1
|
Liu J, Zhang Y, Ashfaq T, Sun S. Flavor of Peanut oil: An overview of odorants, analytical techniques, factors affecting flavor characteristics. Food Chem 2025; 483:144283. [PMID: 40245632 DOI: 10.1016/j.foodchem.2025.144283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Peanut oil is appreciated for its high nutritional value and distinctive properties, also recognized as one of the major vegetable oils. Flavor is a significant characteristic that not only determines the quality of peanut oil but also significantly influences consumer acceptance. The odor-active compounds in hot-pressed and cold-pressed peanut oil, flavor analysis methods (extraction, qualitative, quantitative, and sensory evaluation), and the effects of raw materials, pretreatment techniques, and oil extraction methods on peanut oil flavor have been thoroughly examined in this review. Possible production paths of some important aroma-active chemicals are also suggested, along with a list of more than two hundred odorants found in hot and cold-pressed peanut oil from the literature. Future challenges in flavor analysis approaches lay in the successful connection of experimental data with sensory experience. Processing techniques should be further improved to produce peanut oil with superior flavor and nutrient content.
Collapse
Affiliation(s)
- Jiuyang Liu
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Yaoyao Zhang
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Talha Ashfaq
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Shangde Sun
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
2
|
Shao Z, Kong X, Yang H, Zhang Y, Yang C, Chen F, Wang Z, Chen J, Zhu T, Xin Y, Chen Y. The Optimization of Demulsification Using Composite Fatty Acids in Aqueous Enzymatic Extraction and the Changes of the Emulsion Stability During Demulsification. Foods 2025; 14:749. [PMID: 40077451 PMCID: PMC11899067 DOI: 10.3390/foods14050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Aqueous enzymatic extraction (AEE) can simultaneously separate oil and protein. However, a stable O/W emulsion is present in the AEE process, which is not favorable for extracting oils. This study optimized the use of heptanoic and octanoic acids for demulsification in aqueous enzymatic extraction. The optimal condition for demulsification, including a fatty acid ratio of 1:3 (heptanoic acid to octanoic acid) with 1.00% addition, a reaction time of 40 min, a temperature of 70 °C, and a solid-to-liquid ratio of 1:5, resulted in a demulsification rate of 97.95% ± 0.03%. After demulsification, the particle size of the peanut emulsion increased, while the absolute potential value and conductivity decreased. The type and content of proteins decreased, and the tertiary structure also changed, with tryptophan residues buried within the proteins, shifting the system from a polar to nonpolar environment. The microstructure of the emulsion changed and the emulsion transformed into W/O. To summarize, composite fatty acid had a significant effect on the demulsification of emulsion.
Collapse
Affiliation(s)
| | | | | | | | - Chenxian Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.S.); (X.K.); (H.Y.); (Y.Z.); (Z.W.); (J.C.); (T.Z.); (Y.X.); (Y.C.)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.S.); (X.K.); (H.Y.); (Y.Z.); (Z.W.); (J.C.); (T.Z.); (Y.X.); (Y.C.)
| | | | | | | | | | | |
Collapse
|
3
|
Dong R, Leng T, Wang Y, Gan B, Yu Q, Xie J, Du Q, Zhu M, Chen Y. Full composition-wide association study identifies the chemical markers to distinguish different processed camellia oils: Integrating multi-targets with chemometrics. Food Chem 2025; 463:141217. [PMID: 39276554 DOI: 10.1016/j.foodchem.2024.141217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/17/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
To identify chemical-markers from hot-pressed, cold-pressed, organic-solvent, aqueous-enzymatic and water extracted camellia oils (HPO, CPO, OSO, AEO, WEO). We report a full composition-wide association study based on GC-MS, LC-MS and 1HNMR. Squalene, β-amyrin and lupeol were potential-markers in distinguishing different oils through GC-MS. Naringenin, FA 18:1 + 10, undecanedioic acid and tridecanedioic acid exhibited were up-regulated in HPO. 16-Hydroxyhexadecanoic acid, octadecanoic acid and 9-hydroxyoctadecadienoic acid were potential-metabolites in CPO. Characteristic-markers in WEO were hydroquinidine and undecanedioic acid. Gallic acid, hydroquinidine, lichesterylic acid and 7,4'-dihydroxyflavone were biomarkers in AEO. Oleic acid, linoleic acid and triacylglycerols may be potential key markers to distinguish AEO from others via 1HNMR. Finally, Naringenin, gallic acid, kaempferol, 7,4'-dihydroxyflavone, (Z)-5,8,11-trihydroxyoctadec-9-enoic acid and β-amyrin were screened and validate through integration of nonglyceride minor components and trace metabolites. Results provided understanding of chemical diversity for different processed-camellia oils, and proposed a complementary strategy to distinguish different camellia oils for multidimensional perspective.
Collapse
Affiliation(s)
- Ruihong Dong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Tuo Leng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Bei Gan
- Jiangxi Provincial Product Quality Supervision Testing College, Nanchang 330029, People's Republic of China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qianwen Du
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
4
|
Peña-Vázquez GI, Serrano-Sandoval SN, Rodríguez-Rodríguez J, Antunes-Ricardo M, Guajardo-Flores D. Anti-inflammatory and antioxidant activity of functional lipids extracted through sustainable technologies from Mexican Opuntia ficus-indica seeds. Food Chem 2024; 467:142258. [PMID: 39637671 DOI: 10.1016/j.foodchem.2024.142258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Opuntia ficus-indica (OFI) seeds are a rich source of functional lipids, yet research on Mexican cultivars remains limited. This study evaluated the antioxidant and anti-inflammatory properties of lipids extracted through subcritical fluid and supercritical fluid extraction with carbon dioxide (SCE-CO₂ and SFE-CO₂) from Mexican OFI Villanueva and Rojo Vigor seeds with and without enzymatic pretreatment. SCE OFI Villanueva oil showed higher extraction efficiency of linoleic (45.86 mg/g), and oleic (9.86 mg/g) acids purified more than 5.47 and 1.18 times, respectively. Additionally, SCE oils exhibited the highest antioxidant potential (68 %) and anti-inflammatory activity (45 %) at the evaluated doses. In conclusion, SCE-CO₂ enhanced the extraction efficiency of unsaturated fatty acids, improving their potential biological effects, while enzymatic pretreatment did not positively impact on results, suggesting reduced extraction efficiency and bioactivity. These findings suggest that OFI seeds can serve as a valuable source of functional ingredients for the development of value-added food products.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - José Rodríguez-Rodríguez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - Daniel Guajardo-Flores
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| |
Collapse
|
5
|
Zhang W, Yu J, Wang D, Han X, Wang T, Yu D. Ultrasonic-ethanol pretreatment assisted aqueous enzymatic extraction of hemp seed oil with low Δ 9-THC. ULTRASONICS SONOCHEMISTRY 2024; 103:106766. [PMID: 38271781 PMCID: PMC10818077 DOI: 10.1016/j.ultsonch.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
In this study, ultrasonic-ethanol pretreatment combined with AEE was developed for oil extraction from hemp seeds. The oil yield reached a maximum of 23.32 % at 200 W ultrasonic power and 30 min ultrasonic time, at this point, the degradation rate of Δ9-THC was 83.11 %. By determining the composition of hemp seed before and after pretreatment, it was shown that ultrasonic-ethanol pretreatment reduced the protein content of the raw material. An enzyme mixture consisting of pectinase and hemicellulase (1/1/1, w/w/w) was experimentally determined to be used, and the AEE extraction conditions were optimized using the Plackett-Burman design and the Box-Behnken. The optimal conditions were determined to be pH 5, total enzyme activity of 37,800 U/g, liquid-solid ratio of 10.4 mL/g, enzyme digestion temperature of 32 °C, enzymatic time of 189 min, and oil recovery of 88.38 %. The results of confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the emulsion formed during ultrasonic ethanol pretreatment was not uniformly distributed, and the droplets appeared to be aggregated; and the irregular pores of hemp seed increased after pretreatment. The contents of Δ9-THC and CBN in the extracted oil samples were 9.58 mg/kg and 52.45 mg/kg, respectively. Compared with the oil extracted by Soxhlet extraction (SE), the oil extracted by this experimental method was of better quality and similar in fatty acid composition.
Collapse
Affiliation(s)
- Wang Zhang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaye Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Donghua Wang
- The University of Sheffield, Sheffield, S10 2TNc, United Kingdom
| | - Xiaoyu Han
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Zhang Y, Chen Y, Liu C, Chen F, Yin L. Effects of Roasting Temperatures on Peanut Oil and Protein Yield Extracted via Aqueous Enzymatic Extraction and Stability of the Oil Body Emulsion. Foods 2023; 12:4183. [PMID: 38002240 PMCID: PMC10670177 DOI: 10.3390/foods12224183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Oil body emulsions (OBEs) affect the final oil yield as an intermediate in the concurrent peanut oil and protein extraction process using an aqueous enzyme extraction (AEE) method. Roasting temperature promotes peanut cell structure breakdown, affecting OBE composition and stability and improving peanut oil and protein extraction rates. Therefore, this study aimed to investigate the effects of pretreatment at different roasting temperatures on peanut oil and protein yield extracted through AEE. The results showed that peanut oil and protein extraction rates peaked at 90 °C, 92.21%, and 77.02%, respectively. The roasting temperature did not change OBE composition but affected its stability. The OBE average particle size increased significantly with increasing temperature, while at 90 °C, the zeta potential peaked, and the interfacial protein concentration hit its lowest, indicating OBE stability was the lowest. Optical microscopy and confocal laser scanning microscopy confirmed the average particle size findings. The oil quality obtained after roasting treatment at 90 °C did not differ significantly from that at 50 °C. The protein composition remained unaffected by the roasting temperature. Conclusively, the 90 °C roasting treatment effectively improved the yield of peanut oil extracted using AEE, providing a theoretical basis for choosing a suitable pretreatment roasting temperature.
Collapse
Affiliation(s)
- Yajing Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.); (Y.C.); (C.L.); (L.Y.)
| | - Yu Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.); (Y.C.); (C.L.); (L.Y.)
| | - Chen Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.); (Y.C.); (C.L.); (L.Y.)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.); (Y.C.); (C.L.); (L.Y.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Lijun Yin
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.); (Y.C.); (C.L.); (L.Y.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
7
|
Zhang Y, Sun S. Tiger nut ( Cyperus esculentus L.) oil: A review of bioactive compounds, extraction technologies, potential hazards and applications. Food Chem X 2023; 19:100868. [PMID: 37780245 PMCID: PMC10534246 DOI: 10.1016/j.fochx.2023.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Tiger nut is a tuber of a plant native in the Mediterranean coastal countries, which is of great interest in food industry due to its richness in carbohydrates, lipids, starches, minerals, etc. Recent studies have focused on the analysis of the phytochemical composition of tiger nut, including six essential nutrients, polyphenols, and the extraction of proteins, starches, and phenolic compounds from the by-products of tiger nut milk 'horchata'. Few works were focused on the possibility of using tiger nut oil, a nutritious oil comparable to olive oil, as an edible oil. Therefore, this review discussed some extraction technologies of tiger nut oil, and their effects on the properties of oil, such as bioactive compounds, oxidative stability and potential hazards. The information on the emerging applications of tiger nut oil was summarized and an outlook on the utilization of tiger nut oil by-products were also reviewed.
Collapse
Affiliation(s)
- Yiming Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | | |
Collapse
|
8
|
Li T, Yang C, Liu K, Zhu T, Duan X, Xu Y. Demulsification of Emulsion Using Heptanoic Acid during Aqueous Enzymatic Extraction and the Characterization of Peanut Oil and Proteins Extracted. Foods 2023; 12:3523. [PMID: 37835176 PMCID: PMC10572140 DOI: 10.3390/foods12193523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Peanut oil body emulsion occurs during the process of aqueous enzymatic extraction (AEE). The free oil is difficult to release and extract because its structure is stable and not easily destroyed. Demulsification can release free oil in an oil body emulsion, so various fatty acids were selected for the demulsification. Changes in the amount of heptanoic acid added, solid-liquid ratio, reaction temperature, and reaction time were adopted to investigate demulsification, and the technological conditions of demulsification were optimized. While the optimal conditions were the addition of 1.26% of heptanoic acid, solid-liquid ratio of 1:3.25, reaction temperature of 72.7 °C, and reaction time of 55 min, the maximum free oil yield was (95.84 ± 0.19)%. The analysis of the fatty acid composition and physicochemical characterization of peanut oils extracted using four methods were studied during the AEE process. Compared with the amount of oil extracted via other methods, the unsaturated fatty acids of oils extracted from demulsification with heptanoic acid contained 78.81%, which was significantly higher than the other three methods. The results of physicochemical characterization indicated that the oil obtained by demulsification with heptanoic acid had a higher quality. According to the analysis of the amino acid composition, the protein obtained using AEE was similar to that of commercial peanut protein powder (CPPP). However, the essential amino acid content of proteins extracted via AEE was significantly higher than that of CPPP. The capacity of water (oil) holding, emulsifying activity, and foaming properties of protein obtained via AEE were better than those for CPPP. Overall, heptanoic acid demulsification is a potential demulsification method, thus, this work provides a new idea for the industrial application of simultaneous separation of oil and proteins via AEE.
Collapse
Affiliation(s)
| | - Chenxian Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (T.L.); (K.L.); (T.Z.); (X.D.); (Y.X.)
| | | | | | | | | |
Collapse
|
9
|
Gao Y, Zheng Y, Yao F, Chen F. A Novel Strategy for the Demulsification of Peanut Oil Body by Caproic Acid. Foods 2023; 12:3029. [PMID: 37628028 PMCID: PMC10453783 DOI: 10.3390/foods12163029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
The aqueous enzymatic method is a form of green oil extraction technology with limited industrial application, owing to the need for the demulsification of the oil body intermediate product. Existing demulsification methods have problems, including low demulsification rates and high costs, such that new methods are needed. The free fatty acids produced by lipid hydrolysis can affect the stability of peanut oil body (POB) at a certain concentration. After screening even-carbon fatty acids with carbon chain lengths below ten, caproic acid was selected for the demulsification of POB using response surface methodology and a Box-Behnken design. Under the optimal conditions (caproic acid concentration, 0.22%; solid-to-liquid ratio, 1:4.7 (w/v); time, 61 min; and temperature, 79 °C), a demulsification rate of 97.87% was achieved. Caproic acid not only adjusted the reaction system pH to cause the aggregation of the POB interfacial proteins, but also decreased the interfacial tension and viscoelasticity of the interfacial film with an increasing caproic acid concentration to realize POB demulsification. Compared to pressed oil and soxhlet-extracted oil, the acid value and peroxide value of the caproic acid demulsified oil were increased, while the unsaturated fatty acid content and oxidation induction time were decreased. However, the tocopherol and tocotrienol contents were higher than those of the soxhlet-extracted oil. This study provides a new method for the demulsification of POB.
Collapse
Affiliation(s)
| | | | | | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lian Hua Rd., Zhengzhou 450001, China; (Y.G.); (Y.Z.); (F.Y.)
| |
Collapse
|
10
|
Zhao Y, Chen F, Wang Y. Demulsification of peanut emulsion by aqueous enzymatic extraction using a combination of oleic and citric acids. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
11
|
Polo-Castellano C, Mateos RM, Visiedo F, Palma M, Barbero GF, Ferreiro-González M. Optimizing an Enzymatic Extraction Method for the Flavonoids in Moringa ( Moringa oleifera Lam.) Leaves Based on Experimental Designs Methodologies. Antioxidants (Basel) 2023; 12:antiox12020369. [PMID: 36829929 PMCID: PMC9952375 DOI: 10.3390/antiox12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Moringa oleifera Lam. is known to have significant antioxidant properties. Because of this, the development of an optimal extraction method is crucial to obtain pharmacological products based on the bioactive compounds produced by this tree. Through a Plackett-Burman and a Box-Behnken design, enzymatic extraction conditions (temperature, agitation, solvent pH and composition, sample-to-solvent ratio, enzyme-to-sample ratio and extraction time) have been optimized using normalized areas (UA/g) as response variable and relative mass (mg/g) as quantification variable. Extractions were performed in an incubator, where all the extraction conditions could be digitally controlled. Thus, 58.9 °C, 50 rpm, 4.0 pH, 32.5% EtOH, 0.2 g sample in 15 mL solvent and 106 U/g were established as the optimal extraction conditions for the extraction with a mix of pectinases coming from Aspergillus niger. Under these optimal conditions, two-minute extractions were performed and evaluated through a single factor design. The enzymatic extraction method demonstrated its suitability to produce extracts with good antioxidant power (antioxidant activity 4.664 ± 0.059 mg trolox equivalent/g sample and total phenolic compounds 6.245 ± 0.101 mg gallic acid equivalent/g sample). The method was also confirmed to have good repeatability (1.39%) and intermediate precision (2.37%) levels.
Collapse
Affiliation(s)
- Curro Polo-Castellano
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| | - Rosa María Mateos
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Area of Biochemistry and Molecular Biology, Department of Biomedicine, Biotechnology and Public Health, University of Cadiz, 11519 Cadiz, Spain
| | - Francisco Visiedo
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
- Correspondence: (M.P.); (M.F.-G.); Tel.: +34-956-016-355 (M.P. & M.F.-G)
| | - Gerardo F. Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
- Correspondence: (M.P.); (M.F.-G.); Tel.: +34-956-016-355 (M.P. & M.F.-G)
| |
Collapse
|
12
|
Sorita GD, Favaro SP, Ambrosi A, Di Luccio M. Aqueous extraction processing: An innovative and sustainable approach for recovery of unconventional oils. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Song H, Cong Z, Wang C, He M, Liu C, Gao P. Research progress on Walnut oil: Bioactive compounds, health benefits, extraction methods, and medicinal uses. J Food Biochem 2022; 46:e14504. [PMID: 36369998 DOI: 10.1111/jfbc.14504] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Walnut oil is extracted from walnut kernels (Juglans regia Linne) or iron walnut kernels (Juhlans sigillata Dode). The percentage of oil in walnuts is 52%-70%. The main constituents in oil are fatty acids, phenols, sterols, squalene, melatonin, vitamins, and minerals. Many extraction methods such as supercritical carbon dioxide extraction, maceration, modified "bligh and dyer extraction," aqueous enzymatic extraction, ultrasonic extraction, soxhlet extraction, and cold-press extraction methods are reported in the literature. Walnut oil showed anti-inflammatory, antitumor, antioxidant, immunomodulatory, neuroprotective, cardioprotective, antidiabetic, and antihyperlipidemic activities. The reported data in the literature suggest that walnut oil has many health benefits. This review summarizes the extraction methods, bioactive constituents, health benefits, and pharmacological actions of walnut oil. PRACTICAL APPLICATIONS: Walnut oil is a natural vegetable oil of significant importance due to their nutritional, and intelligence-boosting benefits. Several factors, including the processing parameters and the phytochemical profile, affect walnut oil products' flavor and color. In addition, storage environment of walnut oil can also affect walnut oil quality. Apart from the predominant ingredient fatty acids, the chemical composition of walnut oil comprises phenols, sterols, squalene, melatonin, vitamins, and minerals. These bioactive compounds are of potential value owing to their health-promoting benefits, including antioxidant, antitumor, and cholesterol-lowering effects. Many chemical constituents were isolated from walnut oil; however, all the compounds are not explored for their possible medicinal value. Thus, clinical studies, exploration of the therapeutic potential and the molecular mechanisms of all the compounds, and development of convenient dosage forms either for therapeutic or functional food purposes are warranted.
Collapse
Affiliation(s)
- Huaying Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhufeng Cong
- Shandong Institute of Cancer Prevention and Treatment, Jinan, China
| | - Changlin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Congying Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Pop OL, Kerezsi AD, Ciont (Nagy) C. A Comprehensive Review of Moringa oleifera Bioactive Compounds-Cytotoxicity Evaluation and Their Encapsulation. Foods 2022; 11:foods11233787. [PMID: 36496595 PMCID: PMC9737119 DOI: 10.3390/foods11233787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Moringa oleifera Lam. has gained a lot of attention due to its potential use as a functional food not only for human health but also for animal health. Its bioactive molecules include carbohydrates, phenolic compounds, carotenoids, fatty acids, essential amino acids, and functional peptides. Despite significant efforts to isolate and characterize bioactive metabolites with health functions, few effective metabolites are accessible. The current review aims to describe the main processes for extracting and encapsulating bioactive compounds from Moringa oleifera for potential impact on food science and public health. Researchers have shown that different extraction techniques significantly impact the Moringa polysaccharides' molecular structure and biological activity. Encapsulation has been proposed to reduce oxidative stability and entrap active agents within a carrier material to deliver bioactive molecules into foods. Currently, polysaccharides and proteins, followed by lipids, are used for material encapsulation. Recent techniques include spray drying, cross-linking gelation, freeze-drying, nanoencapsulation, electrospinning, and electrospraying. Moreover, these encapsulations can overlap concerns regarding the Moringa oleifera compounds' cytotoxicity. Future studies should prioritize the effect of new encapsulation materials on Moringa extract and develop new techniques that consider both encapsulation cost and efficiency.
Collapse
Affiliation(s)
- Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (O.L.P.); (C.C.)
| | - Andreea Diana Kerezsi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, B-5030 Gembloux, Belgium
| | - Călina Ciont (Nagy)
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (O.L.P.); (C.C.)
| |
Collapse
|
15
|
Squalene rich virgin palm oil by microwave-assisted enzyme aqueous extraction from palm mesocarp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Wen S, Lu Y, Yu N, Nie X, Meng X. Microwave pre‐treatment aqueous enzymatic extraction (
MPAEE
): A case study on the
Torreya grandis
seed kernels oil. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sisi Wen
- College of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang China
| | - Yuanchao Lu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang China
| | - Ningxiang Yu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang China
| | - Xiaohua Nie
- College of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang China
| | - Xianghe Meng
- College of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang China
| |
Collapse
|
17
|
Rendered-Protein Hydrolysates as a Low-Cost Nitrogen Source for the Fungal Biotransformation of 5-Hydroxymethylfurfural. Catalysts 2022. [DOI: 10.3390/catal12080839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
5-hydroxymethylfurfural (HMF) is a platform chemical that can be converted into a wide range of high-value derivatives. Industrially, HMF-based derivatives are synthesized via chemical catalysis. However, biocatalytic transformation has emerged as an attractive alternative. Significant advances have been made in the last years using isolated enzymes and whole-cell biocatalysts in HMF biotransformation. Nonetheless, one of the major bottlenecks is the cost of the process, mainly due to the microorganism growth substrate. In this work, biotransformation studies to transform HMF into 2,5-di(hydroxymethyl)furan (DHMF) were carried out with the fungus Fusarium striatum using low-cost protein hydrolysates. The protein hydrolysates were obtained from fines, an unexploited material produced during the rendering process of meat industry waste residues. Given the high content in the protein of fines, of around 46%, protein hydrolysis was optimized using two commercially available proteases, Alcalase 2.4 L and Neutrase 0.8 L. The maximum degree of hydrolysis (DH) achieved with Alcalase 2.4 L was 21.4% under optimal conditions of 5% E/S ratio, pH 8, 55 °C, and 24 h. On the other hand, Neutrase 0.8 L exhibited lower efficiency, and therefore, lower protein recovery. After optimization of the Neutrase 0.8 L process using the response surface methodology (RSM), the maximum DH achieved was 7.2% with the variables set at 15% E/S ratio, initial pH 8, 40 °C, and 10.5 h. Using these hydrolysates as a nitrogen source allowed higher sporulation of the fungus and, therefore, the use of a lower volume of inoculum (three-fold), obtaining a DHMF yield > 90%, 50% higher than the yield obtained when using commercial peptones. The presented process allows the transformation of animal co- and by-products into low-cost nitrogen sources, which greatly impacts the industrial feasibility of HMF biotransformation.
Collapse
|
18
|
Impact of Cell Disintegration Techniques on Curcumin Recovery. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
In recent years, the improvement of curcumin recovery from turmeric by cell and tissue disintegration techniques has been gaining more attention; these emerging techniques were used for a reproducible and robust curcumin extraction process. Additionally, understanding the material characteristics is also needed to choose the optimized technique and appropriate processing parameters. In this review, an outlook about the distribution of different fractions in turmeric rhizomes is reviewed to explain matrix challenges on curcumin extraction. Moreover, the most important part, this review provides a comprehensive summary of the latest studies on ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE), high-pressure-assisted extraction (HPAE), pulsed electric field-assisted extraction (PEFAE), and ohmic heating-assisted extraction (OHAE). Lastly, a detailed discussion about the advantages and disadvantages of emerging techniques will provide an all-inclusive understanding of the food industry’s potential of different available processes.
Collapse
|
19
|
Optimization of ultrasound assisted aqueous enzymatic extraction of oil from Cinnamomum camphora seeds. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Zheng Y, Gao P, Wang S, Ruan Y, Zhong W, Hu C, He D. Comparison of Different Extraction Processes on the Physicochemical Properties, Nutritional Components and Antioxidant Ability of Xanthoceras sorbifolia Bunge Kernel Oil. Molecules 2022; 27:molecules27134185. [PMID: 35807441 PMCID: PMC9268096 DOI: 10.3390/molecules27134185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, we investigated and compared the oil yield, physicochemical properties, fatty acid composition, nutrient content, and antioxidant ability of Xanthoceras sorbifolia Bunge (X. sorbifolia) kernel oils obtained by cold-pressing (CP), hexane extraction (HE), aqueous enzymatic extraction (AEE), and supercritical fluid extraction (SFE). The results indicated that X. sorbifolia oil contained a high percentage of monounsaturated fatty acids (49.31–50.38%), especially oleic acid (30.73–30.98%) and nervonic acid (2.73–3.09%) and that the extraction methods had little effect on the composition and content of fatty acids. X. sorbifolia oil is an excellent source of nervonic acid. Additionally, the HE method resulted in the highest oil yield (98.04%), oxidation stability index (9.20 h), tocopherol content (530.15 mg/kg) and sterol content (2104.07 mg/kg). The DPPH scavenging activity rates of the oil produced by SFE was the highest. Considering the health and nutritional value of oils, HE is a promising method for X. sorbifolia oil processing. According to multiple linear regression analysis, the antioxidant capacity of the oil was negatively correlated with sterol and stearic acid content and positively correlated with linoleic acid, arachidic acid and polyunsaturated fatty acid content. This information is important for improving the nutritional value and industrial production of X. sorbifolia.
Collapse
Affiliation(s)
- Yuling Zheng
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
| | - Pan Gao
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan 430012, China;
- Correspondence: ; Tel./Fax: +86-027-83910015
| | - Shu Wang
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan 430012, China;
| | - Yuling Ruan
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
| | - Wu Zhong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan 430012, China;
| | - Chuanrong Hu
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
| | - Dongping He
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan 430012, China;
| |
Collapse
|
21
|
Polmann G, Rossi GB, Teixeira GL, Maciel LG, de Francisco A, Arisi ACM, Block JM, Feltes MMC. High-added value co-products obtained from pecan nut ( Carya illinoinensis) using a green extraction technology. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2284-2294. [PMID: 35602452 PMCID: PMC9114258 DOI: 10.1007/s13197-021-05242-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/24/2020] [Accepted: 01/10/2021] [Indexed: 06/03/2023]
Abstract
Abstract The aqueous (AF) and solid (SF) fractions obtained as co-products in the aqueous extraction of pecan nut oil assisted by Alcalase® were evaluated. In the AF, the degree of protein hydrolysis (DH) and the electrophoretic profile of protein hydrolysates, phenolic compounds, and antioxidant capacity (reducing potential of the hydrophilic compounds, RPHC, 2,2-diphenyl-1-picrylhydrazyl, DPPH; and inhibition of lipid peroxidation) were determined. The proximate composition and microstructure were evaluated in SF. The results indicated a DH of 3.9%. The sample treated with the enzyme (ET) showed a molecular weight of proteins lower than 15 kDa. The ET showed higher content of phenolics (726.3 mg GAE/100 g) and antioxidant capacity higher than the sample without enzymatic treatment. The SF showed a residual lipid content rich in oleic and linoleic acids. Furthermore, changes in the proximate composition and the microstructure were observed. The results indicate the potentiality of hydrolyzed fractions for application in food. Graphic abstract
Collapse
Affiliation(s)
- Gabriela Polmann
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Gabriela Barbosa Rossi
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Gerson Lopes Teixeira
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Laércio Galvão Maciel
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Alicia de Francisco
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Ana Carolina Maisonnave Arisi
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Jane Mara Block
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Maria Manuela Camino Feltes
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| |
Collapse
|
22
|
Jiamphun S, Chaiyana W. Enhanced Antioxidant, Hyaluronidase, and Collagenase Inhibitory Activities of Glutinous Rice Husk Extract by Aqueous Enzymatic Extraction. Molecules 2022; 27:molecules27103317. [PMID: 35630792 PMCID: PMC9143893 DOI: 10.3390/molecules27103317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
In this research, we aimed to compare the biological activities related to cosmeceutical applications of glutinous rice husk extracted by aqueous enzymatic extraction (AEE) and conventional solvent extraction. Cellulase enzymes were used to assist the extraction process. The vanillic and ferulic acid contents of each extract were investigated by high-performance liquid chromatography, and their antioxidant and anti-aging activities were investigated by spectrophotometric methods. The irritation effects of each extract were investigated by the hen’s egg test on chorioallantoic membrane. The rice husk extract from AEE using 0.5% w/w of cellulase (CE0.5) contained the significantly highest content of vanillic and ferulic acid (p < 0.05), which were responsible for its biological activities. CE0.5 was the most potent antioxidant via radical scavenging activities, and possessed the most potent anti-skin wrinkle effect via collagenase inhibition. Aside from the superior biological activities, the rice husk extracts from AEE were safer than those from solvent extraction, even when 95% v/v ethanol was used. Therefore, AEE is suggested as a green extraction method that can be used instead of the traditional solvent extraction technique given its higher yield and high quality of bioactive compounds. Additionally, CE0.5 is proposed as a potential source of natural antioxidants and anti-aging properties for further development of anti-wrinkle products.
Collapse
Affiliation(s)
- Sudarat Jiamphun
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wantida Chaiyana
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-944343
| |
Collapse
|
23
|
Polmann G, Badia V, Danielski R, Ferreira SRS, Block JM. Nuts and Nut-Based Products: A Meta-Analysis from Intake Health Benefits and Functional Characteristics from Recovered Constituents. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2045495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gabriela Polmann
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Vinicius Badia
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University (UDESC), Pinhalzinho, Brazil
| | - Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Jane Mara Block
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| |
Collapse
|
24
|
Yu Y, Lu X, Zhang T, Zhao C, Guan S, Pu Y, Gao F. Tiger Nut ( Cyperus esculentus L.): Nutrition, Processing, Function and Applications. Foods 2022; 11:foods11040601. [PMID: 35206077 PMCID: PMC8871521 DOI: 10.3390/foods11040601] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
The tiger nut is the tuber of Cyperus esculentus L., which is a high-quality wholesome crop that contains lipids, protein, starch, fiber, vitamins, minerals and bioactive factors. This article systematically reviewed the nutritional composition of tiger nuts; the processing methods for extracting oil, starch and other edible components; the physiochemical and functional characteristics; as well as their applications in food industry. Different extraction methods can affect functional and nutritional properties to a certain extent. At present, mechanical compression, alkaline methods and alkali extraction-acid precipitation are the most suitable methods for the production of its oil, starch and protein in the food industry, respectively. Based on traditional extraction methods, combination of innovative techniques aimed at yield and physiochemical characteristics is essential for the comprehensive utilization of nutrients. In addition, tiger nut has the radical scavenging ability, in vitro inhibition of lipid peroxidation, anti-inflammatory and anti-apoptotic effects and displays medical properties. It has been made to milk, snacks, beverages and gluten-free bread. Despite their ancient use for food and feed and the many years of intense research, tiger nuts and their components still deserve further exploitation on the functional properties, modifications and intensive processing to make them suitable for industrial production.
Collapse
|
25
|
Sun L, Wang H, Wei J, Xue Y, Lan S, Li X, Yu D, Wang J. Extracting oil from grape seed using a combined wet enzymatic process and pressing. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Liu A, Jing H, Du X, Ma C, Wang H. Efficient Ultrasonic-assisted Aqueous Enzymatic Method for Pecan Nut Kernel Oil Extraction with Quality Analysis. J Oleo Sci 2022; 71:1749-1760. [DOI: 10.5650/jos.ess22119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Anning Liu
- The State Key Laboratory of Food Science & Technology, Jiangnan University
| | - Huijuan Jing
- School of Food Science & Technology, Jiangnan University
| | - Xiaojing Du
- The State Key Laboratory of Food Science & Technology, Jiangnan University
| | - Chaoyang Ma
- The State Key Laboratory of Food Science & Technology, Jiangnan University
| | - Hongxin Wang
- The State Key Laboratory of Food Science & Technology, Jiangnan University
| |
Collapse
|
27
|
Gao Y, Liu C, Yao F, Chen F. Aqueous enzymatic extraction of peanut oil body and protein and evaluation of its physicochemical and functional properties. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
Aqueous enzymatic extraction (AEE) is a new technology for extracting vegetable oil body which has the advantages of low energy consumption, product safety, mild reaction conditions, and simultaneous separation of oil and protein. Among the enzymes tested in the present work, Viscozyme L (compound plant hydrolase) exhibited the highest extraction activity during peanut oil extraction. Extraction was optimized using response surface methodology, and optimal conditions were enzymatic temperature 51.5 °C, material-to-liquid ratio 1:3.5, enzymatic concentration 1.5%, and enzymatic time 90 min, yielding total oil body and protein of 93.67 ± 0.59% and 76.84 ± 0.68%, respectively. The fatty acid composition and content, and various quality indicators were not significantly different from those of cold-pressed oil, hence peanut oil produced by AEE met the same standards as cold-pressed first-grade peanut oil. Additionally, the functional properties of peanut protein produced by AEE were superior to those of commercially available peanut protein.
Collapse
Affiliation(s)
- Yuhang Gao
- College of Food Science and Technology, Henan University of Technology , No. 100 Lian Hua Rd. , Zhengzhou 450001 , Henan , China
| | - Chen Liu
- College of Food Science and Technology, Henan University of Technology , No. 100 Lian Hua Rd. , Zhengzhou 450001 , Henan , China
| | - Fei Yao
- College of Food Science and Technology, Henan University of Technology , No. 100 Lian Hua Rd. , Zhengzhou 450001 , Henan , China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology , No. 100 Lian Hua Rd. , Zhengzhou 450001 , Henan , China
| |
Collapse
|
28
|
Rani H, Sharma S, Bala M. Technologies for extraction of oil from oilseeds and other plant sources in retrospect and prospects: A review. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Heena Rani
- Oilseeds Section, Department of Plant Breeding and Genetics Punjab Agricultural University Ludhiana Punjab India
| | - Sanjula Sharma
- Oilseeds Section, Department of Plant Breeding and Genetics Punjab Agricultural University Ludhiana Punjab India
| | - Manju Bala
- FG & OP Division ICAR‐Central Institute of Post‐Harvest Engineering and Technology Ludhiana Punjab India
| |
Collapse
|
29
|
Xu D, Hao J, Wang Z, Liang D, Wang J, Ma Y, Zhang M. Physicochemical properties, fatty acid compositions, bioactive compounds, antioxidant activity and thermal behavior of rice bran oil obtained with aqueous enzymatic extraction. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111817] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Aqueous Extraction of Seed Oil from Mamey Sapote (Pouteria sapota) after Viscozyme L Treatment. Catalysts 2021. [DOI: 10.3390/catal11060748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, aqueous enzymatic extraction (AEE) was evaluated during the process of obtaining oil from mamey sapote seed (OMSS). Viscozyme L enzyme complex was used at pH 4 and 50 °C during the optimization of the extraction process by central composite design and response surface methodology. Optimal conditions were: 3.5% (w/w) of enzyme (regarding the seed weight), 5.5 h of incubation time, 235 rpm of agitation rate, and 1:3.5 of solid-to-liquid ratio. These conditions enabled us to obtain an OMSS yield of 66%. No statistically significant differences were found in the fatty acid profile and physicochemical properties, such as the acid and iodine values and the percentage of free fatty acids, between the oil obtained by AEE or by the conventional solvent extraction (SE). However, the oxidative stability of the oil obtained by AEE (11 h) was higher than that obtained by SE (9.33 h), therefore, AEE, in addition to being an environmentally friendly method, produces a superior quality oil in terms of oxidative stability. Finally, the high oil content in mamey sapote seed, and the high percentage of oleic acid (around 50% of the total fatty acid) found in this oil, make it a useful edible vegetable oil.
Collapse
|
31
|
Abd Hadi HM, Tan CP, Mohamad Shah NK, Tan TB, Niranjan K, Mat Yusoff M. Establishment of an Effective Refining Process for Moringa oleifera Kernel Oil. Processes (Basel) 2021; 9:579. [DOI: 10.3390/pr9040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
This study systematically established the most effective refining process for Moringa oleifera (MO) kernel oil. Acid degumming (20.33 ± 1.37 ppm) removed significantly greater phosphorus than water degumming (31.18 ± 0.90 ppm). Neutralization was more effective than deodorization in decreasing the acid (0.06 mg KOH/g) and p-Anisidine (p-AV, 0.36 ± 0.03) values of the oil. Besides improving its color properties, acid-activated bleaching earth Type B was better than Types A and C in decreasing the oil’s p-AV (0.43 ± 0.02), acid value (3.96 ± 0.02 mg KOH/g), and moisture content (0.01 ± 0.00% w/w). The selected refining stages successfully produced MO kernel oil with acceptable peroxide value (PV, 1.66–3.33 meq/kg), p-AV (1.05–1.49), total oxidation value (TOTOX, 4.38–8.15), acid value (0.03 mg KOH/g), moisture content (0.01% w/w), phosphorus content (1.28–1.94 ppm), iodine value (80.79–81.03), oleic acid (79.52–79.65%), and tocopherol content (65.26–87.00 mg/kg).
Collapse
|
32
|
Current Pretreatment/Cell Disruption and Extraction Methods Used to Improve Intracellular Lipid Recovery from Oleaginous Yeasts. Microorganisms 2021; 9:microorganisms9020251. [PMID: 33513696 PMCID: PMC7910848 DOI: 10.3390/microorganisms9020251] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
The production of lipids from oleaginous yeasts involves several stages starting from cultivation and lipid accumulation, biomass harvesting and finally lipids extraction. However, the complex and relatively resistant cell wall of yeasts limits the full recovery of intracellular lipids and usually solvent extraction is not sufficient to effectively extract the lipid bodies. A pretreatment or cell disruption method is hence a prerequisite prior to solvent extraction. In general, there are no recovery methods that are equally efficient for different species of oleaginous yeasts. Each method adopts different mechanisms to disrupt cells and extract the lipids, thus a systematic evaluation is essential before choosing a particular method. In this review, mechanical (bead mill, ultrasonication, homogenization and microwave) and nonmechanical (enzyme, acid, base digestions and osmotic shock) methods that are currently used for the disruption or permeabilization of oleaginous yeasts are discussed based on their principle, application and feasibility, including their effects on the lipid yield. The attempts of using conventional and “green” solvents to selectively extract lipids are compared. Other emerging methods such as automated pressurized liquid extraction, supercritical fluid extraction and simultaneous in situ lipid recovery using capturing agents are also reviewed to facilitate the choice of more effective lipid recovery methods.
Collapse
|
33
|
Magalhães KT, Tavares TS, Gomes TM, Nunes CA. Multi-target response surface optimization of the aqueous extraction of Macauba kernel oil. GRASAS Y ACEITES 2020. [DOI: 10.3989/gya.0788191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Macauba (Acrocomia aculeata) is a promising tropical palm for the production of vegetable oil for both the food and non-food sectors. In this work, a multi-target response surface optimization of the aqueous extraction of Macauba kernel oil aimed to maximize the oil yield and minimize the free acidy and peroxide value. High yield was achieved at a high pH, long extraction periods and moderate temperatures, but these conditions contributed to elevating the peroxide value of the oil. On the other hand, pH presented the only significant effect on the oil’s acidity, which decreased with the increase in pH in the aqueous medium. Therefore, the multi-target response surface optimization based on a desirability approach showed that pH 11, room temperature (25 °C) and a 60 min agitation time was preferred to obtain high yield and low free acidity and peroxide values. These conditions resulted in 30% yield (63.1% of the yield obtained by solvent extraction), 0.3% free acidity, and a peroxide value of 2.9 meqO2/kg. The oil from the optimized aqueous extraction had a higher saturated fatty acid content compared to that from solvent extraction, especially fatty acids with < 14 carbon atoms, which can make the oil harder and more useful for producing special fats for specific food applications.
Collapse
|
34
|
Rodriguez LM, Fernández MB, Pérez EE, Crapiste GH. Performance of Green Solvents in the Extraction of Sunflower Oil from Enzyme‐Treated Collets. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luciana M. Rodriguez
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Av. Alem 1253. Primer Piso‐Ala C Bahía Blanca 8000 Argentina
- Planta Piloto de Ingeniería Química‐PLAPIQUI (UNS‐CONICET) Camino La Carrindanga km 7 Bahía Blanca 8000 Argentina
| | - María B. Fernández
- Grupo TECSE‐Facultad de Ingeniería‐UNCPBA Av. Del Valle 5737 Olavarría 7400 Argentina
| | - Ethel E. Pérez
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Av. Alem 1253. Primer Piso‐Ala C Bahía Blanca 8000 Argentina
- Planta Piloto de Ingeniería Química‐PLAPIQUI (UNS‐CONICET) Camino La Carrindanga km 7 Bahía Blanca 8000 Argentina
| | - Guillermo H. Crapiste
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Av. Alem 1253. Primer Piso‐Ala C Bahía Blanca 8000 Argentina
- Planta Piloto de Ingeniería Química‐PLAPIQUI (UNS‐CONICET) Camino La Carrindanga km 7 Bahía Blanca 8000 Argentina
| |
Collapse
|
35
|
Qian J, Zhao X, Zhao C, Yang H, Gou L, Wang W, Guo H. Pretreatment Camellia Seeds by Protease and Application to Extraction of Camellia Oil. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junqing Qian
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Xiaohua Zhao
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Changyan Zhao
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Haiyan Yang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Lihong Gou
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Wentao Wang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Hui Guo
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| |
Collapse
|
36
|
Nguyen HC, Vuong DP, Nguyen NTT, Nguyen NP, Su CH, Wang FM, Juan HY. Aqueous enzymatic extraction of polyunsaturated fatty acid–rich sacha inchi (Plukenetia volubilis L.) seed oil: An eco-friendly approach. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Su CH, Pham TTT, Cheng HH. Aqueous enzymatic extraction of rosmarinic acid from Salvia officinalis: optimisation using response surface methodology. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:575-582. [PMID: 31997419 DOI: 10.1002/pca.2922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/10/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Rosmarinic acid is a bioactive compound with various pharmaceutical effects and applications. OBJECTIVE This work developed a new approach for aqueous enzymatic extraction of rosmarinic acid from the leaves of Salvia officinalis. METHODS Different enzymes (proteases and cellulase) were evaluated for their extraction activity. Response surface methodology (RSM) was subsequently employed to optimise the extraction conditions. Thin layer chromatography was also used to identify rosmarinic acid in the extract of S. officinalis. RESULTS Among the tested enzymes, a Cellulase A and Protamex mixture (1:1, w/w) exhibited maximum effectiveness in the extraction. Through the use of RSM, the maximum rosmarinic acid content of 28.23 ± 0.41 mg/g was obtained with enzyme loading of 4.49%, water-to-sample ratio of 25.76 mL/g, temperature of 54.3°C, and extraction time of 2 h. CONCLUSION This study suggests that S. officinalis is a promising source of rosmarinic acid and aqueous enzymatic extraction is an efficient and ecofriendly method for extracting rosmarinic acid, with a short extraction time and without the contamination of a toxic solvent.
Collapse
Affiliation(s)
- Chia-Hung Su
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Thi Thanh Truc Pham
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hsien-Hao Cheng
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
38
|
Hu B, Li Y, Song J, Li H, Zhou Q, Li C, Zhang Z, Liu Y, Liu A, Zhang Q, Liu S, Luo Q. Oil extraction from tiger nut (Cyperus esculentus L.) using the combination of microwave-ultrasonic assisted aqueous enzymatic method - design, optimization and quality evaluation. J Chromatogr A 2020; 1627:461380. [PMID: 32823093 DOI: 10.1016/j.chroma.2020.461380] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 10/24/2022]
Abstract
Microwave-ultrasonic assisted aqueous enzymatic extraction (MUAAEE) was applied to extract tiger nut oil (TNO). The conditions of MUAAEE were optimized by Plackett-Burman design followed Box-Behnken design. An oil recovery of 85.23% was achieved under optimum conditions of a 2% concentration of mixed enzyme including cellulase, pectinase and hemicellulase (1/1/1, w/w/w), particle size <600 μm, microwave power 300 W, ultrasonic power 460 W, radiation temperature 40 °C, time 30 min, enzymolysis temperature 45 °C, pH 4.9, liquid-to-solid ratio 10 mL/g and time 180 min. Oil by MUAAEE revealed the similar fatty acid compositions, triglyceride compositions, thermal behaviour and flavour compared with oil by Soxhlet extraction (SE), while the oil quality of MUAAEE is superior to that of SE. Scanning electron microscopy revealed that structural disruption of tiger nut caused by MUAAEE facilitated the oil extraction. Results suggest that MUAAEE could be an efficient and environment-friendly method for extraction of TNO.
Collapse
Affiliation(s)
- Bin Hu
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Yi Li
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Jiaxing Song
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Haochen Li
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Qian Zhou
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Cheng Li
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Zhiqing Zhang
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Yuntao Liu
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Aiping Liu
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Qing Zhang
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Shuxiang Liu
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Qingying Luo
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
39
|
Zhang ZS, Xie QF, Che L. Synergistic effects of ultrasound and extraction solvent on the bioactive compound in kenaf seed oil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:2118-2128. [PMID: 32431338 DOI: 10.1007/s13197-020-04247-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
Kenaf seed oil was extracted with 3 different solvents, i.e. hexane, ethanol and aqueous enzymatic medium with or without ultrasonic assistance. The synergistic effects of ultrasound and extraction solvent on the content of bioactive compound in kenaf seed oil was investigated. Results show that ultrasound-assisted extraction with hexane obtained the highest yield (84.71%), while yield with aqueous enzymatic medium was the lowest (51.12%). Two endothermic peaks exhibited on the melting curve of kenaf seed oil at the temperature range - 37 to - 25 °C and - 12 to - 2 °C, respectively. Linoleic, oleic and palmitic acid are the major fatty acids, accounting for above 96% of the total fatty acids. The content of vitamin E, phosphatide, total phenols and sterol are 92.38-105.01 mg/100 g oil, 0.38-22.28 g/kg, 0.51-71.02 mg GAE/100 g and 161.79-533.12 mg/100 g, respectively. The solvent employed has significant effect (p < 0.05) on the thermal property, fatty acid composition and bioactive constituents of the extracted kenaf seed oil. The oil extracted with ethanol contained more nervonic acid and bioactive components such as β-carotene, phosphatide, total phenols and sterols. The introduction of ultrasound reduced the extraction time remarkably. The results demonstrate that extraction with ethanol combined with ultrasound is an effective method to extract kenaf seed oil, as more reasonable fatty acid composition and higher content of bioactive components can be achieved.
Collapse
Affiliation(s)
- Zhen-Shan Zhang
- 1College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, 45001 People's Republic of China
| | - Qing-Fang Xie
- 1College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, 45001 People's Republic of China
| | - Liming Che
- 2Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 People's Republic of China
| |
Collapse
|
40
|
Mat Yusoff M, Niranjan K, Mason OA, Gordon MH. Oxidative properties of Moringa oleifera kernel oil from different extraction methods during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1588-1597. [PMID: 31773733 DOI: 10.1002/jsfa.10167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Moringa oleifera (MO) kernel oil is categorized as a high-oleic oil that resembles olive oil. However, unlike olive trees, MO trees are largely present in most subtropical and tropical countries. In these countries, therefore, the benefits of oleic acid can be obtained at a cheaper price through the consumption of MO kernel oil. This study reports on the effect of different extraction methods on oxidative properties of MO kernel oil during storage for 140 days at 13, 25, and 37 °C. RESULTS All aqueous enzymatic extraction (AEE)-based methods generally resulted in oil with better oxidative properties and higher tocopherol retention than the use of solvent. Prior to AEE, boiling pre-treatment deactivated the hydrolytic enzymes and preserved the oil's quality. In contrast, high-pressure processing (HPP) pre-treatment accelerated hydrolytic reaction and resulted in an increase in free fatty acids after 140 days at all temperatures. No significant changes were detected in the oils' iodine values and fatty acid composition. The tocopherol content decreased significantly at both 13 and 25 °C after 60 days in the oil from SE method, and after 120 days in oils from AEE-based methods. CONCLUSION These findings are significant in highlighting the extraction methods resulting in crude MO kernel oil with greatest oxidative stability in the storage conditions tested. Subsequently, the suitable storage condition of the oil prior to refining can be determined. Further studies are recommended in determining the suitable refining processes and parameters for the MO kernel oil prior to application in variety food products. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Masni Mat Yusoff
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Keshavan Niranjan
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Onyinye A Mason
- Department of Agriculture, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Michael H Gordon
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| |
Collapse
|
41
|
Magalhães KT, Tavares TS, Gomes TM, Nunes CA. Effect of process variables on the yield and quality of jerivá ( Syagrus romanzoffiana) kernel oil from aqueous extraction. GRASAS Y ACEITES 2020. [DOI: 10.3989/gya.1063182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The fruit from jerivá (Syagrus romanzoffiana) has a kernel which is rich in oil, and has a pleasant smell that reminds one of coconut. It is rich in monounsaturated and saturated fatty acids, in addition to bioactive compounds. In this work, the effect of process variables on the yield and quality of jerivá kernel oil from aqueous extraction was evaluated using response surface methodology. The variables pH, time and temperature influenced the yield and the quality of the oil. High pH and time, along with mild temperature were suitable conditions to extract jerivá kernel oil by aqueous extraction, but excessively high pH, temperature and time negatively impacted the oil’s quality. pH was the only variable that significantly influenced free acidity, with a decrease in free acidity with the increase in pH. On the other hand, the increase in pH, time and temperature increased the peroxide value, which limited some conditions for obtaining jerivá kernel oil by aqueous extraction. The optimal conditions were found to be an extraction at pH 12, 25 °C and 60 minutes, which resulted in a yield of 39%, free acidity of 0.2% and a peroxide value of 5.8 meqO2·kg-1. Aqueous extraction yielded more unsaturated oil than that extracted with hexane, in addition to a higher proportion of caproic, oleic and linoleic acids, thus improving its nutritional characteristics and health benefits, despite decreasing its oxidative stability.
Collapse
|
42
|
Mwaurah PW, Kumar S, Kumar N, Attkan AK, Panghal A, Singh VK, Garg MK. Novel oil extraction technologies: Process conditions, quality parameters, and optimization. Compr Rev Food Sci Food Saf 2019; 19:3-20. [DOI: 10.1111/1541-4337.12507] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Peter Waboi Mwaurah
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Sunil Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Nitin Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Anil Panghal
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Vijay Kumar Singh
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Mukesh Kumar Garg
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| |
Collapse
|
43
|
Gong M, Hu Y, Wei W, Jin Q, Wang X. Production of conjugated fatty acids: A review of recent advances. Biotechnol Adv 2019; 37:107454. [PMID: 31639444 DOI: 10.1016/j.biotechadv.2019.107454] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Conjugated fatty acids (CFAs) have received a deal of attention due to the increasing understanding of their beneficial physiological effects, especially the anti-cancer effects and metabolism-regulation activities. However, the production of CFAs is generally difficult. Several challenges are the low CFAs content in natural sources, the difficulty to chemically synthesize target CFA isomers in high purity, and the sensitive characteristics of CFAs. In this article, the current technologies to produce CFAs, including physical, chemical, and biotechnical approaches were summarized, with a focus on the conjugated linoleic acids (CLAs) and conjugated linolenic acids (CLNAs) which are the most common investigated CFAs. CFAs usually demonstrate stronger physiological effects than other non-conjugated fatty acids; however, they are more sensitive to heat and oxidation. Consequently, the quality control throughout the entire production process of CFAs is significant. Special attention was given to the micro- or nano-encapsulation which presented as an emerging technique to improve the bioavailability and storage stability of CFAs. The current applications of CFAs and the potential research directions were also discussed.
Collapse
Affiliation(s)
- Mengyue Gong
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 3K7, Canada
| | - Wei Wei
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
44
|
Polmann G, Badia V, Frena M, Teixeira GL, Rigo E, Block JM, Camino Feltes MM. Enzyme-assisted aqueous extraction combined with experimental designs allow the obtaining of a high-quality and yield pecan nut oil. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
45
|
Chen R, Wang XJ, Zhang YY, Xing Y, Yang L, Ni H, Li HH. Simultaneous extraction and separation of oil, proteins, and glucosinolates from Moringa oleifera seeds. Food Chem 2019; 300:125162. [PMID: 31325745 DOI: 10.1016/j.foodchem.2019.125162] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/30/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Moringa oleifera is a worldwide cultivated edible and medicinal plant. Its seeds are rich in oil, proteins, and glucosinolates. A practical method was developed to simultaneously extract and separate the three groups of substances from M. oleifera seeds. Smashed seed material was loaded into columns with petroleum ether: ethanol 8:2 (PE-ethanol) and eluted sequentially with 4.8-fold PE-ethanol to extract oil, and 10.8-fold water to extract proteins and glucosinolates. More than 95% of oil, proteins, and glucosinolates were extracted. The extracts were separated automatically into ether (oil) phase and ethanol aqueous phase. The latter was further separated into proteins and glucosinolates by 70% ethanol precipitation. The main glucosinolate was identified by LC-MS as GLC (4-α-rhamnopyranosyloxy-benzyl glucosinolate). After purification, 22.3 g refined oil, 33.0 g proteins, and 5.5 g purified GLC from 100 g M. oleifera seeds were obtained. This study provides a simple and high-efficient method to utilize M. oleifera seeds.
Collapse
Affiliation(s)
- Rui Chen
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiu-Juan Wang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yao-Yuan Zhang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yan Xing
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liu Yang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - He Ni
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hai-Hang Li
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; School of Life Sciences, Huizhou University, Huizhou 516007, China.
| |
Collapse
|
46
|
Aquino DS, Fanhani A, Stevanato N, Silva C. Sunflower oil from enzymatic aqueous extraction process: Maximization of free oil yield and oil characterization. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Denise Silva Aquino
- Departamento de TecnologiaUniversidade Estadual de Maringá Umuarama Paraná Brazil
| | - Anastassia Fanhani
- Departamento de TecnologiaUniversidade Estadual de Maringá Umuarama Paraná Brazil
| | - Natália Stevanato
- Departamento de Engenharia QuímicaUniversidade Estadual de Maringá Maringá Paraná Brazil
| | - Camila Silva
- Departamento de TecnologiaUniversidade Estadual de Maringá Umuarama Paraná Brazil
- Departamento de Engenharia QuímicaUniversidade Estadual de Maringá Maringá Paraná Brazil
| |
Collapse
|
47
|
Peng L, Ye Q, Liu X, Liu S, Meng X. Optimization of aqueous enzymatic method for Camellia sinensis oil extraction and reuse of enzymes in the process. J Biosci Bioeng 2019; 128:716-722. [PMID: 31208799 DOI: 10.1016/j.jbiosc.2019.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/06/2019] [Accepted: 05/23/2019] [Indexed: 01/16/2023]
Abstract
Aqueous enzymatic extraction of Camellia sinensis oil was studied. The results suggested that saponin removal pretreatment assisted by ultrasound was effective in decreasing emulsification and in enhancing the free oil recovery. After 70% isopropanol extraction for 30 min under ultrasound, the residue of C. sinensis seeds was further hydrolyzed with free cellulase and Alcalase for 5 h, and calcium ions were concurrently added during enzymatic hydrolysis (nCa2+: nsaponin = 1:2), and free oil recovery up to 94.14% was obtained. Separate immobilization and co-immobilization of Alcalase and cellulase were performed by alginate entrapment combined with glutaraldehyde crosslinking. Specific activity and recovery of activity for Alcalase and cellulase were acceptable. After immobilization, Alcalase and cellulase exhibited higher activity at a wider pH and temperature range. Reuse experiments of immobilized enzymes were conducted. The deactivation kinetics immobilized enzymes were simulated and half-life of immobilized enzyme was estimated. The results indicated that a magnetic supporter facilitated the recovery of immobilized enzymes from tea seed slurry, and that immobilized Alcalase and cellulase had good reusability.
Collapse
Affiliation(s)
- Li Peng
- Ocean College, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Qin Ye
- Ocean College, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Xiaoying Liu
- Ocean College, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Shulai Liu
- Ocean College, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Xianghe Meng
- Ocean College, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China.
| |
Collapse
|
48
|
WENWEI C, GUANGRONG H, ZHENBAO J, YAO H. Optimization of aqueous enzymatic extraction of oil from shrimp processing by-products using response surface methodology. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.41717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | - Hong YAO
- Zhejiang Marine Development Research Institute, China
| |
Collapse
|
49
|
Zhao B, Li H, Lan T, Wu D, Chen Z. Characterization of the Chemical Composition of Chinese
Moringa oleifera
Seed Oil. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beibei Zhao
- College of Food Science and EngineeringHenan University of Technology, Lianhua Road Zhengzhou Henan 450002 China
| | - Hua Li
- College of Food Science and EngineeringHenan University of Technology, Lianhua Road Zhengzhou Henan 450002 China
| | - Tao Lan
- Food and Agriculture Standardization Institute, China National Institute of Standardization, Zhichun Road Beijing 100191, China
| | - Di Wu
- College of Food Science and EngineeringHenan University of Technology, Lianhua Road Zhengzhou Henan 450002 China
| | - Zhicheng Chen
- College of Food Science and EngineeringHenan University of Technology, Lianhua Road Zhengzhou Henan 450002 China
| |
Collapse
|
50
|
Hu B, Wang H, He L, Li Y, Li C, Zhang Z, Liu Y, Zhou K, Zhang Q, Liu A, Liu S, Zhu Y, Luo Q. A method for extracting oil from cherry seed by ultrasonic-microwave assisted aqueous enzymatic process and evaluation of its quality. J Chromatogr A 2018; 1587:50-60. [PMID: 30578025 DOI: 10.1016/j.chroma.2018.12.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 02/02/2023]
Abstract
In order to increase the utilization of cherry seeds, ultrasonic-microwave assisted aqueous enzymatic extraction (UMAAEE) was used to extract cherry seed oil. Parameters of UMAAEE were optimized by Plackett-Burman design followed by Box-Behnken design. The oil recovery of 83.85 ± 0.78% was obtained under optimum extraction conditions of a 2.7% concentration of enzyme cocktail comprising cellulase, hemicellulase and pectinase (1/1/1, w/w/w), ultrasonic power of 560 W, microwave power of 323 W, extraction time of 38 min, extraction temperature of 40 °C, enzymolysis temperature of 40 °C, pH of 3.5, liquid to solid ratio of 12 mL/g, enzymolysis time of 240 min and particle size less than 0.425 mm. There were no significant differences in the fatty acid compositions of cheery seed oil by UMAAEE and Soxhlet extraction, and oil by UMAAEE possessed superior physicochemical properties and higher content of bioactive constituents. Scanning electron microscopy illustrated that enzyme hydrolysis and ultrasonic-microwave treatment causing the structural degradation of cherry seed was the main driving force for extraction. In this study, all results suggest that UMAAEE is an effective method to extract cherry seed oil.
Collapse
Affiliation(s)
- Bin Hu
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China.
| | - Haoyuan Wang
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Linfeng He
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Yi Li
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Cheng Li
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Zhiqing Zhang
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Yuntao Liu
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Kang Zhou
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Qing Zhang
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Aiping Liu
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Shuxiang Liu
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Yadong Zhu
- College of Literature, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Qingying Luo
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| |
Collapse
|