1
|
Peng Y, Wang D, Yu J, Wu J, Wang F, Liu Y, Li X. Multi-scale structure and digestible process of wheat starch as affected by distribution behavior of rice glutelin amyloid fibril aggregates during gelatinization and digestion. Int J Biol Macromol 2025; 284:138197. [PMID: 39615728 DOI: 10.1016/j.ijbiomac.2024.138197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
The effect of distribution behaviors of rice glutelin amyloid fibril aggregates (RAFA) on the structures and digestible process of wheat starch was investigated, and the interaction was revealed by molecular dynamics simulations. Rice glutelin (RG)/RAFA enhanced the long-range ordered structure of starch, and the relative crystallinity of gelatinized RAFA-wheat starch reached 14.35 %. Moreover, the RAFA was more effective than RG in improving the short-range ordered structure of starch. Simultaneously, the RAFA exhibited higher cross-linking with starch than the RG, forming continuous and compact network structures that encapsulated the starch. After 180 min of in vitro pancreatic digestion, the residual RAFA encapsulating the starch was still observed in the chyme, hindering amylolytic enzyme action and alleviating the starch digestibility. Molecular dynamics simulations further confirmed that the RAFA, compared to the RG, bound more readily to the starch molecule and formed more stable complexing structure. And the RAFA formed hydrogen bonds with the hydroxyl groups of starch through polar amino acid residues (Gln and Asn) and nonpolar residues (Ala, Gly, and Ile) with binding free energy of -263.868 kJ/mol, while that of the RG-starch was -28.798 kJ/mol. The study enriches the theory of regulating starch digestion using food-derived protein amyloid fibril aggregates.
Collapse
Affiliation(s)
- Yuan Peng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Dongyue Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Jian Yu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faxiang Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Xianghong Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China.
| |
Collapse
|
2
|
Li Y, Kong H, Li C, Ban X, Gu Z, Lu Y, Li Z. Mitigating the Effects of Starch Derivatives on Cold Denaturation of Gluten Protein: Insights from Hydration Capacity and Conformation Behavior. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26451-26461. [PMID: 39555967 DOI: 10.1021/acs.jafc.4c08121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mitigating the cold denaturation of gluten protein during frozen storage is crucial for the quality improvement of frozen cereal products. Our previous study observed that starch derivatives, especially short-clustered maltodextrin (SCMD), could significantly improve frozen dough quality, alleviating the deterioration of gluten-network structure. To further reveal the cryoprotection mechanism of SCMD on gluten protein during frozen storage, the modulatory roles of SCMD in the hydration capacity and conformation behavior of gluten protein were explored, in comparison with DE2 maltodextrin (MD) and pregelatinized starch (PGS). Results demonstrated that SCMD significantly facilitated the reservation of bound water and decreased the surface hydrophobicity of gluten protein after 8 weeks of frozen storage. Remarkable effects of SCMD on stabilizing the secondary structure and microenvironment of aromatic amino acids of gluten protein were observed. Further mechanistic investigation showed that when the temperature dropped from 300 to 250 K, the short-clustered structure could stabilize the α-helixes more evidently than linear structures through hydrogen bonds with water and steric hindrance effect, rather than directly with protein. Our findings will provide novel insights into the cold denaturation of gluten protein and useful guidance in selecting the optimum structure to suppress this denaturation, improving the quality of frozen cereal products.
Collapse
Affiliation(s)
- Yang Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
- College of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212001, China
| | - Haocun Kong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Lu
- College of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212001, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| |
Collapse
|
3
|
Amadeu CAA, Conti AC, Oliveira CAF, Martelli SM, Vanin FM. Safflower cake as an ingredient for a composite flour development towards a circular economy: extrusion versus conventional mixing. Food Res Int 2024; 191:114609. [PMID: 39059893 DOI: 10.1016/j.foodres.2024.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
Food waste is responsible for the loss of 1.3 billion tons of food, some of which are related to by-products with great nutritional and energy potential that are still underexplored, such as safflower cake derived from the oil extraction industry. Therefore, the aim of this study was to evaluate the effects of incorporating safflower cake (Carthamus tinctorius) and the mixing method used to produce composite wheat-based flour in order to develop a new ingredient. The results were analyzed using ANOVA, and the Tukey test was applied at a significance level of 5 %. The composite flours obtained by the conventional mixing method showed, when compared to wheat flour, a higher concentration of proteins (+5g 100 g-1), minerals (+86 mg kg-1 of Fe, +30 mg kg-1 of Zn), phenolic compounds (15 mg GAE g-1), flavonoids (0.3 mg QE g-1), and lower oil absorption (-0.5 g oil g sample-1), making them suitable for hot flour-based sauces, salad dressings, frozen desserts, cookies and fried products. While extruded composite flours presented better homogenization, reduction of moisture (1 g 100 g-1), lipids (3 g 100 g-1), and mycotoxin concentrations, increased antioxidant activity (DPPH -0.07 IC50 mg/L and ORAC +9 µmol Trolox Eq/g), water absorption and solubility indexes, and oil absorption index, making it suitable for bakery products, meat, and dairy sausages. The developed composite flour proved to be a good nutritional ingredient; thus, its consumption can represent an important nutritional strategy with low production costs, as well as a sustainable solution, reducing food waste and, therefore, toward the concepts of the circular economy.
Collapse
Affiliation(s)
- Carolina A Antunes Amadeu
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Av. Duque de Caxias Norte 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Ana Carolina Conti
- Department of Food Engineering and Technology, São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São José do Rio Preto, São Paulo, Brazil
| | - Carlos Augusto Fernandes Oliveira
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Av. Duque de Caxias Norte 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Silvia Maria Martelli
- Food Science and Technology Post Graduate Program, Food Engineering Department, Great Dourados Federal University, Faculty of Engineering, (FAEN/UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Fernanda Maria Vanin
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Av. Duque de Caxias Norte 225, 13635-900 Pirassununga, São Paulo, Brazil.
| |
Collapse
|
4
|
Kuang J, Xu K, Dang B, Zheng W, Yang X, Zhang W, Zhang J, Huang J. Interaction with wheat starch affect the aggregation behavior and digestibility of gluten proteins. Int J Biol Macromol 2023; 253:127066. [PMID: 37748592 DOI: 10.1016/j.ijbiomac.2023.127066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Understanding the interplay between gluten and wheat starch is crucial for elucidating the digestibility mechanism of gluten in wheat-based products. However, this mechanism remains under-investigated. This study sought to elucidate the influence of starch-induced protein structural modifications on gluten digestion. Our findings revealed that starch considerably enhanced gluten digestion. In the presence of starch, gluten protein digestibility increased from 10.91 % (in the control group with a gluten-to-starch ratio of 1:0) to 14.40 % (in the complex with a gluten-to-corn starch ratio of 1:1). The diminished gluten protein digestibility due to starch may be ascribed to modifications in protein configuration and aggregation behavior. Morphological studies suggested that starch not only functioned as filler particles but also diluted the gluten matrix. A protein network assessment further affirmed that both the junction density and branching rate of gluten proteins decreased notably by 29.9 % and 25.1 %, respectively. Conversely, lacunarity increased by 1.92-fold, compromising the cohesiveness and connectivity of the gluten matrix. Elevated starch concentrations suppressed the formation of disulfide bonds, impeding gluten protein aggregation. Concurrently, gluten-starch interactions were governed by hydrogen bonds and hydrophobic associations. In summary, starch augmented gluten protein digestibility by curtailing their polymerization. This revelation might offer novel perspectives on optimizing gluten protein digestion and utilization.
Collapse
Affiliation(s)
- Jiwei Kuang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810016, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining, Qinghai Province 810016, China
| | - Ke Xu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, China
| | - Bin Dang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810016, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining, Qinghai Province 810016, China
| | - Wancai Zheng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810016, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining, Qinghai Province 810016, China
| | - Xijuan Yang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810016, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining, Qinghai Province 810016, China.
| | - Wengang Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810016, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining, Qinghai Province 810016, China
| | - Jie Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810016, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining, Qinghai Province 810016, China
| | - Junrong Huang
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China.
| |
Collapse
|
5
|
Safdar LB, Dugina K, Saeidan A, Yoshicawa GV, Caporaso N, Gapare B, Umer MJ, Bhosale RA, Searle IR, Foulkes MJ, Boden SA, Fisk ID. Reviving grain quality in wheat through non-destructive phenotyping techniques like hyperspectral imaging. Food Energy Secur 2023; 12:e498. [PMID: 38440412 PMCID: PMC10909436 DOI: 10.1002/fes3.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 03/06/2024] Open
Abstract
A long-term goal of breeders and researchers is to develop crop varieties that can resist environmental stressors and produce high yields. However, prioritising yield often compromises improvement of other key traits, including grain quality, which is tedious and time-consuming to measure because of the frequent involvement of destructive phenotyping methods. Recently, non-destructive methods such as hyperspectral imaging (HSI) have gained attention in the food industry for studying wheat grain quality. HSI can quantify variations in individual grains, helping to differentiate high-quality grains from those of low quality. In this review, we discuss the reduction of wheat genetic diversity underlying grain quality traits due to modern breeding, key traits for grain quality, traditional methods for studying grain quality and the application of HSI to study grain quality traits in wheat and its scope in breeding. Our critical review of literature on wheat domestication, grain quality traits and innovative technology introduces approaches that could help improve grain quality in wheat.
Collapse
Affiliation(s)
- Luqman B. Safdar
- International Flavour Research Centre, Division of Food, Nutrition and DieteticsUniversity of NottinghamLoughboroughUK
- International Flavour Research Centre (Adelaide), School of Agriculture, Food and Wine and Waite Research InstituteUniversity of AdelaideGlen OsmondSouth AustraliaAustralia
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamLoughboroughUK
- Plant Research Centre, School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Kateryna Dugina
- International Flavour Research Centre, Division of Food, Nutrition and DieteticsUniversity of NottinghamLoughboroughUK
| | - Ali Saeidan
- International Flavour Research Centre, Division of Food, Nutrition and DieteticsUniversity of NottinghamLoughboroughUK
| | - Guilherme V. Yoshicawa
- Plant Research Centre, School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSouth AustraliaAustralia
| | | | - Brighton Gapare
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamLoughboroughUK
| | - M. Jawad Umer
- Cotton Research InstituteChinese Academy of Agricultural SciencesAnyangChina
| | - Rahul A. Bhosale
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamLoughboroughUK
| | - Iain R. Searle
- School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - M. John Foulkes
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamLoughboroughUK
| | - Scott A. Boden
- Plant Research Centre, School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Ian D. Fisk
- International Flavour Research Centre, Division of Food, Nutrition and DieteticsUniversity of NottinghamLoughboroughUK
- International Flavour Research Centre (Adelaide), School of Agriculture, Food and Wine and Waite Research InstituteUniversity of AdelaideGlen OsmondSouth AustraliaAustralia
| |
Collapse
|
6
|
Kharbach M, Alaoui Mansouri M, Taabouz M, Yu H. Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches. Foods 2023; 12:2753. [PMID: 37509845 PMCID: PMC10379817 DOI: 10.3390/foods12142753] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
In today's era of increased food consumption, consumers have become more demanding in terms of safety and the quality of products they consume. As a result, food authorities are closely monitoring the food industry to ensure that products meet the required standards of quality. The analysis of food properties encompasses various aspects, including chemical and physical descriptions, sensory assessments, authenticity, traceability, processing, crop production, storage conditions, and microbial and contaminant levels. Traditionally, the analysis of food properties has relied on conventional analytical techniques. However, these methods often involve destructive processes, which are laborious, time-consuming, expensive, and environmentally harmful. In contrast, advanced spectroscopic techniques offer a promising alternative. Spectroscopic methods such as hyperspectral and multispectral imaging, NMR, Raman, IR, UV, visible, fluorescence, and X-ray-based methods provide rapid, non-destructive, cost-effective, and environmentally friendly means of food analysis. Nevertheless, interpreting spectroscopy data, whether in the form of signals (fingerprints) or images, can be complex without the assistance of statistical and innovative chemometric approaches. These approaches involve various steps such as pre-processing, exploratory analysis, variable selection, regression, classification, and data integration. They are essential for extracting relevant information and effectively handling the complexity of spectroscopic data. This review aims to address, discuss, and examine recent studies on advanced spectroscopic techniques and chemometric tools in the context of food product applications and analysis trends. Furthermore, it focuses on the practical aspects of spectral data handling, model construction, data interpretation, and the general utilization of statistical and chemometric methods for both qualitative and quantitative analysis. By exploring the advancements in spectroscopic techniques and their integration with chemometric tools, this review provides valuable insights into the potential applications and future directions of these analytical approaches in the food industry. It emphasizes the importance of efficient data handling, model development, and practical implementation of statistical and chemometric methods in the field of food analysis.
Collapse
Affiliation(s)
- Mourad Kharbach
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
- Department of Computer Sciences, University of Helsinki, 00560 Helsinki, Finland
| | - Mohammed Alaoui Mansouri
- Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland
- Research Unit of Mathematical Sciences, University of Oulu, 90014 Oulu, Finland
| | - Mohammed Taabouz
- Biopharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| | - Huiwen Yu
- Shenzhen Hospital, Southern Medical University, Shenzhen 518005, China
- Chemometrics group, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| |
Collapse
|
7
|
Resilience study of wheat protein networks with large amplitude oscillatory shear rheology. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
8
|
Nagel‐Held J, Kaiser L, H. Longin CF, Hitzmann B. Prediction of Wheat Quality Parameters Combining Raman, Fluorescence and Near‐Infrared Spectroscopy (NIRS). Cereal Chem 2022. [DOI: 10.1002/cche.10540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Johannes Nagel‐Held
- Department of Process Analytics and Cereal Science University of Hohenheim, Garbenstraße 23 Stuttgart Germany
| | - Leonie Kaiser
- Department of Process Analytics and Cereal Science University of Hohenheim, Garbenstraße 23 Stuttgart Germany
| | - C. Friedrich H. Longin
- State Plant Breeding Institute University of Hohenheim Fruwirthstraße 21 70599 Stuttgart Germany
| | - Bernd Hitzmann
- Department of Process Analytics and Cereal Science University of Hohenheim, Garbenstraße 23 Stuttgart Germany
| |
Collapse
|
9
|
Wang X, Zhao C. Non-Destructive Quantitative Analysis of Azodicarbonamide Additives in Wheat Flour by High-Throughput Raman Imaging. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/142879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Cleaner and faster method to detect adulteration in cassava starch using Raman spectroscopy and one-class support vector machine. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107917] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
From bench to worktop: Rapid evaluation of nutritional parameters in liquid foodstuffs by IR spectroscopy. Food Chem 2021; 365:130442. [PMID: 34237569 DOI: 10.1016/j.foodchem.2021.130442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 11/24/2022]
Abstract
We evaluated the use of attenuated total reflectance infrared spectroscopy for simultaneous in situ quantification of the nutritional composition of liquid food stuffs in the industrial kitchen context. Different methodologies were compared, including dry and wet acquisition along with instrument parameters and measurement times of 4 and 60 s. The most effective technique was 1-minute measurement, with prediction errors of 2.6, 0.7, 1.0, 2.2, 0.8, 2.4 g/100 mL and 150 Kcal, for carbohydrates, proteins, fat, sugars, saturated fat, water and energy values, respectively.The 4-second method resulted in larger errors but was more applicable for inline measurements. Dry measurements successfully predicted the fractions of proteins, fat, carbohydrates, and sugars, relative to total solids. An app was created to facilitate implementation in a kitchen environment. Compared with other techniques recommended by the FAO, the approach offered a simple alternative for simultaneous prediction of nutritional parameters in an industrial kitchen set-up.
Collapse
|
12
|
Wang J, Chen Q, Belwal T, Lin X, Luo Z. Insights into chemometric algorithms for quality attributes and hazards detection in foodstuffs using Raman/surface enhanced Raman spectroscopy. Compr Rev Food Sci Food Saf 2021; 20:2476-2507. [DOI: 10.1111/1541-4337.12741] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Jingjing Wang
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
| | - Quansheng Chen
- School of Food and Biological Engineering Jiangsu University Zhenjiang People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
- Ningbo Research Institute Zhejiang University Ningbo People's Republic of China
- Fuli Institute of Food Science Hangzhou People's Republic of China
| |
Collapse
|
13
|
Kłosok K, Welc R, Fornal E, Nawrocka A. Effects of Physical and Chemical Factors on the Structure of Gluten, Gliadins and Glutenins as Studied with Spectroscopic Methods. Molecules 2021; 26:508. [PMID: 33478043 PMCID: PMC7835854 DOI: 10.3390/molecules26020508] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 11/17/2022] Open
Abstract
This review presents applications of spectroscopic methods, infrared and Raman spectroscopies in the studies of the structure of gluten network and gluten proteins (gliadins and glutenins). Both methods provide complimentary information on the secondary and tertiary structure of the proteins including analysis of amide I and III bands, conformation of disulphide bridges, behaviour of tyrosine and tryptophan residues, and water populations. Changes in the gluten structure can be studied as an effect of dough mixing in different conditions (e.g., hydration level, temperature), dough freezing and frozen storage as well as addition of different compounds to the dough (e.g., dough improvers, dietary fibre preparations, polysaccharides and polyphenols). Additionally, effect of above mentioned factors can be determined in a common wheat dough, model dough (prepared from reconstituted flour containing only wheat starch and wheat gluten), gluten dough (lack of starch), and in gliadins and glutenins. The samples were studied in the hydrated state, in the form of powder, film or in solution. Analysis of the studies presented in this review indicates that an adequate amount of water is a critical factor affecting gluten structure.
Collapse
Affiliation(s)
- Konrad Kłosok
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (K.K.); (R.W.)
| | - Renata Welc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (K.K.); (R.W.)
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Agnieszka Nawrocka
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (K.K.); (R.W.)
| |
Collapse
|
14
|
Effects of dietary fiber on the digestion and structure of gluten under different thermal processing conditions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Węglińska M, Szostak R, Kita A, Nemś A, Mazurek S. Determination of nutritional parameters of bee pollen by Raman and infrared spectroscopy. Talanta 2020; 212:120790. [DOI: 10.1016/j.talanta.2020.120790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 01/21/2023]
|
16
|
Quantification of Ash and Moisture in Wheat Flour by Raman Spectroscopy. Foods 2020; 9:foods9030280. [PMID: 32138384 PMCID: PMC7143060 DOI: 10.3390/foods9030280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/27/2022] Open
Abstract
Wheat flour is widely used on an industrial scale in baked goods, pasta, food concentrates, and confectionaries. Ash content and moisture can serve as important indicators of the wheat flour’s quality and use, but the routinely applied assessment methods are laborious. Partial least squares regression models, obtained using Raman spectra of flour samples and the results of reference gravimetric analysis, allow for fast and reliable determination of ash and moisture in wheat flour, with relative standard errors of prediction of the order of 2%. Analogous calibration models that enable quantification of carbon, oxygen, sulfur, and nitrogen, and hence protein, in the analyzed flours, with relative standard errors of prediction equal to 0.1, 0.3, 3.3, and 1.4%, respectively, were built combining the results of elemental analysis and Raman spectra.
Collapse
|
17
|
Arslan FN, Akin G, Karuk Elmas ŞN, Üner B, Yilmaz I, Janssen HG, Kenar A. FT-IR spectroscopy with chemometrics for rapid detection of wheat flour adulteration with barley flour. J Verbrauch Lebensm 2020. [DOI: 10.1007/s00003-019-01267-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
|
19
|
Non-destructive Raman spectroscopy as a tool for measuring ASTA color values and Sudan I content in paprika powder. Food Chem 2019; 274:187-193. [DOI: 10.1016/j.foodchem.2018.08.129] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 02/01/2023]
|
20
|
A Novel and Validated Chemical-Enzymatic Strontium Fractionation Method for Wheat Flour from Celestite Mining Area: the First Approach for Sequential Fractionation. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-018-1362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Czaja T, Kuzawińska E, Sobota A, Szostak R. Determining moisture content in pasta by vibrational spectroscopy. Talanta 2018; 178:294-298. [DOI: 10.1016/j.talanta.2017.09.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 11/30/2022]
|
22
|
Su WH, Sun DW. Fourier Transform Infrared and Raman and Hyperspectral Imaging Techniques for Quality Determinations of Powdery Foods: A Review. Compr Rev Food Sci Food Saf 2017; 17:104-122. [DOI: 10.1111/1541-4337.12314] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Wen-Hao Su
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, Univ. College Dublin (UCD); National Univ. of Ireland; Belfield Dublin 4 Ireland
| | - Da-Wen Sun
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, Univ. College Dublin (UCD); National Univ. of Ireland; Belfield Dublin 4 Ireland
| |
Collapse
|
23
|
Ortolan F, Steel CJ. Protein Characteristics that Affect the Quality of Vital Wheat Gluten to be Used in Baking: A Review. Compr Rev Food Sci Food Saf 2017; 16:369-381. [PMID: 33371555 DOI: 10.1111/1541-4337.12259] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 11/30/2022]
Abstract
The use of vital wheat gluten in the baking industry and wheat flour mills aims to improve the rheological characteristics of flour considered unsuitable to obtain products such as sliced bread, French bread, high-fiber breads, and other products that require strong flours. To improve characteristics such as flour strength, dough mixing tolerance, and bread volume, vital wheat gluten is added to flour at levels that can vary from 2% to 10% (flour basis), with 5% being a commonly used dosage. However, the vital wheat gluten commercialized in the market has few quality specifications, especially related to the characteristics of the proteins that constitute it and are responsible for the formation of the viscoelastic gluten network. Information on protein quality is important, because variations are observed in the technological quality of vital wheat gluten obtained from different sources, which could be associated to damage caused to proteins during the obtainment process. Several tests, either physical-chemical analyses, or rheological tests, are carried out to establish gluten quality; however, they are sometimes time-consuming and costly. Although these tests give good answers to specify gluten quality, flour mills, and the baking industries require fast and simple tests to evaluate the uses and/or dosage of vital gluten addition to wheat flour. This review covers the concepts, uses, obtainment processes, and quality analysis of vital wheat gluten, as well as simple tests to help identify details about protein quality of commercial vital wheat gluten.
Collapse
Affiliation(s)
- Fernanda Ortolan
- Univ. Estadual de Campinas. Faculdade de Engenharia de Alimentos, Rua Monteiro Lobato, 80, CEP 13083-862, Cidade Univ. Zeferino Vaz, Campinas, São Paulo, Brazil.,Inst. Federal de Educação, Ciência e Tecnologia Farroupilha - Campus Alegrete, RS 377 Km 27, Passo Novo, CEP 97555-000, Alegrete, Rio Grande do Sul, Brazil
| | - Caroline Joy Steel
- Univ. Estadual de Campinas. Faculdade de Engenharia de Alimentos, Rua Monteiro Lobato, 80, CEP 13083-862, Cidade Univ. Zeferino Vaz, Campinas, São Paulo, Brazil
| |
Collapse
|