1
|
Sarabandi K, Dashipour A, Akbarbaglu Z, Peighambardoust SH, Ayaseh A, Kafil HS, Jafari SM, Mousavi Khaneghah A. Incorporation of spray-dried encapsulated bioactive peptides from coconut ( Cocos nucifera L.) meal by-product in bread formulation. Food Sci Nutr 2024; 12:4723-4734. [PMID: 39055222 PMCID: PMC11266913 DOI: 10.1002/fsn3.4120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 07/27/2024] Open
Abstract
This study aimed to stabilize and mask the bitterness of peptides obtained from the enzymatic hydrolysis of coconut-meal protein with maltodextrin (MD) and maltodextrin-pectin (MD-P) as carriers via spray-drying. Essential (~35%), hydrophobic (~32%), antioxidant (~15%), and bitter (~45%) amino acids comprised a significant fraction of the peptide composition (with a degree of hydrolysis of 33%). The results indicated that the peptide's production efficiency, physical and functional properties, and hygroscopicity improved after spray-drying. Morphological features of free peptides (fragile and porous structures), spray-dried with MD (wrinkled with indented structures), and MD-P combination (relatively spherical particles with smooth surfaces) were influenced by the process type and feed composition. Adding free and microencapsulated peptides to the bread formula (2% W/W) caused changes in moisture content (35%-43%), water activity (0.89-0.94), textural properties (1-1.6 N), specific volume (5.5-6 cm3/g), porosity (18%-27%), and color indices of the fortified product. MD-P encapsulated peptides in bread fortification resulted in thermal stability and increased antioxidant activity (DPPH and ABTS+ radical scavenging: 4.5%-39.4% and 31.6%-46.8%, respectively). MD-P (as a carrier) could maintain sensory characteristics and mask the bitterness of peptides in the fortified bread. The results of this research can be used to produce functional food and diet formulations.
Collapse
Affiliation(s)
| | - Alireaza Dashipour
- Department of Food Science & Technology, School of MedicineZahedan University of Medical SciencesZahedanIran
- Cellular and Molecular Research CenterResearch Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical SciencesZahedanIran
| | - Zahra Akbarbaglu
- Department of Food ScienceCollege of Agriculture, University of TabrizTabrizIran
| | | | - Ali Ayaseh
- Department of Food ScienceCollege of Agriculture, University of TabrizTabrizIran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design EngineeringGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical EducationTehranIran
| | | |
Collapse
|
2
|
Olakanmi SJ, Bharathi VSK, Jayas DS, Paliwal J. Innovations in nondestructive assessment of baked products: Current trends and future prospects. Compr Rev Food Sci Food Saf 2024; 23:e13385. [PMID: 39031741 DOI: 10.1111/1541-4337.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/13/2024] [Accepted: 05/18/2024] [Indexed: 07/22/2024]
Abstract
Rising consumer awareness, coupled with advances in sensor technology, is propelling the food manufacturing industry to innovate and employ tools that ensure the production of safe, nutritious, and environmentally sustainable products. Amidst a plethora of nondestructive techniques available for evaluating the quality attributes of both raw and processed foods, the challenge lies in determining the most fitting solution for diverse products, given that each method possesses its unique strengths and limitations. This comprehensive review focuses on baked goods, wherein we delve into recently published literature on cutting-edge nondestructive methods to assess their feasibility for Industry 4.0 implementation. Emphasizing the need for quality control modalities that align with consumer expectations regarding sensory traits such as texture, flavor, appearance, and nutritional content, the review explores an array of advanced methodologies, including hyperspectral imaging, magnetic resonance imaging, terahertz, acoustics, ultrasound, X-ray systems, and infrared spectroscopy. By elucidating the principles, applications, and impacts of these techniques on the quality of baked goods, the review provides a thorough synthesis of the most current published studies and industry practices. It highlights how these methodologies enable defect detection, nutritional content prediction, texture evaluation, shelf-life forecasting, and real-time monitoring of baking processes. Additionally, the review addresses the inherent challenges these nondestructive techniques face, ranging from cost considerations to calibration, standardization, and the industry's overreliance on big data.
Collapse
Affiliation(s)
- Sunday J Olakanmi
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vimala S K Bharathi
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Digvir S Jayas
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, Canada
- President's Office, 4401 University Drive West, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Guo L, Liu B, Liang C, Sun W, Jiang Y, Yun X, Lu L, Zhao X, Xu N. Casein hydrolysate in naturally-fermented buckwheat sourdough: Effects on fermented and physicochemical characteristics, texture, and bacterial microbial composition. Int J Food Microbiol 2024; 417:110705. [PMID: 38640815 DOI: 10.1016/j.ijfoodmicro.2024.110705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
The effect of a casein hydrolysate (CH) on the fermentation and quality of a naturally-fermented buckwheat sourdough (NFBS) were investigated, through assessing the fermentation characteristics, carbohydrate and protein degradation, texture, and bacterial composition of NFBS. According to the assaying data, CH might both increase the amount of lactic acid bacteria by 2.62 % and shorten the fermentation period by at least 3 h, subsequently leading to enhanced degradation of carbohydrate and protein, accompanied by a softer texture. More importantly, CH increased the relative abundance of lactobacillus in NFBS, making it the dominant bacterial genus and inhibited the growth of spoilage bacteria. In addition, Spearman correlation analysis indicated that the pH value, lactic and acetic acid contents, carbohydrates, protease activity, and these textural indices like hardness, elasticity, and adhesion had a positive/negative correlation with the bacterial composition of NFBS (Spearman correlation coefficient: -0.93-0.95). CH was thus regarded to be helpful to NFBS processing and production mainly by shortening its fermentation time, improving its fermentation performance, causing a finer texture and microstructure, and changing bacterial composition.
Collapse
Affiliation(s)
- Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of State Administration for Market Regulation, Beijing 100050, China; Food Laboratory of Zhongyuan, Luohe 462300, China; National Research Center of Dairy Engineering and Technology, Harbin 150030, China
| | - Biqi Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chen Liang
- College of Medicine and Biological information Engineering, Hunnan Campus, Northeastern University, Shenyang 110167, China
| | - Wen Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of State Administration for Market Regulation, Beijing 100050, China; Food Laboratory of Zhongyuan, Luohe 462300, China; National Research Center of Dairy Engineering and Technology, Harbin 150030, China
| | - Xueqi Yun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lin Lu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinhuai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Ning Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Zhang J, Yao Y, Li J, Ju X, Wang L. Impact of exopolysaccharides-producing lactic acid bacteria on the chemical, rheological properties of buckwheat sourdough and the quality of buckwheat bread. Food Chem 2023; 425:136369. [PMID: 37269640 DOI: 10.1016/j.foodchem.2023.136369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 06/05/2023]
Abstract
Exopolysaccharides (EPS) produced in situ by lactic acid bacteria (LAB) during sourdough fermentation have the potential to replace hydrocolloids in gluten-free sourdoughs. This study investigated effects of an EPS-producing Weissella cibaria NC516.11 fermentation on chemical, rheological properties of sourdough and the quality of buckwheat bread. Results indicate that the buckwheat sourdough fermentation by W. cibaria NC516.11 had lower pH (4.47) and higher total titrable acidity (8.36 mL) compared with other groups, and the polysaccharide content reached 3.10 ± 0.16 g/kg. W. cibaria NC516.11 can significantly improve the rheological properties and viscoelastic properties of sourdough. Compared with control group, the baking loss of NC516.11 group bread decreased by 19.94%, specific volume increased by 26.03%, and showed good appearance and cross-sectional morphology. Scanning electron micrograph revealed an intact and less porous cell structure. Meanwhile, W. cibaria NC516.11 significantly improved the texture of the bread and reduced the hardness and moisture loss during storage.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Yijun Yao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Jun Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Xingrong Ju
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
5
|
Rapid assessment of citrus fruits freshness by fuzzy mathematics combined with E-tongue and GC–MS. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Bilir G, Khalesi M, Cermeño M, FitzGerald RJ, Ekinci D. Extraction and Characterization of Protein Concentrates from Limpets ( Patella vulgata) and Peptide Release Following Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11212-11223. [PMID: 36040349 DOI: 10.1021/acs.jafc.2c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study investigated the characterization of proteins from the Irish limpet (Patella vulgata) and assessed the in vitro biological activities of hydrolysates obtained following gastrointestinal digestion (INFOGEST) of a limpet protein concentrate (LPC). The physicochemical properties and the digestibility of the LPC were investigated, along with the angiotensin-converting enzyme (ACE) inhibition and antioxidant activities of the LPC-digested samples. All the digested samples examined outperformed the LPC in terms of activity. Peptides were identified using LC-MS/MS after digestion. A total of 38 and 19 peptides were identified in LPC-G and LPC-GI, respectively, using a database search and a de novo approach. Most of the identified peptides had hydrophobic amino acids, which may contribute to their antioxidant and ACE inhibitory activities. The findings of this study showed that LPC has high nutritional quality with good digestibility and could serve as a potential source of antioxidative and ACE inhibitory peptides following gastrointestinal digestion.
Collapse
Affiliation(s)
- Gurkan Bilir
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, LimerickV94 T9PX, Ireland
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun55270, Turkey
| | - Mohammadreza Khalesi
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, LimerickV94 T9PX, Ireland
| | - Maria Cermeño
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, LimerickV94 T9PX, Ireland
| | - Richard J FitzGerald
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, LimerickV94 T9PX, Ireland
| | - Deniz Ekinci
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun55270, Turkey
| |
Collapse
|
7
|
Asaithambi N, Singha P, Singh SK. Recent application of protein hydrolysates in food texture modification. Crit Rev Food Sci Nutr 2022; 63:10412-10443. [PMID: 35653113 DOI: 10.1080/10408398.2022.2081665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The demand for clean labels has increased the importance of natural texture modifying ingredients. Proteins are unique compounds that can impart unique textural and structural changes in food. However, lack of solubility and extensive aggregability of proteins have increased the demand for enzymatically hydrolyzed proteins, to impart functional and structural modifications to food products. The review elaborates the recent application of various proteins, protein hydrolysates, and their role in texture modification. The impact of protein hydrolysates interaction with other food macromolecules, the effect of pretreatments, and dependence of various protein functionalities on textural and structural modification of food products with controlled enzymatic hydrolysis are explained in detail. Many researchers have acknowledged the positive effect of enzymatically hydrolyzed proteins on texture modification over natural protein. With enzymatic hydrolysis, various textural properties including foaming, gelling, emulsifying, water holding capacity have been effectively improved. It is evident that each protein is unique and imparts exceptional structural changes to different food products. Thus, selection of protein requires a fundamental understanding of its structure-substrate property relation. For wider applicability in the industrial sector, more studies on interactions at the molecular level, dosage, functionality changes, and sensorial attributes of protein hydrolysates in food systems are required.
Collapse
Affiliation(s)
- Niveditha Asaithambi
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| |
Collapse
|
8
|
Polmann G, Rossi GB, Teixeira GL, Maciel LG, de Francisco A, Arisi ACM, Block JM, Feltes MMC. High-added value co-products obtained from pecan nut ( Carya illinoinensis) using a green extraction technology. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2284-2294. [PMID: 35602452 PMCID: PMC9114258 DOI: 10.1007/s13197-021-05242-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/24/2020] [Accepted: 01/10/2021] [Indexed: 06/03/2023]
Abstract
Abstract The aqueous (AF) and solid (SF) fractions obtained as co-products in the aqueous extraction of pecan nut oil assisted by Alcalase® were evaluated. In the AF, the degree of protein hydrolysis (DH) and the electrophoretic profile of protein hydrolysates, phenolic compounds, and antioxidant capacity (reducing potential of the hydrophilic compounds, RPHC, 2,2-diphenyl-1-picrylhydrazyl, DPPH; and inhibition of lipid peroxidation) were determined. The proximate composition and microstructure were evaluated in SF. The results indicated a DH of 3.9%. The sample treated with the enzyme (ET) showed a molecular weight of proteins lower than 15 kDa. The ET showed higher content of phenolics (726.3 mg GAE/100 g) and antioxidant capacity higher than the sample without enzymatic treatment. The SF showed a residual lipid content rich in oleic and linoleic acids. Furthermore, changes in the proximate composition and the microstructure were observed. The results indicate the potentiality of hydrolyzed fractions for application in food. Graphic abstract
Collapse
Affiliation(s)
- Gabriela Polmann
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Gabriela Barbosa Rossi
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Gerson Lopes Teixeira
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Laércio Galvão Maciel
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Alicia de Francisco
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Ana Carolina Maisonnave Arisi
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Jane Mara Block
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| | - Maria Manuela Camino Feltes
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88034-001 Brazil
| |
Collapse
|
9
|
Karimi N, Zeynali F, Rezazad Bari M, Nikoo M, Mohtarami F, Kadivar M. Amaranth selective hydrolyzed protein influence on sourdough fermentation and wheat bread quality. Food Sci Nutr 2021; 9:6683-6691. [PMID: 34925798 PMCID: PMC8645750 DOI: 10.1002/fsn3.2618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
Amaranth selective hydrolyzed protein (ASPH) may improve sourdough properties and bread quality. In this regard, this study focused on investigating the influence of protein hydrolysates on sourdough fermentation and bread properties. Based on the findings, ASPH further increased Lactobacillus plantarum and Saccharomyces cerevisiae growth in sourdough compared with amaranth protein isolates and amaranth flour. ASPH at 5 g/kg resulted in sourdough with higher pH and total titratable acidity (TTA) after 20 h of fermentation at 30°C. The prepared sourdough using APH (S-ASPH) at 3 g/kg increased the specific volume (4.57 ml/g) and TTA (4.76 ml) while decreasing water activity, hardness, cohesiveness, and chewiness of the bread (S-ASPH-B) compared with the control. Moreover, transition temperature and enthalpy reduced whereas sensory properties and shelf life represented an increase with S-ASPH addition. Overall, the obtained data indicated the improvement of bread quality by S-ASPH sourdough.
Collapse
Affiliation(s)
- Nayereh Karimi
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Fariba Zeynali
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Mahmoud Rezazad Bari
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Mehdi Nikoo
- Department of Pathobiology and Quality ControlArtemia and Aquaculture Research InstituteUrmia UniversityUrmiaIran
| | - Forogh Mohtarami
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Mahdi Kadivar
- Department of Food Science and TechnologyCollege of AgricultureIsfahan University of TechnologyIsfahanIran
| |
Collapse
|
10
|
Korus J, Chmielewska A, Witczak M, Ziobro R, Juszczak L. Rapeseed protein as a novel ingredient of gluten-free bread. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03768-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe aim of the study was to analyze the influence of rapeseed protein isolate on physico-chemical properties, sensory attributes and storage of gluten-free bread prepared on the basis of corn and potato starch mixture with the addition of pectin and guar gum. Starches used in bread formulation were replaced with rapeseed protein isolate in the amounts 6–15%. The bread was characterized in terms of physical properties, including volume, crumb structure and color, which was accompanied with sensory assessment. Texture and thermal properties were determined during 3 days of storage. It was observed that the presence of rapeseed protein, especially at higher levels, caused an increase in bread volume and density of pores and a decrease in crumb porosity, as compared to the control. Partial replacement of starch with rapeseed protein caused a significant increase of b* parameter, reflecting rising yellowness, which positively influenced bread acceptance. Rapeseed protein limited bread staling during storage in comparison to control sample. The results demonstrate that rapeseed protein could become a valuable component of gluten-free bread, as it provides valuable amino acids, but also beneficially influences quality characteristics.
Collapse
|
11
|
Selectively hydrolyzed soy protein as an efficient quality improver for steamed bread and its influence on dough components. Food Chem 2021; 359:129926. [PMID: 33951607 DOI: 10.1016/j.foodchem.2021.129926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Selectively hydrolyzed soy protein (SHSP) has the potential to improve the quality of steamed bread. To clarify its underlying mechanism, the influence of SHSP on dough properties and components was investigated and compared with that of soy protein isolate (SPI). The results showed that SHSP addition resulted in steamed bread with higher loaf volume, lower hardness, and higher viscoelasticity. In contrast, SPI addition had the opposite effect. Nevertheless, both soy proteins decreased melting enthalpy and increased starch particle exposure due to competition for water. By analyzing molecular weight distribution and the secondary structure, we determined that the GMP content of fermented dough decreased by 10.04% following 1% SPI addition; however, it was enhanced by 7.90% following 1% SHSP addition. Moreover, the content of β-turns decreased with SHSP addition. The present study provides a theoretical basis for the exploitation of soy proteins as a nutritious and technofunctional dough improver.
Collapse
|
12
|
In vitro digestibility, cooking quality, bio-functional composition, and sensory properties of pasta incorporated with potato and pigeonpea flour. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2020.100300] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Li X, Liu Y, Wang Y, Wang J, Xu Y, Yi S, Zhu W, Mi H, Li T, Li J. Combined ultrasound and heat pretreatment improve the enzymatic hydrolysis of clam (Aloididae aloidi) and the flavor of hydrolysates. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Hejrani T, Sheikholeslami Z, Mortazavi SA, Karimi M, Elhamirad AH. The evaluation of part-baked frozen bread produced from wheat flour and guar gum in the diet of celiac patients. Journal of Food Science and Technology 2020; 58:2507-2515. [PMID: 34194087 DOI: 10.1007/s13197-020-04757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
The present study evaluated an enzyme strategy for eliminating the gliadin in the flour in order to produce part-baked (PB) frozen bread for celiac patients. At first, tissue transglutaminase with lysine methyl ester transamidated the gliadin and hydrolyses gliadin protein. The deamidated dough was used for producing the PB bread and then stored as the frozen storage at - 18 °C for 15 days, followed by investigating physicochemical, rheological, and sensory properties. The SDS-PAGE result demonstrated that transamidating wheat flour with a tissue transglutaminase and L-lysine methyl ester break down the gliadin protein. The PB frozen bread with the absence of gliadin had lower specific volume, porosity, firmness, and color index (P < 0.05) but adding 0.8% guar gum could improve these factors and recompense the absence of gliadin (P < 0.05). The PB frozen bread with 0.8% guar gum had physicochemical properties such as fresh bread which produced with untreated wheat flour (P < 0.05).
Collapse
Affiliation(s)
- Toktam Hejrani
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Zahra Sheikholeslami
- Agricultural Engineering Research Department, Khorasan Razavi Agricultural and Natural Resources Research Education Center, Agriculture Research, Education and Extension Organization (AREEO) AREEO, Mashhad, Iran
| | - S Ali Mortazavi
- Department of Food Science and Technology, Ferdowsi University, Mashhad, Iran
| | - Mahdi Karimi
- Agricultural Engineering Research Department, Khorasan Razavi Agricultural and Natural Resources Research Education Center, Agriculture Research, Education and Extension Organization (AREEO) AREEO, Mashhad, Iran
| | - Amir Hosesein Elhamirad
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| |
Collapse
|
15
|
Karimi N, Nikoo M, Ahmadi Gavlighi H, Piri Gheshlaghi S, Regenstein JM, Xu X. Effect of pacific white shrimp (Litopenaeus vannamei) protein hydrolysates (SPH) and (−)-epigallocatechin gallate (EGCG) on sourdough and bread quality. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Nguyen TT, Heimann K, Zhang W. Protein Recovery from Underutilised Marine Bioresources for Product Development with Nutraceutical and Pharmaceutical Bioactivities. Mar Drugs 2020; 18:E391. [PMID: 32727001 PMCID: PMC7460389 DOI: 10.3390/md18080391] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/07/2023] Open
Abstract
The global demand for dietary proteins and protein-derived products are projected to dramatically increase which cannot be met using traditional protein sources. Seafood processing by-products (SPBs) and microalgae are promising resources that can fill the demand gap for proteins and protein derivatives. Globally, 32 million tonnes of SPBs are estimated to be produced annually which represents an inexpensive resource for protein recovery while technical advantages in microalgal biomass production would yield secure protein supplies with minimal competition for arable land and freshwater resources. Moreover, these biomaterials are a rich source of proteins with high nutritional quality while protein hydrolysates and biopeptides derived from these marine proteins possess several useful bioactivities for commercial applications in multiple industries. Efficient utilisation of these marine biomaterials for protein recovery would not only supplement global demand and save natural bioresources but would also successfully address the financial and environmental burdens of biowaste, paving the way for greener production and a circular economy. This comprehensive review analyses the potential of using SPBs and microalgae for protein recovery and production critically assessing the feasibility of current and emerging technologies used for the process development. Nutritional quality, functionalities, and bioactivities of the extracted proteins and derived products together with their potential applications for commercial product development are also systematically summarised and discussed.
Collapse
Affiliation(s)
| | - Kirsten Heimann
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Health Science Building, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia;
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Health Science Building, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia;
| |
Collapse
|
17
|
Morita A, Hayakawa F, Kasai M. Evaluation of the Aroma of Cheese Bread Using Color. J JPN SOC FOOD SCI 2020. [DOI: 10.3136/nskkk.67.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Aki Morita
- Mitsubishi Corporation Life Sciences Limited
- Ochanomizu University
| | - Fumiyo Hayakawa
- Food Research Institute, National Agriculture and Food Research Organization
| | | |
Collapse
|
18
|
Idowu AT, Igiehon OO, Idowu S, Olatunde OO, Benjakul S. Bioactivity Potentials and General Applications of Fish Protein Hydrolysates. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10071-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Coşkun Ö, Pehlivanoğlu H, Gülseren İ. Pilot scale assessment for seed protein enrichment of gluten‐free breads at varying water content levels and after protein modification treatments. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Özgenur Coşkun
- Department of Food Engineering İstanbul Sabahattin Zaim University (İZÜ) İstanbul Turkey
- Department of Food Science Aarhus University Aarhus N Denmark
| | - Halime Pehlivanoğlu
- Faculty of Veterinary Sciences Department of Food Hygiene and Technology Tekirdağ Namık Kemal University (NKÜ) Tekirdağ Turkey
| | - İbrahim Gülseren
- Department of Food Engineering İstanbul Sabahattin Zaim University (İZÜ) İstanbul Turkey
- İZÜ Food and Agricultural Research Center (GTAUM) İstanbul Turkey
| |
Collapse
|
20
|
Reddy Surasani VK, Singh A, Gupta A, Sharma S. Functionality and cooking characteristics of pasta supplemented with protein isolate from pangas processing waste. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Idowu AT, Benjakul S. Bitterness of fish protein hydrolysate and its debittering prospects. J Food Biochem 2019; 43:e12978. [PMID: 31489658 DOI: 10.1111/jfbc.12978] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022]
Abstract
Fish processing by-products often generated as discard can enzymatically be processed into a product known as fish protein hydrolysates (FPH). FPH is a good source of amino acid and peptides with bioactivities. FPH can be added to foods to improve nutritive values and bioactivities. However, bitterness in FPH, associated with hydrophobicity, degree of hydrolysis, molecular weight, proline residues, type of enzymes, and amino acid sequences has limited its uses in foods. Thus, FPH is used in foods at low levels. Numerous procedures such as extraction with alcohol, activated carbon treatment, Maillard reaction, cyclodextrin, chromatographic separation, and enzymatic hydrolysis with exopeptidase and plastein reaction have been explored to remove the bitterness of FPH. These methods can lower bitterness and improve its taste. However, changes in structure and loss of some peptides may occur. FPH with less or no bitterness can therefore be used at higher levels to alleviate nutrition deficiencies in foods. PRACTICAL APPLICATIONS: Fish protein hydrolysate (FPH) is a nutritive ingredient, which can be produced from fish processing by-products. However, bitterness in FPH has limited its potential use as a nutritive ingredient. As a result, it is incorporated into foods at low levels. Nevertheless, application of several reported debittering processes could assist to solve the problem of bitterness in FPH. The debittering can improve sensory property of FPH, thus widening its utilization.
Collapse
Affiliation(s)
- Anthony Temitope Idowu
- Faculty of Agro-Industry, Department of Food Technology, Prince of Songkla University, Songkhla, Thailand
| | - Soottawat Benjakul
- Faculty of Agro-Industry, Department of Food Technology, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
22
|
Desai AS, Beibeia T, Brennan MA, Guo X, Zeng XA, Brennan CS. Protein, Amino Acid, Fatty Acid Composition, and in Vitro Digestibility of Bread Fortified with Oncorhynchus tschawytscha Powder. Nutrients 2018; 10:nu10121923. [PMID: 30563069 PMCID: PMC6315913 DOI: 10.3390/nu10121923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/27/2022] Open
Abstract
This study investigated protein, amino acid, fatty acid composition, in vitro starch and protein digestibility, and phenolic and antioxidant composition of bread fortified with salmon fish (Oncorhynchus tschawytscha) powder (SFP). The proximate composition in control and SFP breads ranged between (34.00 ± 0.55–31.42 ± 0.73%) moisture, (13.91 ± 0.19–20.04 ± 0.10%) protein, (3.86 ± 0.02–9.13 ± 0.02%) fat, (2.13 ± 0.02–2.42 ± 0.09%) ash, (80.10 ± 0.018–68.42 ± 0.11%) carbohydrate, and (410.8 ± 0.18–435.96 ± 0.36 kcal) energy. The essential amino acids of the control and SFP breads ranged between 261.75 ± 9.23 and 306.96 ± 6.76 mg/g protein, which satisfies the score recommended by FAO/WHO/UNU (2007). Protein digestibility of the products was assessed using an in vitro assay. The protein digestibility, comma, amino acid score, essential amino acid index, biological value, and nutritional index ranged between 79.96 ± 0.65–80.80 ± 0.99%, 0.15 ± 0.06–0.42 ± 0.06%, 62.51 ± 1.15–76.68 ± 1.40%, 56.44 ± 1.05–71.68 ± 1.10%, 8.69 ± 0.10–15.36 ± 0.21%, respectively. Control and SFP breads contained 60.31 ± 0.21–43.60 ± 0.35 g/100 g total fatty acids (saturated fatty acids) and 13.51 ± 0.10–17.00 ± 0.09 g/100 g total fatty acids (polyunsaturated fatty acids), and SFP breads fulfil the ω-6/ω-3 score recommended by food authority. There was a significant effect of SFP on bread-specific volume, crumb color, and textural properties. The in vitro starch digestibility results illustrate that the incorporation of SFP into wheat bread decreased the potential glycemic response of bread and increased the antioxidant capacity of bread. In conclusion, this nutrient-rich SFP bread has the potential to be a technological alternative for the food industry.
Collapse
Affiliation(s)
- Ajay S Desai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch 7647, New Zealand.
- Riddet Research Institute, Palmerston North 4442, New Zealand.
| | - Tang Beibeia
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch 7647, New Zealand.
| | - Margaret A Brennan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch 7647, New Zealand.
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Charles S Brennan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch 7647, New Zealand.
- Riddet Research Institute, Palmerston North 4442, New Zealand.
| |
Collapse
|
23
|
Klunklin W, Savage G. Addition of defatted green-lipped mussel powder and mixed spices to wheat-purple rice flour biscuits: Physicochemical, in vitro digestibility and sensory evaluation. Food Sci Nutr 2018; 6:1839-1847. [PMID: 30349673 PMCID: PMC6189611 DOI: 10.1002/fsn3.675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/10/2018] [Accepted: 04/14/2018] [Indexed: 11/23/2022] Open
Abstract
Biscuits were formulated using a 50/50 wheat and purple rice flour mix containing mixed spices, galangal, and defatted green-lipped mussel powder (Perna canaliculus) added in the range of 5-15% of the total biscuit weight. The fortified biscuits had higher protein (26.36%), fiber (52.90%), and ash (6.00%) contents and a lower total fat (5.64%) content compared to the control biscuits. The in vitro starch digestibility and predicted glycemic index (pGI) decreased in the fortified biscuits by 18.95% and 6.18%, respectively, while the in vitro protein digestibility increased by 3.73%, corresponding to the increased levels of defatted mussel powder present. The spread ratio and hardness of the fortified biscuits also increased significantly. The color values of the fortified biscuits after the incorporation of different levels of defatted mussel powder showed significant changes, with a darkening of the biscuit surface and a lowered browning index compared to the control biscuits. Results of the sensory quality evaluation showed that incorporation of defatted mussel powder into the biscuit mix of up to 15% showed no significant differences in liking scores in terms of color, overall appearance; whereas, the flavor and overall acceptability scores were significantly lower than the control biscuits. Overall, defatted mussel powder can be successfully incorporated into biscuit mixes to enrich the protein, fiber, and antioxidant contents of the biscuits.
Collapse
Affiliation(s)
- Warinporn Klunklin
- Faculty of Agriculture and Life SciencesLincoln UniversityLincoln, ChristchurchNew Zealand
| | - Geoffrey Savage
- Faculty of Agriculture and Life SciencesLincoln UniversityLincoln, ChristchurchNew Zealand
| |
Collapse
|
24
|
Occurrence of methicillin-resistant Staphylococcus aureus in raw shellfish at retail markets in Malaysia and antibacterial efficacies of black seed (Nigella sativa) oil against MRSA. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Sukkhown P, Jangchud K, Lorjaroenphon Y, Pirak T. Flavored-functional protein hydrolysates from enzymatic hydrolysis of dried squid by-products: Effect of drying method. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.01.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Physicochemical Properties and Sensory Evaluation of Wheat-Purple Rice Biscuits Enriched with Green-Lipped Mussel Powder (Perna canaliculus) and Spices. J FOOD QUALITY 2018. [DOI: 10.1155/2018/7697903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biscuits are one of the most consumed bakery products eaten by everyone. Purple rice contains much higher levels of antioxidants, vitamins, and minerals such as iron and zinc compared to wheat. The aim of this work was to produce a protein-rich biscuit made from purple rice flour and defatted green-lipped mussel powder (Perna canaliculus) (0–20%) blended with ginger and galangal spices at 4% for each spice. The objective was to produce an inexpensive, balanced, healthy snack product containing increased levels of protein and antioxidants from the mussel powder and to investigate the consumer preferences of these biscuits using the four different ethnic groups (Thai, Chinese, Caucasian, and Pacific Islanders) living in New Zealand. The addition of the mussel powder increased the crude protein content by 43% and the protein digestibility by 21% at the highest level of inclusion. The addition of mussel powder significantly (p<0.05) increased the hardness of biscuits while making small increases in the browning index of the cooked biscuit. The phenolic contents and antioxidant activities (DPPH and ABTS) were significantly (p<0.05) increased as additional amounts of mussel powder were incorporated into the biscuit mix, resulting in a reduction in the total starch contents. The addition of 10% mussel powder to the control biscuit mix was accepted by all the ethnic groups. Overall, the Pacific Islanders showed a higher appreciation for all the attributes tested.
Collapse
|
27
|
Gao Y, Janes ME, Chaiya B, Brennan MA, Brennan CS, Prinyawiwatkul W. Gluten‐free bakery and pasta products: prevalence and quality improvement. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13505] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yupeng Gao
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA 70803 USA
| | - Marlene E. Janes
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA 70803 USA
| | - Busarawan Chaiya
- Department of Food Technology and Nutrition Faculty of Natural Resources and Agro‐Industry Chalermphrakiat Sakhon Nakhon Province Campus Kasetsart University Sakhon Nakhon 47000 Thailand
| | - Margaret A. Brennan
- Department of Wine, Food and Molecular Biosciences Lincoln University Lincoln Canterbury 7608 New Zealand
| | - Charles S. Brennan
- Department of Wine, Food and Molecular Biosciences Lincoln University Lincoln Canterbury 7608 New Zealand
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA 70803 USA
| |
Collapse
|
28
|
Vijaykrishnaraj M, Mohan Kumar BV, Muthukumar SP, Kurrey NK, Prabhasankar P. Antigen-Specific Gut Inflammation and Systemic Immune Responses Induced by Prolonging Wheat Gluten Sensitization in BALB/c Murine Model. J Proteome Res 2017; 16:3514-3528. [DOI: 10.1021/acs.jproteome.7b00199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M. Vijaykrishnaraj
- Flour Milling Baking and Confectionery Technology Department, ‡Animal House Facility, §Department of Biochemistry, ∥Academy of Scientific
and Innovative Research, CSIR−Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - B. V. Mohan Kumar
- Flour Milling Baking and Confectionery Technology Department, ‡Animal House Facility, §Department of Biochemistry, ∥Academy of Scientific
and Innovative Research, CSIR−Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - S. P. Muthukumar
- Flour Milling Baking and Confectionery Technology Department, ‡Animal House Facility, §Department of Biochemistry, ∥Academy of Scientific
and Innovative Research, CSIR−Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - Nawneet K. Kurrey
- Flour Milling Baking and Confectionery Technology Department, ‡Animal House Facility, §Department of Biochemistry, ∥Academy of Scientific
and Innovative Research, CSIR−Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - P. Prabhasankar
- Flour Milling Baking and Confectionery Technology Department, ‡Animal House Facility, §Department of Biochemistry, ∥Academy of Scientific
and Innovative Research, CSIR−Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| |
Collapse
|
29
|
Breternitz NR, Bolini HMA, Hubinger MD. Sensory acceptance evaluation of a new food flavoring produced by microencapsulation of a mussel (Perna perna) protein hydrolysate. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Wang X, Yu H, Xing R, Li P. Characterization, Preparation, and Purification of Marine Bioactive Peptides. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9746720. [PMID: 28761878 PMCID: PMC5518491 DOI: 10.1155/2017/9746720] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
Marine bioactive peptides, as a source of unique bioactive compounds, are the focus of current research. They exert various biological roles, some of the most crucial of which are antioxidant activity, antimicrobial activity, anticancer activity, antihypertensive activity, anti-inflammatory activity, and so forth, and specific characteristics of the bioactivities are described. This review also describes various manufacturing techniques for marine bioactive peptides using organic synthesis, microwave assisted extraction, chemical hydrolysis, and enzymes hydrolysis. Finally, purification of marine bioactive peptides is described, including gel or size exclusion chromatography, ion-exchange column chromatography, and reversed-phase high-performance liquid chromatography, which are aimed at finding a fast, simple, and effective method to obtain the target peptides.
Collapse
Affiliation(s)
- Xueqin Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huahua Yu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|