1
|
Pan L, Xu W, Gao Y, Ouyang H, Liu X, Wang P, Yu X, Xie T, Li S. Exploring the lipid oxidation mechanisms during pumpkin seed kernels storage based on lipidomics: From phenomena, substances, and metabolic mechanisms. Food Chem 2024; 455:139808. [PMID: 38897071 DOI: 10.1016/j.foodchem.2024.139808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
The study investigated the lipid oxidation of pumpkin seed kernels (PSK) under different storage conditions (room temperature, vacuum-room temperature, refrigeration, and vacuum-refrigeration) using HPLC-MS and GC-MS. Experimental results found the vacuum-refrigeration group showed the lowest PV (0.24 g/100 g), diene (8.68), hexanal (356.64 ± 16.06 ng/g), and nonanal (132.05 ± 8.38 ng/g) after a 9-month storage. A total of 586 lipids, including 6 classes and 27 subclasses, were detected, 46 of which showed significant differences. Refrigeration samples had the highest diacylglycerol content, while room temperature samples demonstrated the highest triacylglycerol and phosphatidylcholine content. Differential lipid metabolite analyses indicated that storage conditions mainly affected glycerolipid metabolism, glycerophospholipid metabolism, and sphingolipid metabolism pathways in PSK, while glycerolipid and glycerophospholipid metabolism were still dominant. It revealed that refrigeration was more effective than vacuum in inhibiting the oxidation of PSK. These findings could offer valuable references for the storage, transportation, preservation, and the development and utilization of PSK.
Collapse
Affiliation(s)
- Li Pan
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Weijian Xu
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Gao
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Hui Ouyang
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xiaolong Liu
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ping Wang
- Construction Corps Key Laboratory of Deep Processing on Featured Agricultural Products in South Xinjiang, Tarim University, Alar, 843300, China
| | - Xiongwei Yu
- Wuhan Xudong Food Co., Ltd., Wuhan 430000, China
| | | | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
2
|
Cascant-Vilaplana MM, Viteritti E, Sadras V, Medina S, Sánchez-Iglesias MP, Oger C, Galano JM, Durand T, Gabaldón JA, Taylor J, Ferreres F, Sergi M, Gil-Izquierdo A. Wheat Oxylipins in Response to Aphids, CO 2 and Nitrogen Regimes. Molecules 2023; 28:molecules28104133. [PMID: 37241874 DOI: 10.3390/molecules28104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Wheat is critical for food security, and is challenged by biotic stresses, chiefly aphids and the viruses they transmit. The objective of this study was to determine whether aphids feeding on wheat could trigger a defensive plant reaction to oxidative stress that involved plant oxylipins. Plants were grown in chambers with a factorial combination of two nitrogen rates (100% N vs. 20% N in Hoagland solution), and two concentrations of CO2 (400 vs. 700 ppm). The seedlings were challenged with Rhopalosiphum padi or Sitobion avenae for 8 h. Wheat leaves produced phytoprostanes (PhytoPs) of the F1 series, and three types of phytofurans (PhytoFs): ent-16(RS)-13-epi-ST-Δ14-9-PhytoF, ent-16(RS)-9-epi-ST-Δ14-10-PhytoF and ent-9(RS)-12-epi-ST-Δ10-13-PhytoF. The oxylipin levels varied with aphids, but not with other experimental sources of variation. Both Rhopalosiphum padi and Sitobion avenae reduced the concentrations of ent-16(RS)-13-epi-ST-Δ14-9-PhytoF and ent-16(RS)-9-epi-ST-Δ14-10-PhytoF in relation to controls, but had little or no effect on PhytoPs. Our results are consistent with aphids affecting the levels of PUFAs (oxylipin precursors), which decreased the levels of PhytoFs in wheat leaves. Therefore, PhytoFs could be postulated as an early indicator of aphid hosting for this plant species. This is the first report on the quantification of non-enzymatic PhytoFs and PhytoPs in wheat leaves in response to aphids.
Collapse
Affiliation(s)
- Mari Merce Cascant-Vilaplana
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
- Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Eduardo Viteritti
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Víctor Sadras
- South Australian Research and Development Institute, Adelaide, SA 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - María Puerto Sánchez-Iglesias
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, University of Montpellier, ENSCM, 34090 Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, University of Montpellier, ENSCM, 34090 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, University of Montpellier, ENSCM, 34090 Montpellier, France
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain
| | - Julian Taylor
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Federico Ferreres
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain
| | - Manuel Sergi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Angel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| |
Collapse
|
3
|
A Phytoprostane from Gracilaria longissima Increases Platelet Activation, Platelet Adhesion to Leukocytes and Endothelial Cell Migration by Potential Binding to EP3 Prostaglandin Receptor. Int J Mol Sci 2023; 24:ijms24032730. [PMID: 36769052 PMCID: PMC9916792 DOI: 10.3390/ijms24032730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Plant phytoprostanes (PhytoPs) are lipid oxidative stress mediators that share structural similarities with mammal prostaglandins (PGs). They have been demonstrated to modulate inflammatory processes mediated by prostaglandins. The present study aims to test the effects of the most abundant oxylipin from Gracilaria longissima, ent-9-D1t-Phytoprostane (9-D1t-PhytoP), on platelet activation and vascular cells as well as clarify possible interactions with platelets and the endothelial EP3 receptor Platelet and monocyte activation was assessed by flow cytometry in the presence of purified 9-D1t-PhytoP. Cell migration was studied using the human Ea.hy926 cell line by performing a scratch wound healing assay. The RNA expression of inflammatory markers was evaluated by RT-PCR under inflammatory conditions. Blind docking consensus was applied to the study of the interactions of selected ligands against the EP3 receptor protein. The 9D1t-PhytoP exerts several pharmacological effects; these include prothrombotic and wound-healing properties. In endothelial cells, 9D1t-PhytP mimics the migration stimulus of PGE2. Computational analysis revealed that 9D1t-PhytP forms a stable complex with the hydrophobic pocket of the EP3 receptor by interaction with the same residues as misoprostol and prostaglandin E2 (PGE2), thus supporting its potential as an EP3 agonist. The potential to form procoagulant platelets and the higher endothelial migration rate of the 9-D1t-PhytoP, together with its capability to interact with PGE2 main target receptor in platelets suggest herein that this oxylipin could be a strong candidate for pharmaceutical research from a multitarget perspective.
Collapse
|
4
|
Fernandes L, Graeff F, Jelassi A, Sulyok M, Garcia C, Rodrigues N, Pereira JA, Bento A, Kanoun A, Rodrigues P, Pereira EL, Ramalhosa E. Effect of relative humidity on the quality and safety of peeled almond kernels (
Prunus dulcis
Mill.) during simulated maritime transport/storage. J Food Sci 2022; 87:5363-5374. [DOI: 10.1111/1750-3841.16369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Luana Fernandes
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
- MORE, Laboratório Colaborativo Montanhas de Investigação ‐ Associação BragançaPortugal
| | - Francieli Graeff
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- School of Food ScienceFederal TechnologicalUniversity of Paraná, UTFPR MedianeiraBrazil
| | - Arij Jelassi
- Ecole Polytechnique Université Libre de Tunis TunisTunisia
| | - Michael Sulyok
- Institute of Bioanalytics and Agro‐MetabolomicsUniversity of Natural Resources and Life Sciences ViennaAustria
| | - Carolina Garcia
- School of Food ScienceFederal TechnologicalUniversity of Paraná, UTFPR MedianeiraBrazil
| | - Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - Albino Bento
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - Alifa Kanoun
- Ecole Polytechnique Université Libre de Tunis TunisTunisia
| | - Paula Rodrigues
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - Ermelinda Lopes Pereira
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - Elsa Ramalhosa
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| |
Collapse
|
5
|
Shelf life of fresh in-hull pistachio in perforated polyethylene packaging. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Smrček J, Hájek M, Hodek O, Čížek K, Pohl R, Jahn E, Galano JM, Oger C, Durand T, Cvačka J, Jahn U. First Total Synthesis of Phytoprostanes with Prostaglandin-Like Configuration, Evidence for Their Formation in Edible Vegetable Oils and Orienting Study of Their Biological Activity. Chemistry 2021; 27:9556-9562. [PMID: 33904184 DOI: 10.1002/chem.202100872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 11/09/2022]
Abstract
Phytoprostanes (PhytoP) are natural products, which form in plants under oxidative stress conditions from α-linolenic acid. However, their epimers with relative prostaglandin configuration termed phytoglandins (PhytoG) have never been detected in Nature, likely because of the lack of synthetic reference material. Here, the first asymmetric total synthesis of such compounds, namely of PhytoGF1α (9-epi-16-F1t -PhytoP) and its diastereomer ent-16-epi-PhytoGF1α (ent-9,16-diepi-16-F1t -PhytoP), has been accomplished. The synthetic strategy is based on radical anion oxidative cyclization, copper(I)-mediated alkyl-alkyl coupling and enantioselective reduction reactions. A UHPLC-MS/MS study using the synthesized compounds as standards indicates PhytoG formation at significant levels during autoxidation of α-linolenic acid in edible vegetable oils. Initial testing of synthetic PhytoGs together with F1 -PhytoP and 15-F2t -IsoP derivatives for potential interactions with the PGF2α (FP) receptor did not reveal significant activity. The notion that PUFA-derived oxidatively formed cyclic metabolites with prostaglandin configuration do not form to a significant extent in biological or food matrices has to be corrected. Strong evidence is provided that oxidatively formed PhytoG metabolites may be ingested with plant-derived food, which necessitates further investigation of their biological profile.
Collapse
Affiliation(s)
- Jakub Smrček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Miroslav Hájek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Ondřej Hodek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Karel Čížek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Emanuela Jahn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 Av. Charles Flahault, CS14491, 34093, Montpellier Cedex 05, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 Av. Charles Flahault, CS14491, 34093, Montpellier Cedex 05, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 Av. Charles Flahault, CS14491, 34093, Montpellier Cedex 05, France
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| |
Collapse
|
7
|
Martínez Sánchez S, Domínguez-Perles R, Montoro-García S, Gabaldón JA, Guy A, Durand T, Oger C, Ferreres F, Gil-Izquierdo A. Bioavailable phytoprostanes and phytofurans from Gracilaria longissima have anti-inflammatory effects in endothelial cells. Food Funct 2021; 11:5166-5178. [PMID: 32432610 DOI: 10.1039/d0fo00976h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND An array of bioactive compounds with health-promoting effects has been described in several species of macroalgae. Among them, phytoprostanes (PhytoPs) and phytofurans (PhytoFs), both autoxidation products of α-linolenic acid, have been seen to exert immunomodulatory and antiinflammatory activities in vitro. The purpose of this study was to explore the bioaccesibility, bioavailability, and bioactivity of PhytoPs and PhytoFs obtained from the edible red algae Gracilaria longissima, and to gain insight into the anti-inflammatory activity of their bioavailable fraction in human endothelial cells. METHODS The PhytoPs and PhytoFs profile and concentration of G. longissima were determined by UHPLC-QqQ-MS/MS. Algal samples were processed following a standardised digestion method including gastric, intestinal, and gastrointestinal digestion. The bioavailability of the PhytoPs and PhytoFs in the characterized fractions was assessed in a Caco-2 cell monolayer model of the intestinal barrier. The inflammation response of these prostaglandin-like compounds in human endothelial cells, after intestinal absorption, was investigated in vitro. RESULTS Simulated digestions significantly reduced the concentration of PhytoPs and PhytoFs up to 1.17 and 0.42 μg per 100 g, respectively, on average, although permeability through the Caco-2 cell monolayer was high (up to 88.2 and 97.7%, on average, respectively). PhytoP and PhytoF-enriched extracts of raw algae impaired the expression of ICAM-1 and IL-6 inflammation markers. The inflammation markers progressed in contrast to the relative concentrations of bioactive oxylipins, suggesting pro- or anti-inflammatory activity on their part. In this aspect, the cross-reactivity of these compounds with diverse receptors, and their relative concentration could explain the diversity of the effects found in the current study. CONCLUSIONS The results indicate that PhytoPs and PhytoFs display complex pharmacological profiles probably mediated through their different actions and affinities in the endothelium.
Collapse
Affiliation(s)
- S Martínez Sánchez
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - R Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100 Espinardo, Spain.
| | - S Montoro-García
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - J A Gabaldón
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - A Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - T Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - C Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - F Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - A Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100 Espinardo, Spain.
| |
Collapse
|
8
|
Improving the Shelf Life of Peeled Fresh Almond Kernels by Edible Coating with Mastic Gum. COATINGS 2021. [DOI: 10.3390/coatings11060618] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coating, as a process in which fruits, vegetables, kernels, and nuts are covered with an edible layer, is an environmentally friendly alternative to plastic wrapping, which has been considered the most effective way to preserve them over the long term. On the other hand, prolonging the shelf life results in a reduction of spoilage and therefore achieving a goal that is very important nowadays—the reduction of food waste. The quality of preserved almonds kernels depends on factors such as grain moisture, storage temperature, relative humidity, oxygen level, packaging, and the shape of the stored nuts (along with being peeled, unpeeled, roasted, etc.). The commercial importance of the almond fruit is related to its kernel. Almonds that are peeled (without the thin brown skin) and stored have a shorter shelf life than unpeeled almonds since the reddish-brown skin, rich in antioxidants, may protect the kernels against oxidation. In this study, a bioactive edible coating has been tested, which may provide an effective barrier against oxygen permeation and moisture, thus preserving the quality of peeled fresh almonds by extending their shelf life. Mastic gum, as a natural coating agent, was used to coat the peeled fresh almond kernels in four different concentrations (0.5%, 1.0%, 1.5%, and 2.0% w/v). The effect of mastic gum coating on the quality parameters of the peeled fresh almonds (moisture uptake, oil oxidation, total yeast and mold growth, and Aspergillus species development) was studied during four months of storage. The results showed that mastic gum, as a coating agent, significantly (p < 0.05) reduced moisture absorption, peroxide and thiobarbituric acid indices, total yeast and mold growth, and Aspergillus species development in the peeled and coated fresh almonds, compared to the control, i.e., uncoated fresh almonds, during 4 months of storage, packed at room temperature (25–27 °C) inside a cabinet at 90% humidity. Therefore, mastic gum can be used as a great natural preservative coating candidate with antioxidant and antimicrobial effects.
Collapse
|
9
|
Campillo M, Medina S, Fanti F, Gallego-Gómez JI, Simonelli-Muñoz A, Bultel-Poncé V, Durand T, Galano JM, Tomás-Barberán FA, Gil-Izquierdo Á, Domínguez-Perles R. Phytoprostanes and phytofurans modulate COX-2-linked inflammation markers in LPS-stimulated THP-1 monocytes by lipidomics workflow. Free Radic Biol Med 2021; 167:335-347. [PMID: 33722629 DOI: 10.1016/j.freeradbiomed.2021.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Inflammation is a fundamental pathophysiological process which occurs in the course of several diseases. The present work describes the capacity of phytoprostanes (PhytoPs) and phytofurans (PhytoFs) (plant oxylipins), present in plant-based foods, to modulate inflammatory processes mediated by prostaglandins (PGs, human oxylipins) in lipopolysaccharide (LPS)-stimulated THP-1 monocytic cells, through a panel of 21 PGs and PG's metabolites, analyzed by UHPLC-QqQ-ESI-MS/MS. Also, the assessment of the cytotoxicity of PhytoPs and PhytoFs on THP-1 cells evidenced percentages of cell viability higher than 90% when treated with up to 100 μM. Accordingly, 50 μM of the individual PhytoPs and PhytoFs 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, ent-16-F1t-PhytoP, ent-16-epi-16-F1t-PhytoP, ent-9-D1t-PhytoP, 16-B1-PhytoP, 9-L1-PhytoP, ent-16(RS)-9-epi-ST-Δ14-10-PhytoF, ent-9(RS)-12-epi-ST-Δ10-13-PhytoF, and ent-16(RS)-13-epi-ST-Δ14-9-PhytoF were evaluated on their capacity to modulate the expression of inflammatory markers. The results obtained demonstrated the presence of 7 metabolites (15-keto-PGF2α, PGF2α, 11β-PGF2α, PGE2, PGD2, PGDM, and PGF1α) in THP-1 monocytic cells, which expression was significantly modulated when exposed to LPS. The evaluation of the capacity of the individual PhytoPs and PhytoFs to revert the modification of the quantitative profile of PGs induced by LPS revealed the anti-inflammatory ability of 9-F1t-PhytoP, ent-9-D1t-PhytoP, 16-B1-PhytoP, 9-L1-PhytoP, and ent-9(RS)-12-epi-ST-Δ10-13-PhytoF, as evidenced by their capacity to prevent the up-regulation of 15-keto-PGF2α, PGF2α, PGE2, PGF1α, PGDM, and PGD2 induced by LPS. These results indicated that specific plant oxylipins can protect against inflammatory events, encouraging further investigations using plant-based foods rich in these oxylipins or enriched extracts, to identify specific bioactivities of the diverse individual molecules, which can be useful for nutrition and health in the frame of well-defined pathophysiological processes.
Collapse
Affiliation(s)
- María Campillo
- Departamento de Enfermería, Universidad Católica de Murcia, UCAM, 3010, Murcia, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain.
| | - Federico Fanti
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain; University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, 64100, TE, Italy
| | - Juana I Gallego-Gómez
- Departamento de Enfermería, Universidad Católica de Murcia, UCAM, 3010, Murcia, Spain
| | | | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Jean Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain; Department of Biotechnology, College of Science, Taif University, Saudi Arabia
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain.
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain
| |
Collapse
|
10
|
Valdés García A, Beltrán Sanahuja A, Karabagias IK, Badeka A, Kontominas MG, Garrigós MC. Effect of Frying and Roasting Processes on the Oxidative Stability of Sunflower Seeds ( Helianthus annuus) under Normal and Accelerated Storage Conditions. Foods 2021; 10:944. [PMID: 33925837 PMCID: PMC8146532 DOI: 10.3390/foods10050944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 01/23/2023] Open
Abstract
The effect of different cooking processes such as frying and roasting on the oxidative stability of sunflower seeds was evaluated under accelerated oxidation and normal storage conditions. The fatty acid composition by GC-MS showed a higher amount of linoleic acid in fried samples due to the replacement of the seed moisture by the frying oil. On the other hand, roasted samples presented a higher oleic acid content. DSC and TGA results showed some decrease in the thermal stability of sunflower seed samples, whereas PV and AV showed the formation of primary and secondary products, with increasing oxidation time. Roasted sunflower seeds showed seven main volatile compounds characteristic of the roasting process by HS-SPME-GC-MS: 2-pentylfuran, 2,3-dimethyl-pyrazine, methyl-pyrazine, 2-octanone, 2-ethyl-6-methylpyrazine, trimethyl-pyrazine, and trans,cis-2,4-decadienal, whereas fried samples showed six volatile characteristic compounds of the frying process: butanal, 2-methyl-butanal, 3-methyl-butanal, heptanal, 1-hexanol, and trans,trans-2,4-decadienal. The generation of hydroperoxides, their degradation, and the formation of secondary oxidation products were also investigated by ATR-FTIR analysis. The proposed methodologies in this work could be suitable for monitoring the quality and shelf-life of commercial processed sunflower seeds with storage time.
Collapse
Affiliation(s)
- Arantzazu Valdés García
- Department of Analytical Chemistry, University of Alicante, Nutrition & Food Sciences, San Vicente del Raspeig, ES-03690 Alicante, Spain; (A.B.S.); (M.C.G.)
| | - Ana Beltrán Sanahuja
- Department of Analytical Chemistry, University of Alicante, Nutrition & Food Sciences, San Vicente del Raspeig, ES-03690 Alicante, Spain; (A.B.S.); (M.C.G.)
| | - Ioannis K. Karabagias
- Laboratory of Food Chemistry and Technology, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (I.K.K.); (A.B.); (M.G.K.)
| | - Anastasia Badeka
- Laboratory of Food Chemistry and Technology, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (I.K.K.); (A.B.); (M.G.K.)
| | - Michael G. Kontominas
- Laboratory of Food Chemistry and Technology, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (I.K.K.); (A.B.); (M.G.K.)
| | - María Carmen Garrigós
- Department of Analytical Chemistry, University of Alicante, Nutrition & Food Sciences, San Vicente del Raspeig, ES-03690 Alicante, Spain; (A.B.S.); (M.C.G.)
| |
Collapse
|
11
|
León-Perez D, Domínguez-Perles R, Collado-González J, Cano-Lamadrid M, Durand T, Guy A, Galano JM, Carbonell-Barrachina Á, Londoño-Londoño J, Ferreres F, Jiménez-Cartagena C, Gil-Izquierdo Á, Medina S. Bioactive plant oxylipins-based lipidomics in eighty worldwide commercial dark chocolates: Effect of cocoa and fatty acid composition on their dietary burden. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Medina S, Gil-Izquierdo Á, Abu-Reidah IM, Durand T, Bultel-Poncé V, Galano JM, Domínguez-Perles R. Evaluation of Phoenix dactylifera Edible Parts and Byproducts as Sources of Phytoprostanes and Phytofurans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8942-8950. [PMID: 32693588 DOI: 10.1021/acs.jafc.0c03364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Even though traditionally date-fruit has been featured by a marginal use, mainly restricted to its dietary intake, in recent years, it has raised the range of applications for this agro-food production. These new uses have entailed an enlarged production of date fruits and, simultaneously, of date palm byproducts. Encouraged by the traditional medicinal uses of dates, according to their phytochemical composition, the present work was focused on the evaluation of a new family of secondary metabolites, the plant oxylipins phytoprostanes (PhytoPs) and phytofurans (PhytoFs), in six separate matrixes of the date palm edible parts and byproducts, applying an UHPLC-ESI-QqQ-MS/MS-based methodology. The evaluation for the first time of date palm edible parts and byproducts as a dietary source of PhytoPs and PhytoFs provides evidence on the value of six different parts (pulp, skin, pits, leaves, clusters, and pollen) regarding their content in these plant oxylipins evidenced by the presence of the PhytoPs, 9-F1t-PhytoP (201.3-7223.1 ng/100 g dw) and 9-epi-9-F1t-PhytoP (209.7-7297.4 ng/100 g dw), and the PhytoFs ent-16(RS)-9-epi-ST-Δ14-10-PhytoF (4.6-191.0 ng/100g dw), and ent-16(RS)-13-epi-ST-Δ14-9-PhytoF as the most abundant compounds. Regarding the diverse matrixes assessed, pollen, clusters, and leaves for PhytoPs and skins and pollen for PhytoFs were identified as the most interesting sources of these compounds. In this concern, the information obtained upon the detailed characterization performed in the present work will allow unravelling the biological interest of PhytoPs and PhytoFs and the extent to which these compounds could exert valuable biological activities upon in vitro (mechanistic) and in vivo studies, allocating the effort-focus on the chemical species of PhytoPs and PhytoFs responsible for such traits.
Collapse
Affiliation(s)
- Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| | - Ibrahim M Abu-Reidah
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
- Department of Industrial Chemistry, Arab American University, P.O. Box 240, 13 Zababdeh-Jenin, Palestine
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| |
Collapse
|
13
|
Collado-González J, Cano-Lamadrid M, Pérez-López D, Carbonell-Barrachina ÁA, Centeno A, Medina S, Griñán I, Guy A, Galano JM, Durand T, Domínguez-Perles R, Torrecillas A, Ferreres F, Gil-Izquierdo Á. Effects of Deficit Irrigation, Rootstock, and Roasting on the Contents of Fatty Acids, Phytoprostanes, and Phytofurans in Pistachio Kernels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8915-8924. [PMID: 32683865 DOI: 10.1021/acs.jafc.0c02901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pistachio (Pistacia vera L.) is a drought-tolerant species grown under the semiarid conditions of the Mediterranean basin. For this reason, it is essential to make an exhaustive quantification of yield and quality benefits of the kernels because the regulated deficit irrigation will allow significant water savings with a minimum impact on yield while improving kernel quality. The goal of this scientific work was to study the influence of the rootstock, water deficit during pit hardening, and kernel roasting on pistachio (P. vera, cv. Kerman) fruit yield, fruit size, and kernel content of fatty acids phytoprostanes (PhytoPs) and phytofurans (PhytoFs) for the first time. Water stress during pit hardening did not affect the pistachio yield. The kernel cultivar showed a lower oleic acid and a higher linoleic acid contents than other cultivars. Kernels from plants grafted on the studied rootstocks showed very interesting characteristics. P. integerrima led to the highest percentage of monounsaturated fatty acids. Regarding the plant oxylipins, P. terebinthus led to the highest contents of PhytoPs and PhytoFs (1260 ng/100 g and 16.2 ng/100 g, respectively). In addition, nuts from trees cultivated under intermediate water deficit during pit hardening showed increased contents of the 9-series F1-phytoprostanes and ent-16(RS)-9-epi-ST-Δ14-10-phytofuran. However, roasting of pistachios led to PhytoP degradation. Therefore, plant cultivar, deficit irrigation, rootstock, and roasting must be considered to enhance biosynthesis of these secondary metabolites. New tools using agricultural strategies to produce hydroSOS pistachios have been opened thanks to the biological properties of these prostaglandin-like compounds linking agriculture, nutrition, and food science technology for further research initiatives.
Collapse
Affiliation(s)
- Jacinta Collado-González
- Department of Agro-Food Technology, Research Group ″Food Quality and Safety, CSA", Miguel Hernández University of Elche (UMH). Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, km 3,2, Orihuela, Alicante 03312, Spain
| | - Marina Cano-Lamadrid
- Department of Agro-Food Technology, Research Group ″Food Quality and Safety, CSA", Miguel Hernández University of Elche (UMH). Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, km 3,2, Orihuela, Alicante 03312, Spain
| | - David Pérez-López
- Department of Agricultural Production, School of Agricultural Engineering, Technical University of Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Ángel A Carbonell-Barrachina
- Department of Agro-Food Technology, Research Group ″Food Quality and Safety, CSA", Miguel Hernández University of Elche (UMH). Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, km 3,2, Orihuela, Alicante 03312, Spain
| | - Ana Centeno
- Department of Agricultural Production, School of Agricultural Engineering, Technical University of Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Food Science and Technology Dept., CEBAS-CSIC, Campus de Espinardo 25, Espinardo 30100, Spain
| | - Isabel Griñán
- Department of Plant Production and Microbiology. Plant Production and Technology Research Group, Miguel Hernández University of Elche, Carretera. de Beniel, km 3,2, Orihuela, Alicante E-03312, Spain
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, Montpellier 34093, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, Montpellier 34093, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, Montpellier 34093, France
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Food Science and Technology Dept., CEBAS-CSIC, Campus de Espinardo 25, Espinardo 30100, Spain
| | - Arturo Torrecillas
- Departamento de Producción Vegetal y Microbiología, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche, Carretera de Beniel, Km 3.2, Orihuela 03312, Spain
| | - Federico Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, Universidad Católica de Murcia (UCAM), Campus Los Jerónimos, s/n, Murcia 30107, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Food Science and Technology Dept., CEBAS-CSIC, Campus de Espinardo 25, Espinardo 30100, Spain
| |
Collapse
|
14
|
Lipan L, Collado-González J, Domínguez-Perles R, Corell M, Bultel-Poncé V, Galano JM, Durand T, Medina S, Gil-Izquierdo Á, Carbonell-Barrachina Á. Phytoprostanes and Phytofurans-Oxidative Stress and Bioactive Compounds-in Almonds are Affected by Deficit Irrigation in Almond Trees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7214-7225. [PMID: 32520540 DOI: 10.1021/acs.jafc.0c02268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Almonds have gained consumers' attention due to their health benefits (they are rich in bioactive compounds) and sensory properties. Nevertheless, information about phytoprostanes (PhytoPs) and phytofurans (PhytoFs) (new plant markers of oxidative stress and compounds with biological properties for human health) in almonds under deficit irrigation is scarce or does not exist. These compounds are plant oxylipins synthesized by the oxidation of α-linolenic acid (ALA). Besides, they are biomarkers of plant oxidative degradation and biologically active molecules involved in several plant defense mechanisms. hydroSOStainable or hydroSOS mean plant foods made from from plants under controlled water stress. Almonds are a good source of polyunsaturated fatty (PUFAs) acids, including a high content of ALA. This paper aimed to describe the influence of diverse irrigation treatments on in vitro anti-oxidant activity (AAc) and total phenolic content (TPC), as well as on the level of ALA, PhytoP, and PhytoF in "Vairo" almonds. The AAc and TPC were not affected by the irrigation strategy, while the in vivo oxidative stress makers, PhytoPs and PhytoFs, exhibited significant differences in response to water shortage. The total PhytoP and PhytoF contents ranged from 4551 to 8151 ng/100 g dry weight (dw) and from 33 to 56 ng/100 g dw, respectively. The PhytoP and PhytoF profiles identified in almonds showed significant differences among treatments. Individual PhytoPs and PhytoFs were present above the limit of detection only in almonds obtained from trees maintained under deficit irrigation (DI) conditions (regulated deficit irrigation, RDI, and sustained deficit irrigation, SDI) but not in control almonds obtained from fully irrigated trees. Therefore, these results confirm PhytoPs and PhytoFs as valuable biomarkers to detect whether an almond-based product is hydroSOStainable. As a final conclusion, it can be stated that almond quality and functionality can be improved and water irrigation consumption can be reduced if controlled DI strategies are applied in almond orchards.
Collapse
Affiliation(s)
- Leontina Lipan
- Department of Agro-Food Technology, Research Group "Food Quality and Safety", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Mireia Corell
- Departamento Ciencias Agroforestales, Escuela Técnica Superior de Ingeniería Agronómica, Universty of Sevilla, Carretera de Utrera, Km 1, 41013, Sevilla, Spain
- Associated Unity to CSIC: Uso Sostenible del Suelo y el Agua en la Agricultura (Universidad de Sevilla-Instituto de Recursos Naturales y Agrobiología de Sevilla), Carretera de Utrera Km 1, 41013 Sevilla, Spain
| | - Valérie Bultel-Poncé
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Jean-Marie Galano
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Thierry Durand
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Ángel Carbonell-Barrachina
- Department of Agro-Food Technology, Research Group "Food Quality and Safety", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| |
Collapse
|
15
|
Comparative study of different cocoa (Theobroma cacao L.) clones in terms of their phytoprostanes and phytofurans contents. Food Chem 2019; 280:231-239. [DOI: 10.1016/j.foodchem.2018.12.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 11/22/2022]
|
16
|
Medina S, Collado-González J, Ferreres F, Londoño-Londoño J, Jiménez-Cartagena C, Guy A, Durand T, Galano JM, Gil-Izquierdo Á. Potential of Physalis peruviana calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2194-2204. [PMID: 30315579 DOI: 10.1002/jsfa.9413] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In Colombia, agro-industrial residues represent an enormous economic and environmental problem, which could be reduced if different techniques for the addition of value to such residues were implemented by this industrial sector. One of the fruits with the highest export rates is Physalis peruviana (goldenberry); however, this fruit is generally marketed without its calyx, generating a large amount of residues. To develop a strategy to add value to these residues, it is essential to know their chemical composition. RESULTS In the present work, phytoprostanes (PhytoPs) - new active oxylipins - have been detected for the first time in Physalis peruviana calyces by ultra-high performance liquid chromatography triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS), F1t -phytoprostanes and D1t -phytoprostanes being the predominant and minor classes, respectively. In addition, we were able to characterize the phenolic compounds profile of this matrix using LC-IT-DAD-MS/MS, describing six phenolic derivatives for the first time therein. CONCLUSIONS This study increases our knowledge of the chemical composition of the calyces of this fruit and thereby supports the recycling of this class of residue. Consequently, goldenberry calyces could be used as phytotherapeutic, nutraceutic, or cosmetic ingredients for the development of diverse natural products. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
- Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas, Colombia
| | - Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Julián Londoño-Londoño
- Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas, Colombia
| | - Claudio Jiménez-Cartagena
- Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas, Colombia
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier - ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier - ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier - ENSCM, Montpellier, France
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| |
Collapse
|
17
|
Pinciroli M, Domínguez-Perles R, Abellán Á, Bultel-Poncé V, Durand T, Galano JM, Ferreres F, Gil-Izquierdo Á. Statement of Foliar Fertilization Impact on Yield, Composition, and Oxidative Biomarkers in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:597-605. [PMID: 30566341 DOI: 10.1021/acs.jafc.8b05808] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In rice crops, fertilization is a naturalized practice, although inefficient, that could be improved by applying foliar fertilization. Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are products of α-linolenic acid peroxidation, useful as biomarkers of oxidative degradation in higher plants. The objective was to determine the effect of the foliar fertilization on the concentration of PhytoPs and PhytoFs and its relationships with modifications of yield and quality of rice productions. It was described that the concentration of biomarkers of stress decreased with the application of foliar fertilization, being the response significantly different depending the genotypes and compound monitored. Moreover, fertilization did not modify significantly the parameters of yield (961.2 g m-2), 1000 whole-grain (21.2 g), and protein content (10.7% dry matter). Therefore, this is the first work that describes the effect of fertilization on PhytoPs and PhytoFs in rice genotypes and reinforces the capacity of these compounds as biomarkers to monitor specific abiotic stress, in this case, represented by nutritional stress.
Collapse
Affiliation(s)
- M Pinciroli
- Department of Climate and Agricultural Phenology, Faculty of Agriculture and Forestry Sciences , National University de la Plata , Street 60 and 119 , 1900 La Plata , Buenos Aires Argentina
| | - R Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC, University Campus of Espinardo , Edif. 25 , 30100 Espinardo , Spain
| | - Á Abellán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC, University Campus of Espinardo , Edif. 25 , 30100 Espinardo , Spain
| | - V Bultel-Poncé
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 , University of Montpellier, CNRS, ENSCM , 34093 Montpellier , France
| | - T Durand
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 , University of Montpellier, CNRS, ENSCM , 34093 Montpellier , France
| | - J M Galano
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 , University of Montpellier, CNRS, ENSCM , 34093 Montpellier , France
| | - F Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC, University Campus of Espinardo , Edif. 25 , 30100 Espinardo , Spain
| | - Á Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC, University Campus of Espinardo , Edif. 25 , 30100 Espinardo , Spain
| |
Collapse
|
18
|
Medina S, Gil-Izquierdo Á, Durand T, Ferreres F, Domínguez-Perles R. Structural/Functional Matches and Divergences of Phytoprostanes and Phytofurans with Bioactive Human Oxylipins. Antioxidants (Basel) 2018; 7:E165. [PMID: 30453565 PMCID: PMC6262570 DOI: 10.3390/antiox7110165] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
Structure-activity relationship (SAR) constitutes a crucial topic to discover new bioactive molecules. This approach initiates with the comparison of a target candidate with a molecule or a collection of molecules and their attributed biological functions to shed some light in the details of one or more SARs and subsequently using that information to outline valuable application of the newly identified compounds. Thus, while the empiric knowledge of medicinal chemistry is critical to these tasks, the results retrieved upon dedicated experimental demonstration retrieved resorting to modern high throughput analytical approaches and techniques allow to overwhelm the constraints adduced so far to the successful accomplishment of such tasks. Therefore, the present work reviews critically the evidences reported to date on the occurrence of phytoprostanes and phytofurans in plant foods, and the information available on their bioavailability and biological activity, shedding some light on the expectation waken up due to their structural similarities with prostanoids and isoprostanes.
Collapse
Affiliation(s)
- Sonia Medina
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100 Murcia, Spain.
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, Faculty of Pharmacy, University of Montpellier-ENSCM, 34093 Montpellier, France.
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100 Murcia, Spain.
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
19
|
Dean LL. Targeted and Non-Targeted Analyses of Secondary Metabolites in Nut and Seed Processing. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lisa L. Dean
- Market Quality and Handling Research Unit; United States Department of Agriculture; Agricultural Research Service; Raleigh P.O. Box 7624 Raleigh, NC 27695-7624 USA
| |
Collapse
|
20
|
Padehban L, Ansari S, Koshani R. Effect of packaging method, temperature and storage period on physicochemical and sensory properties of wild almond kernel. Journal of Food Science and Technology 2018; 55:3408-3416. [PMID: 30150799 DOI: 10.1007/s13197-018-3239-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/06/2017] [Accepted: 05/21/2018] [Indexed: 10/28/2022]
Abstract
This research was performed to monitor the effect of different temperatures (4, 25 and 35 °C) and atmospheres (vacuum, CO2 and normal air) on physicochemical and sensory properties of wild almond kernel during several weeks' storage. The color, moisture content and sensory analysis of the kernels, peroxide value (PV), 2-thiobarbiotic acid (TBA), conjugated dienes and trienes (CD, CT) and acid value (AV) of the oils were determined in defined time intervals. The results showed that the influence of temperature, time and type of atmosphere on the following parameters were significantly different. At all temperatures studied, AV, PV, TBA and CD/CT of oils from all samples increased with time which was less in the modified atmosphere packaging (MAP) compared with vacuum packaging (VP) and air atmosphere packaging (AAP). At the end of storage, the samples stored under AAP at 35 °C had the highest amount of PV (15.5 meq/kg), TBA (0.056 mg/kg) and CT (0.193 μmol/g), while the samples packaged under MAP at 4 °C had the lowest. Irrespective of packaging type, L* and b* values decreased during storage with a parallel increase of values a* resulting in gradual product darkening, especially in AAP. Sensory analysis also showed the decrease of overall acceptability during the storage among the three packaging systems. In conclusion, the use of MAP was the most effective method for protecting wild almond kernel from deteriorative reactions such as oxidation and hydrolysis.
Collapse
Affiliation(s)
- Leila Padehban
- Department of Food Science and Technology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Sara Ansari
- Department of Food Science and Technology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Roya Koshani
- 2Department of Food Science and Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Domínguez-Perles R, Abellán Á, León D, Ferreres F, Guy A, Oger C, Galano JM, Durand T, Gil-Izquierdo Á. Sorting out the phytoprostane and phytofuran profile in vegetable oils. Food Res Int 2018; 107:619-628. [PMID: 29580528 DOI: 10.1016/j.foodres.2018.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/01/2018] [Accepted: 03/04/2018] [Indexed: 10/17/2022]
Abstract
Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are prostaglandin-like compounds, contributing to defense signaling and prevention of cellular damage. These plant oxylipins result from autoxidation of α-linolenic acid (ALA) and have been proposed as new bioactive compounds due to their structural analogies with isoprostanes (IsoPs) and prostanoids derived from arachidonic acid in mammals, which have demonstrated diverse biological activities. The present work assesses a wide range of vegetable oils - including extra virgin olive oils (n = 7) and flax, sesame, argan, safflower seed, grapeseed, and palm oils - for their content of PhytoPs and PhytoFs. Flax oil displayed the highest concentrations, being notable the presence of 9-epi-9-D1t-PhytoP, 9-D1t-PhytoP, 16-B1-PhytoP, and 9-L1-PhytoP (7.54, 28.09, 28.67, and 19.22 μg mL-1, respectively), which contributed to a total PhytoPs concentration of 119.15 μg mL-1, and of ent-16-(RS)-9-epi-ST-Δ14-10-PhytoF (21.46 μg mL-1). Palm and grapeseed oils appeared as the most appropriate negative controls, given the near absence of PhytoPs and PhytoFs (lower than 0.15 μg mL-1). These data inform on the chance to develop nutritional trials using flax and grapeseed oils as food matrices that would provide practical information to design further assays intended to determine the actual bioavailability/bioactivity in vivo.
Collapse
Affiliation(s)
- Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Ángel Abellán
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Daniel León
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Federico Ferreres
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Alexander Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
22
|
Jung J, Wang W, McGorrin RJ, Zhao Y. Moisture Adsorption Isotherm and Storability of Hazelnut Inshells and Kernels Produced in Oregon, USA. J Food Sci 2018; 83:340-348. [PMID: 29337355 DOI: 10.1111/1750-3841.14025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/01/2017] [Indexed: 11/26/2022]
Abstract
Moisture adsorption isotherms and storability of dried hazelnut inshells and kernels produced in Oregon were evaluated and compared among cultivars, including Barcelona, Yamhill, and Jefferson. Experimental moisture adsorption data fitted to Guggenheim-Anderson-de Boer (GAB) model, showing less hygroscopic properties in Yamhill than other cultivars of inshells and kernels due to lower content of carbohydrate and protein, but higher content of fat. The safe levels of moisture content (MC, dry basis) of dried inshells and kernels for reaching kernel water activity (aw ) ≤0.65 were estimated using the GAB model as 11.3% and 5.0% for Barcelona, 9.4% and 4.2% for Yamhill, and 10.7% and 4.9% for Jefferson, respectively. Storage conditions (2 °C at 85% to 95% relative humidity [RH], 10 °C at 65% to 75% RH, and 27 °C at 35% to 45% RH), times (0, 4, 8, or 12 mo), and packaging methods (atmosphere vs. vacuum) affected MC, aw , bioactive compounds, lipid oxidation, and enzyme activity of dried hazelnut inshells or kernels. For inshells packaged at woven polypropylene bag, MC and aw of inshells and kernels (inside shells) increased at 2 and 10 °C, but decreased at 27 °C during storage. For kernels, lipid oxidation and polyphenol oxidase activity also increased with extended storage time (P < 0.05), and MC and aw of vacuum packaged samples were more stable during storage than those atmospherically packaged ones. Principal component analysis showed correlation of kernel qualities with storage condition, time, and packaging method. This study demonstrated that the ideal storage condition or packaging method varied among cultivars due to their different moisture adsorption and physicochemical and enzymatic stability during storage. PRACTICAL APPLICATION Moisture adsorption isotherm of hazelnut inshells and kernels is useful for predicting the storability of nuts. This study found that water adsorption and storability varied among the different cultivars of nuts, in which Yamhill was less hygroscopic than Barcelona and Jefferson, thus more stable during storage. For ensuring food safety and quality of nuts during storage, each cultivar of kernels should be dried to a certain level of MC. Lipid oxidation and enzyme activity of kernel could be increased with extended storage time. Vacuum packaging was recommended to kernels for reducing moisture adsorption during storage.
Collapse
Affiliation(s)
- Jooyeoun Jung
- Dept. of Food Science & Technology, Oregon State Univ., 100 Wiegand Hall, Corvallis, OR 97331-6602, U.S.A
| | - Wenjie Wang
- Dept. of Food Science & Technology, Oregon State Univ., 100 Wiegand Hall, Corvallis, OR 97331-6602, U.S.A
| | - Robert J McGorrin
- Dept. of Food Science & Technology, Oregon State Univ., 100 Wiegand Hall, Corvallis, OR 97331-6602, U.S.A
| | - Yanyun Zhao
- Dept. of Food Science & Technology, Oregon State Univ., 100 Wiegand Hall, Corvallis, OR 97331-6602, U.S.A
| |
Collapse
|
23
|
Smrček J, Pohl R, Jahn U. Total syntheses of all tri-oxygenated 16-phytoprostane classes via a common precursor constructed by oxidative cyclization and alkyl-alkyl coupling reactions as the key steps. Org Biomol Chem 2017; 15:9408-9414. [PMID: 29095476 DOI: 10.1039/c7ob02505j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unified strategy for the total synthesis of the methyl esters of all phytoprostane (PhytoP) classes bearing two ring-oxygen atoms based on an orthogonally protected common precursor is described. Racemic 16-F1t-, 16-E1-PhytoP and their C-16 epimers, which also occur as racemates in Nature, were successfully obtained. The first total synthesis of very sensitive 16-D1t-PhytoP succeeded, however, it quickly isomerized to more stable, but so far also unknown Δ13-16-D1t-PhytoP, which may serve as a more reliable biomarker for D-type PhytoP. The dioxygenated cyclopentane ring carrying the ω-chain with the oxygen functionality in the 16-position was approached by a radical oxidative cyclization mediated by ferrocenium hexafluorophosphate and TEMPO. The α-chain was introduced by a new copper-catalyzed alkyl-alkyl coupling of a 6-heptenyl Grignard reagent with a functionalized cyclopentylmethyl triflate.
Collapse
Affiliation(s)
- Jakub Smrček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.
| | | | | |
Collapse
|
24
|
Pinciroli M, Domínguez-Perles R, Abellán A, Guy A, Durand T, Oger C, Galano JM, Ferreres F, Gil-Izquierdo A. Comparative Study of the Phytoprostane and Phytofuran Content of indica and japonica Rice (Oryza sativa L.) Flours. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8938-8947. [PMID: 28931281 DOI: 10.1021/acs.jafc.7b03482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phytoprostanes and phytofurans (PhytoPs and PhytoFs, respectively) are nonenzymatic lipid peroxidation products derived from α-linolenic acid (C18:3 n-3), considered biomarkers of oxidative degradation in plant foods. The present work profiled these compounds in white and brown grain flours and rice bran from 14 rice cultivars of the subspecies indica and japonica by ultrahigh performance liquid chromatography coupled to electrospray ionization and triple quadrupole mass spectrometry. For PhytoPs, the average concentrations were higher in rice bran (0.01-9.35 ng g-1) than in white and brown grain flours (0.01-1.17 ng g-1). In addition, the evaluation of rice flours for the occurrence PhytoFs evidenced average values 1.77, 4.22, and 10.30 ng g-1 dw in rice bran, brown grain flour, and white grain flour, respectively. A significant correlation was observed between total and individual compounds. The concentrations retrieved suggest rice bran as a valuable source of PhytoPs and PhytoFs that should be considered in further studies on bioavailability and bioactivity of such compounds.
Collapse
Affiliation(s)
- M Pinciroli
- Programa Arroz, Facultad de Ciencias Agrarias y Forestales Universidad Nacional de la Plata . Calle 60 y 119, 1900 La Plata, Buenos Aires, Argentina
| | - R Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| | - A Abellán
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| | - A Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - T Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - C Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - J M Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - F Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| | - A Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| |
Collapse
|
25
|
Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JCY. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology. Prog Lipid Res 2017; 68:83-108. [PMID: 28923590 DOI: 10.1016/j.plipres.2017.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Since the beginning of the 1990's diverse types of metabolites originating from polyunsaturated fatty acids, formed under autooxidative conditions were discovered. Known as prostaglandin isomers (or isoprostanoids) originating from arachidonic acid, neuroprostanes from docosahexaenoic acid, and phytoprostanes from α-linolenic acid proved to be prevalent in biology. The syntheses of these compounds by organic chemists and the development of sophisticated mass spectrometry methods has boosted our understanding of the isoprostanoid biology. In recent years, it has become accepted that these molecules not only serve as markers of oxidative damage but also exhibit a wide range of bioactivities. In addition, isoprostanoids have emerged as indicators of oxidative stress in humans and their environment. This review explores in detail the isoprostanoid chemistry and biology that has been achieved in the past three decades.
Collapse
Affiliation(s)
- Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
26
|
Medina S, Collado-González J, Ferreres F, Londoño-Londoño J, Jiménez-Cartagena C, Guy A, Durand T, Galano JM, Gil-Izquierdo A. Quantification of phytoprostanes – bioactive oxylipins – and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS. Food Chem 2017; 229:1-8. [DOI: 10.1016/j.foodchem.2017.02.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022]
|
27
|
Collado-González J, Grosso C, Valentão P, Andrade PB, Ferreres F, Durand T, Guy A, Galano JM, Torrecillas A, Gil-Izquierdo Á. Inhibition of α-glucosidase and α-amylase by Spanish extra virgin olive oils: The involvement of bioactive compounds other than oleuropein and hydroxytyrosol. Food Chem 2017; 235:298-307. [PMID: 28554640 DOI: 10.1016/j.foodchem.2017.04.171] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/23/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
Abstract
Despite the wide use of extra virgin olive oil (EVOO) to combat several diseases, the antidiabetic and anti-cholinesterase activity of Spanish EVOO have not been assessed. In order to evaluate which compounds are responsible for these activities of five Spanish EVOOs, in addition to flavonoids, we investigated for the first time the effect of the contents of carotenoids, fatty acids (FAs), and phytoprostanes (PhytoPs) on four enzymes: α-glucosidase, α-amylase, acetylcholinesterase, and butyrylcholinesterase. The extracts of these five Spanish EVOOs were found to contain three flavones, three carotenoids, six FAs, and seven classes of PhytoPs. The samples exhibited no in vitro anti-cholinesterase activity but presented strong antidiabetic activity, in the order: 'Arbequina'≈'Picual'≈'Cuquillo'>'Hojiblanca'>'Cornicabra'. The samples showed a higher in vitro hypoglycemic effect than individual or mixed standards, possibly due to interaction between multiple identified compounds and/or a very complex multivariate interaction between other factors.
Collapse
Affiliation(s)
- Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - Clara Grosso
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Patricia Valentão
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Arturo Torrecillas
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain.
| |
Collapse
|
28
|
Carrasco-Del Amor AM, Aguayo E, Collado-González J, Guy A, Galano JM, Durand T, Gil-Izquierdo Á. Impact of processing conditions on the phytoprostanes profile of three types of nut kernels. Free Radic Res 2017; 51:141-147. [DOI: 10.1080/10715762.2017.1288909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ana María Carrasco-Del Amor
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain
- Institute of Plant Biotechnology, Unit of Food Quality and Health, UPCT, Cartagena, Spain
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain
- Institute of Plant Biotechnology, Unit of Food Quality and Health, UPCT, Cartagena, Spain
| | - Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Alexandre Guy
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 – CNRS – University of Montpellier – ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 – CNRS – University of Montpellier – ENSCM, Montpellier, France
| | - Thierry Durand
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 – CNRS – University of Montpellier – ENSCM, Montpellier, France
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| |
Collapse
|
29
|
Yonny ME, Rodríguez Torresi A, Cuyamendous C, Réversat G, Oger C, Galano JM, Durand T, Vigor C, Nazareno MA. Thermal Stress in Melon Plants: Phytoprostanes and Phytofurans as Oxidative Stress Biomarkers and the Effect of Antioxidant Supplementation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8296-8304. [PMID: 27732779 DOI: 10.1021/acs.jafc.6b03011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The extreme temperatures generated in the melon crop, early harvest, induce an increase in reactive oxygen species (ROS) plant levels leading to oxidative stress. Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are plant metabolites derived from α-linolenic acid oxidation induced by ROS. The aims of this work were to evaluate PhytoPs and PhytoFs as oxidative stress biomarkers in leaves of melon plants thermally stressed. In addition, to fortify melon plant antioxidant defenses, foliar spraying was assayed using salicylic and gallic acid solutions and Ilex paraguariensis extract. PhytoP and PhytoF concentration ranges were 109-1146 and 130-4400 ng/g, respectively. Their levels in stressed plants were significantly higher than in nonstressed samples. In stressed samples treated with I. paraguariensis, PhytoP and PhytoF levels were significantly lower than in stressed samples without antioxidants. PhytoPs and PhytoFs represent relevant oxidative stress biomarkers in melon leaves. The use of natural antioxidants could reduce plant oxidative stress.
Collapse
Affiliation(s)
- Melisa E Yonny
- CITSE-CONICET, Universidad Nacional de Santiago del Estero , RN 9 Km 1125, Villa El Zanjón, C.P. 4206, Santiago del Estero, Argentina
| | | | - Claire Cuyamendous
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , F-34093 Montpellier, France
| | - Guillaume Réversat
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , F-34093 Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , F-34093 Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , F-34093 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , F-34093 Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , F-34093 Montpellier, France
| | - Mónica A Nazareno
- CITSE-CONICET, Universidad Nacional de Santiago del Estero , RN 9 Km 1125, Villa El Zanjón, C.P. 4206, Santiago del Estero, Argentina
| |
Collapse
|