benefit from standardisation, including the establishment of threshold values or classification algorithms to provide a practical routine test.
Collapse
|
12
|
Emerging Techniques for Differentiation of Fresh and Frozen-Thawed Seafoods: Highlighting the Potential of Spectroscopic Techniques. Molecules 2020; 25:molecules25194472. [PMID: 33003382 PMCID: PMC7582365 DOI: 10.3390/molecules25194472] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/27/2020] [Indexed: 01/12/2023] Open
Abstract
Fish and other seafood products have a limited shelf life due to favorable conditions for microbial growth and enzymatic alterations. Various preservation and/or processing methods have been developed for shelf-life extension and for maintaining the quality of such highly perishable products. Freezing and frozen storage are among the most commonly applied techniques for this purpose. However, frozen–thawed fish or meat are less preferred by consumers; thus, labeling thawed products as fresh is considered a fraudulent practice. To detect this kind of fraud, several techniques and approaches (e.g., enzymatic, histological) have been commonly employed. While these methods have proven successful, they are not without limitations. In recent years, different emerging methods have been investigated to be used in place of other traditional detection methods of thawed products. In this context, spectroscopic techniques have received considerable attention due to their potential as being rapid and non-destructive analytical tools. This review paper aims to summarize studies that investigated the potential of emerging techniques, particularly those based on spectroscopy in combination with chemometric tools, to detect frozen–thawed muscle foods.
Collapse
|
13
|
Pinto VS, Flores IS, Ferri PH, Lião LM. NMR Approach for Monitoring Caranha Fish Meat Alterations due to the Freezing-Thawing Cycles. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01836-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Assessment of fish freshness based on fluorescence measurement of mitochondrial membrane potential. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Hassoun A, Måge I, Schmidt WF, Temiz HT, Li L, Kim HY, Nilsen H, Biancolillo A, Aït-Kaddour A, Sikorski M, Sikorska E, Grassi S, Cozzolino D. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020; 9:E1069. [PMID: 32781687 PMCID: PMC7466239 DOI: 10.3390/foods9081069] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022] Open
Abstract
Animal origin food products, including fish and seafood, meat and poultry, milk and dairy foods, and other related products play significant roles in human nutrition. However, fraud in this food sector frequently occurs, leading to negative economic impacts on consumers and potential risks to public health and the environment. Therefore, the development of analytical techniques that can rapidly detect fraud and verify the authenticity of such products is of paramount importance. Traditionally, a wide variety of targeted approaches, such as chemical, chromatographic, molecular, and protein-based techniques, among others, have been frequently used to identify animal species, production methods, provenance, and processing of food products. Although these conventional methods are accurate and reliable, they are destructive, time-consuming, and can only be employed at the laboratory scale. On the contrary, alternative methods based mainly on spectroscopy have emerged in recent years as invaluable tools to overcome most of the limitations associated with traditional measurements. The number of scientific studies reporting on various authenticity issues investigated by vibrational spectroscopy, nuclear magnetic resonance, and fluorescence spectroscopy has increased substantially over the past few years, indicating the tremendous potential of these techniques in the fight against food fraud. It is the aim of the present manuscript to review the state-of-the-art research advances since 2015 regarding the use of analytical methods applied to detect fraud in food products of animal origin, with particular attention paid to spectroscopic measurements coupled with chemometric analysis. The opportunities and challenges surrounding the use of spectroscopic techniques and possible future directions will also be discussed.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Ingrid Måge
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Walter F. Schmidt
- United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705-2325, USA;
| | - Havva Tümay Temiz
- Department of Food Engineering, Bingol University, 12000 Bingol, Turkey;
| | - Li Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Heidi Nilsen
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 Via Vetoio, Coppito, L’Aquila, Italy;
| | | | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Ewa Sikorska
- Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy;
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia;
| |
Collapse
|
16
|
Zheng Y, Qiu Z, Wang X. Protein oxidation and tandem mass tag‐based proteomic analysis in the dorsal muscle of farmed obscure pufferfish subjected to multiple freeze–thaw cycles. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yao Zheng
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Zehui Qiu
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Xi‐chang Wang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic‐Product Processing & Preservation Shanghai China
| |
Collapse
|
17
|
Purification, characterization and mode of action of enterocin, a novel bacteriocin produced by Enterococcus faecium TJUQ1. Int J Biol Macromol 2019; 144:151-159. [PMID: 31846663 DOI: 10.1016/j.ijbiomac.2019.12.090] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Enterococcus faecium TJUQ1 with high bacteriocin-producing ability was isolated from pickled Chinese celery. In this study, enterocin TJUQ1 was purified by ammonium sulfate precipitation, reversed-phase chromatography (Sep-Pak C8) and cation-exchange chromatography. The activity of the purified bacteriocin was 44,566.41 ± 874.69 AU/mg, which corresponds to a purification fold of 35.89 ± 2.34. The molecular mass was 5520 Da by MALDI-TOF MS and Tris-Tricine SDS-PAGE. The result of LC-MS/MS showed that the bacteriocin shared 59.15% identity with enterocin produced by E. faecium GN (accession no. O34071). PCR amplification revealed that E. faecium TJUQ1 possesses a gene encoding enterocin B with 60% identity to enterocin B. Circular dichroism (CD) spectroscopy showed that the molecular conformation was 32.6% helix, 19.5% beta, 12.9% turn and 35.0% random. The stability of enterocin TJUQ1 was measured. After exposure at 121 °C for 15 min, the residual antimicrobial activity of enterocin TJUQ1 was 85.95 ± 1.32%. The antimicrobial activity of enterocin TJUQ1 was still active over a pH range of 3-11. Enterocin TJUQ1 was inactivated after exposure to proteolytic enzymes but was not inactivated by lipase or amylase. These results showed that enterocin TJUQ1 was a novel class II bacteriocin. Enterocin TJUQ1 showed wide antibacterial activity against food-borne gram-negative and gram-positive pathogens, such as Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella enterica. The MIC was 5.26 ± 0.24 μg/mL against L. monocytogenes CMCC 1595. SEM and TEM were used to observe the changes in the morphological and intracellular organization of L. monocytogenes CMCC 1595 cells treated with enterocin TJUQ1. The results demonstrated that enterocin TJUQ1 increased extracellular electrical conductivity, facilitated pore formation, triggered the release of UV-absorbing materials, ATP and LDH, and even caused cell lysis in L. monocytogenes CMCC 1595 cells. Based on the characterization, the wide inhibitory spectrum and mode of action determined so far, enterocin TJUQ1 is a potential preservative for the food industry.
Collapse
|
18
|
Cléach J, Pasdois P, Marchetti P, Watier D, Duflos G, Goffier E, Lacoste AS, Slomianny C, Grard T, Lencel P. Mitochondrial activity as an indicator of fish freshness. Food Chem 2019; 287:38-45. [DOI: 10.1016/j.foodchem.2019.02.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/08/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022]
|
19
|
Marlard S, Doyen P, Grard T. Rapid Multiparameters Approach to Differentiate Fresh Skinless Sea Bass (Dicentrarchus labrax) Fillets from Frozen-Thawed Ones. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1572257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sylvain Marlard
- Univ. Littoral Côte d’Opale, Convention ANSES, EA 7394, ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
- INRA, France
- University of Lille, Lille, France
- ISA, Lille, France
- University of Artois, Arras, France
| | - Périne Doyen
- Univ. Littoral Côte d’Opale, Convention ANSES, EA 7394, ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
| | - Thierry Grard
- Univ. Littoral Côte d’Opale, Convention ANSES, EA 7394, ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
| |
Collapse
|
20
|
Wu Y, An J, Liu Y, Wang Y, Ren W, Fang Z, Sun L, Gooneratne R. Mode of action of a novel anti-Listeria bacteriocin (CAMT2) produced by Bacillus amyloliquefaciens ZJHD3-06 from Epinephelus areolatus. Arch Microbiol 2018; 201:61-66. [PMID: 30203187 DOI: 10.1007/s00203-018-1553-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Bacteriocin CAMT2, produced by Bacillus amyloliquefaciens ZJHD3-06, has been shown to exhibit protective activity against important food spoilage and food-borne bacterial pathogens. This study was conducted to investigate the mode of action of bacteriocin CAMT2 against highly pathogenic Listeria monocytogenes ATCC 19111. The addition of bacteriocin CAMT2 at 64 AU/ml inhibited L. monocytogenes ATCC 19111. An efflux of K+ ions, lactic acid dehydrogenase and an increase in extracellular electrical conductivity was observed in CAMT2-treated L. monocytogenes. Electron microscopy showed morphological alterations such as uneven cell surface, accumulation of cell debris and bacterial lysis. These results show that bacteriocin CAMT2 inhibit L. monocytogenes by increasing cell permeability and inducing membrane damage, hence it has the great application potentials in ensuring food safety.
Collapse
Affiliation(s)
- Yaqian Wu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| | - Junying An
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| | - Ying Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, 524088, China.
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| | - Wenbin Ren
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510230, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, 524088, China.
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| |
Collapse
|
21
|
Fazio A, Cerezuela R, Panuccio MR, Cuesta A, Esteban MÁ. In vitro effects of Italian Lavandula multifida L. leaf extracts on gilthead seabream (Sparus aurata) leucocytes and SAF-1 cells. FISH & SHELLFISH IMMUNOLOGY 2017; 66:334-344. [PMID: 28522420 DOI: 10.1016/j.fsi.2017.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/07/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Lavandula multifida is very appreciated by pharmaceutical and cosmetic industries. In Italy is only found in Calabria and Sicily and, at present, urge its valorization due to its high extinction and genetic erosion risks. Possible applications of L. multifida extracts as immunostimulant in fish aquaculture were assayed by using gilthead seabream (Sparus aurata) as a marine fish model, due to its importance in fish aquaculture. The in vitro effects of both aqueous and ethanolic leaf extracts obtained from two Italian populations of L. multifida on head kidney leucocyte activities (viability, phagocytosis, respiratory burst and peroxidase content) were assessed. Furthermore, the possible cytotoxic effects of the extracts on SAF-1 cells and their bactericidal effects on three fish pathogenic bacteria (Vibrio harveyi, Vibrio anguillarum, Aeromonas salmonicida) were also evaluated. All the assays were performed in comparison with leaf extracts obtained from a widely-distributed species as L. angustifolia. Results showed that water and ethanolic leaf extracts obtained from L. multifida enhanced innate immune activities of S. aurata HK leucocytes. Furthermore, SAF-1 cell viability was not affected significantly after being incubated with the extracts. These extracts did not exert any bactericidal activity on the pathogenic bacterial strains tested in the present study. Results obtained in the present work suggested the possibility of use such extracts in in vivo studies in order to corroborate the possibility of their use in aquaculture. Their use could prevent to improve fish defense against pathogenic infections through enhancement of the fish immune status.
Collapse
Affiliation(s)
- Angela Fazio
- Department of Innovation for Biological, Agrofood and Forestry Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy; Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Rebeca Cerezuela
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | | | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Maria Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|