1
|
Liberty JT, Lin H, Kucha C, Sun S, Alsalman FB. Innovative approaches to food traceability with DNA barcoding: Beyond traditional labels and certifications. ECOLOGICAL GENETICS AND GENOMICS 2025; 34:100317. [DOI: 10.1016/j.egg.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Boondaeng A, Keabpimai J, Trakunjae C, Vaithanomsat P, Srichola P, Niyomvong N. Cellulase production under solid-state fermentation by Aspergillus sp. IN5: Parameter optimization and application. Heliyon 2024; 10:e26601. [PMID: 38434300 PMCID: PMC10907733 DOI: 10.1016/j.heliyon.2024.e26601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Microbial cellulases are highly versatile catalysts with significant potential in various industries, including pulp and paper, textile manufacturing, laundry, biofuel production, food and animal feed, brewing, and agriculture. Cellulases have attracted considerable attention from the scientific community owing to their broad industrial applications and the complex nature of enzymatic systems. In the present study, a novel fungal isolate of Aspergillus sp. IN5 was used to produce cellulases. We optimized each parameter, including carbon source, incubation temperature, pH, and incubation time, for maximum cellulase production using isolate IN5 under solid-state fermentation conditions. The optimized parameters for cellulase production by isolate IN5 under solid-state fermentation were as follows: substrate, soybean residue; incubation temperature, 35 °C; pH, 7.0; and incubation duration, 5 days. These conditions resulted in the highest total cellulase activity (0.26 U/g substrate), and carboxymethyl cellulase and β-glucosidase activities of 3.32 and 196.09 U/g substrate, respectively. The obtained fungal cellulase was used for the enzymatic hydrolysis of acid- or alkali-pretreated rice straw, which served as a model substrate. Notably, compared with acid pretreatment, the pretreatment of rice straw with diluted alkali led to higher yields of reducing sugars. Maximum reducing sugar yield (286.06 ± 2.77 mg/g substrate) was obtained after 24-h incubation of diluted alkali-pretreated rice straw mixed with an enzyme loading of 15 U/g substrate. The findings of this study provide an alternative strategy for utilizing agricultural waste and an approach to efficiently produce cellulase for the degradation of lignocellulosic materials, with promising benefits for sustainable waste management.
Collapse
Affiliation(s)
- Antika Boondaeng
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok 10900, Thailand
| | - Jureeporn Keabpimai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok 10900, Thailand
| | - Chanaporn Trakunjae
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok 10900, Thailand
| | - Pilanee Vaithanomsat
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok 10900, Thailand
| | - Preeyanuch Srichola
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok 10900, Thailand
| | - Nanthavut Niyomvong
- Department of Biology and Biotechnology, Faculty of Science and Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan 60000, Thailand
- Science Center, Nakhon Sawan Rajabhat University, Nakhon Sawan 60000, Thailand
| |
Collapse
|
3
|
Wannasawang N, Luangharn T, Thawthong A, Charoensup R, Jaidee W, Tongdeesoontorn W, Hyde KD, Thongklang N. Study of Optimal Conditions to Grow Thai Ganoderma, Fruiting Test, Proximate and Their Alpha Glucosidase Inhibitory Activity. Life (Basel) 2023; 13:1887. [PMID: 37763291 PMCID: PMC10532565 DOI: 10.3390/life13091887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Ganoderma (Ganodermataceae) has a worldwide distribution and has been widely used in traditional medicines. In this study, we report wild strains of Ganoderma that include two G. sichuanense and one G. orbiforme from northern Thailand. Optimal conditions for mycelium growth were ensured. The most favourable medium was potato sucrose agar for G. sichuanense and oatmeal agar for G. orbiforme and at 25 °C and 30 °C and pH 4-8. All types of cereal grains can be used to promote the growth of the mycelia of Ganoderma species. Fruiting tests were performed. All strains of Ganoderma produce fruiting bodies successfully in bag culture at 28 ± 1 °C with 75-85% relative humidity. Only G. orbiforme produced fruiting bodies in field cultivation at the laboratory scale. In the first flush yields, the G. sichuanense strain MFLUCC 22-0064 gave better production (the B.E was 152.35 ± 6.98 g). This study is the first to document the bag and field cultivation of wild Thai G. orbiforme. Ganoderma species are revealed to contain high amounts of fiber (47.90-52.45% d.b.), protein (12.80-14.67% d.b.), fat (4.90-5.70% d.b.), and carbohydrates (3.16-4.02% d.b.). Additionally, G. sichuanense and G. orbiforme were preliminarily screened for biological activity for inhibition of alpha-glucosidase enzyme activity. The IC50 values of G. orbiforme (MFLUCC 22-0066) was 105.97 ± 1.36 µg/mL and G. sichuanense (MFLUCC 22-0064) was 126.94 ± 0.87 µg/mL. Both strains had better inhibition than acarbose (168.18 ± 0.89 µM). These results on wild strains of Ganoderma will be useful for further studies on the applications of Ganoderma. Later the species can be introduced to domestic markets for cultivation and medicinal use.
Collapse
Affiliation(s)
- Naruemon Wannasawang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (N.W.); (T.L.); (A.T.); (K.D.H.)
| | - Thatsanee Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (N.W.); (T.L.); (A.T.); (K.D.H.)
| | - Anan Thawthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (N.W.); (T.L.); (A.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Rawiwan Charoensup
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Medicinal Plant Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Wuttichai Jaidee
- Medicinal Plant Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Wirongrong Tongdeesoontorn
- School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Research Group of Innovative Food Packaging and Biomaterials, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (N.W.); (T.L.); (A.T.); (K.D.H.)
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (N.W.); (T.L.); (A.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
4
|
Becker AAMJ, Freeman MA, Dennis MM. A combined diagnostic approach for the investigation of lesions resembling aspergillosis in Caribbean sea fans ( Gorgonia spp.). Vet Pathol 2023; 60:640-651. [PMID: 37218467 DOI: 10.1177/03009858231173355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aspergillosis of gorgonian sea fans is a Caribbean-wide disease characterized by focal, annular purple pigmentation with central tissue loss. We applied a holistic diagnostic approach including histopathology and a combination of culture and direct molecular identification of fungi to evaluate these lesions with the goal of determining the diversity of associated micro-organisms and pathology. Biopsies were collected from 14 sea fans without gross lesions and 44 sea fans with lesions grossly consistent with aspergillosis in shallow fringing reefs of St. Kitts. Histologically, the tissue loss margin had exposure of the axis and amoebocyte encapsulation with abundant mixed micro-organisms. Polyp loss, gastrodermal necrosis, and coenenchymal amoebocytosis were at the lesion interface (purpled area transitioning to grossly normal tissue) with algae (n = 21), fungus-like hyphae (n = 20), ciliate protists (n = 16), cyanobacteria (n = 15), labyrinthulomycetes (n = 5), or no micro-organisms (n = 8). Slender, septate hyaline hyphae predominated over other morphological categories, but were confined to the axis with little host response other than periaxial melanization. Hyphae were absent in 6 lesioned sea fans and present in 5 control biopsies, questioning their pathogenicity and necessary role in lesion causation. From cultivation, different fungi were isolated and identified by sequencing of the nuclear ribosomal internal transcribed spacer region. In addition, 2 primer pairs were used in a nested format to increase the sensitivity for direct amplification and identification of fungi from lesions, thereby circumventing cultivation. Results suggest mixed and opportunistic infections in sea fans with these lesions, requiring longitudinal or experimental studies to better determine the pathogenesis.
Collapse
Affiliation(s)
- Anne A M J Becker
- Ross University School of Veterinary Medicine, Saint Kitts, West Indies
| | - Mark A Freeman
- Ross University School of Veterinary Medicine, Saint Kitts, West Indies
| | - Michelle M Dennis
- Ross University School of Veterinary Medicine, Saint Kitts, West Indies
- The University of Tennessee College of Veterinary, Knoxville, TN, USA
| |
Collapse
|
5
|
Nguyen TTT, Nguyen HD, Bui AT, Pham KHT, Van KTP, Tran LT, Tran MH. Phylogenetic analysis and morphology of Ganoderma multipileum, a Ganoderma species associated with dieback of the metropolitan woody plant Delonix regia (Boj. ex Hook.) Raf. in Vietnam. Sci Prog 2023; 106:368504231195503. [PMID: 37611190 PMCID: PMC10467396 DOI: 10.1177/00368504231195503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Ganoderma multipileum, a wood decay mushroom, was initially discovered and classified in Taiwan through the analysis of its morphology and the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. In this study, we identified a mushroom associated with the dieback of Delonix regia (Boj. ex Hook.) Raf., a woody ornamental street tree in Vietnam, as Ganoderma multipileum. This classification was based on phylogenetic analysis of ITS, RPB2, and TEF1 sequences, as well as morphology assessment and scanning electron microscope observation of basidiospores. The phylogenetic analysis revealed that the specimens collected in Vietnam formed a monophyletic group of Ganoderma multipileum with a high bootstrap value and posterior probability (100%/1.00). Furthermore, the morphological features consistent with laccate Ganoderma, including a thin pileipellis composed of enlarged and bulbous hyphae, and the basidiomes exhibited two different phenotypes. Notably, scanning electron microscopy of the basidiospores revealed ovoid spores with numerous echinules, providing the first documented evidence of this characteristic for Ganoderma multipileum. This research represents the first recorded instance of Ganoderma multipileum in Vietnam associated with the dieback of Delonix regia.
Collapse
Affiliation(s)
- Trang Thi Thu Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoang Duc Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Anh Tu Bui
- University of Medicine and Pharmacy Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Khanh Huyen Thi Pham
- School of Pharmacy and Medicine, The University of Danang, Da Nang City, Vietnam
| | - Kim Thuong Pham Van
- School of Pharmacy and Medicine, The University of Danang, Da Nang City, Vietnam
| | - Linh Thuoc Tran
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Manh Hung Tran
- School of Pharmacy and Medicine, The University of Danang, Da Nang City, Vietnam
| |
Collapse
|
6
|
Winter HL, Flores-Bocanegra L, Cank KB, Crandall WJ, Rotich FC, Tillman MN, Todd DA, Graf TN, Raja HA, Pearce CJ, Oberlies NH, Cech NB. What was old is new again: Phenotypic screening of a unique fungal library yields pyridoxatin, a promising lead against extensively resistant Acinetobacter baumannii (AB5075). PHYTOCHEMISTRY LETTERS 2023; 55:88-96. [PMID: 37252254 PMCID: PMC10210987 DOI: 10.1016/j.phytol.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Due to the emergence of resistance, the World Health Organization considers Gram-negative pathogen Acinetobacter baumannii a top priority for therapeutic development. Using this priority pathogen and a phenotypic, agar plate-based assay, a unique library of extracts from 2,500 diverse fungi was screened for antimicrobial activity against a highly virulent, drug-resistant strain of A. baumannii (AB5075). The most potent hit from this screen was an extract from the fungus Tolypocladium sp., which was found to produce pyridoxatin. Another active extract from the fungi Trichoderma deliquescens was characterized and yielded trichokonin VII and trichokonin VIII. Evaluation of pyridoxatin against A. baumannii (AB5075) in a broth microdilution assay revealed a minimum inhibitory concentration (MIC) of 38 μM, compared to the known antibiotic levofloxacin with MIC of 28 μM. Mass spectrometry, Marfey's analysis and nuclear magnetic resonance spectroscopy analyses confirmed the structures of trichokonins VII and VIII to be consistent with previous reports. In an in vivo Galleria mellonella model, pyridoxatin tested at 150 mg/kg exhibited minimal toxicity (90% survival) and promising antimicrobial efficacy (50% survival) after 5 days. Trichokonins VII and VIII tested at 150 mg/kg were toxic to G. mellonella, with 20% survival and 40% survival after 5 days, respectively. The findings of this project suggest that pyridoxatin may serve as a lead compound for the development of antimicrobials against A. baumannii. They also demonstrate the value of the phenotypic screening approach employed herein.
Collapse
Affiliation(s)
- Heather L. Winter
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Laura Flores-Bocanegra
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Kristóf B. Cank
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - William J. Crandall
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Fridah C. Rotich
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Madeline N. Tillman
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Daniel A. Todd
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | | | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nadja B. Cech
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
7
|
Giusti A, Ricci E, Tinacci L, Verdigi F, Narducci R, Gasperetti L, Armani A. Molecular authentication of mushroom products: First survey on the Italian market. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Risoli S, Nali C, Sarrocco S, Cicero AFG, Colletti A, Bosco F, Venturella G, Gadaleta A, Gargano ML, Marcotuli I. Mushroom-Based Supplements in Italy: Let's Open Pandora's Box. Nutrients 2023; 15:nu15030776. [PMID: 36771482 PMCID: PMC9919834 DOI: 10.3390/nu15030776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Mushrooms and derivates are well known to the scientific community for having different health benefits and exhibit a wide range of pharmacological activities, including lipid-lowering, antihypertensive, antidiabetic, antimicrobic, antiallergic, anti-inflammatory, anticancer, immunomodulating, neuroprotective and osteoprotective actions. In Europe, medical mushrooms are mainly marketed in the form of food supplements as single components or combined with other nutraceuticals. In this context, the first peculiarity that distinguishes it is the safety established through the "history of consumption" that characterizes that mushroom. However, the cultivation of medicinal mushrooms on a large scale is performed mainly in China, where most of the production facilities do not have internationally recognized good manufacturing practices, despite that many European companies that sell myotherapies are supplied by Chinese manufacturers. This is particularly evident in Italy, where an arsenal of mushroom products is marketed in the form of powders and extracts not always of ascertained origin and sometimes of doubtful taxonomic identification, and thus not meeting the quality criteria required. The growing interest in mycotherapy involves a strong commitment from the scientific community to propose supplements of safe origin and genetic purity as well as to promote clinical trials to evaluate its real effects on humans. The purpose of this research is to analyze different mushroom-based dietary supplements used in medicine as monotherapy on the Italian market and to evaluate their composition and quality. The molecular identification of the sequences with those deposited in GenBank allowed for identifying 6 out of 19 samples, matching with those deposited belonging to the species indicated in the label, i.e., Lentinula edodes (samples 1, 4, 12 and 18) and Ganoderma lucidum (samples 5 and 10). Samples containing Ganoderma, labeled in the commercial product as G. lucidum, showed sequences that showed homology of 100% and 99% with G. resinaceum and G. sichuanense. An additional investigation was carried out in order to determine the active fungal ingredients, such as ergosterol, aflatoxins, heavy metals, nicotine and total glucan. The results obtained and shown in the manuscript highlight how the data were not only in line with what is expected with respect to what is indicated in the labels.
Collapse
Affiliation(s)
- Samuele Risoli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| | - Arrigo Francesco Giuseppe Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40126 Bologna, Italy
- IRCCS AOU S. Orsola di Bologna, 40126 Bologna, Italy
| | - Alessandro Colletti
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy
- Correspondence: ; Tel.: +39-345-589-8928
| | - Filippo Bosco
- U.O. Anesthesia and Intensive Care MiSC, AOUP Complementary Medicine Oncology Integrated, University Hospital Trust of Pisa, 56126 Pisa, Italy
| | - Giuseppe Venturella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Agata Gadaleta
- Department of Soil, Plant, and Food Sciences, University of Bari, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Maria Letizia Gargano
- Department of Soil, Plant, and Food Sciences, University of Bari, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Ilaria Marcotuli
- Department of Soil, Plant, and Food Sciences, University of Bari, Via G. Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
9
|
Rivas-Ferreiro M, Otero A, Morán P. It's what's inside that counts: DNA-barcoding of porcini (Boletus sp., Basidiomycota) commercial products reveals product mislabelling. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Optimal conditions for mycelial growth of medicinal mushrooms belonging to the genus Hericium. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractHericium is a well-known genus that comprises edible and medicinal mushrooms with fleshy, distinctive white spines that hang from a tough, unbranched clump, and grows on dying or dead wood. In preparation for the artificial cultivation of these mushrooms in Thailand, an optimization of mycelial growth on different agar culture media, for various conditions (including temperature, pH, cereal grains, and agricultural waste, carbon sources, nitrogen sources, and the ratio of media components) was carried out. For this study, three strains of H. erinaceus (MFLUCC 21-0018, MFLUCC 21-0019, and MFLUCC 21-0020) were favorably grown on OMYA medium, at 25 °C and at a pH of 4–4.5, while one strain of H. erinaceus (MFLUCC 21-0021) grew favorably on CDA medium, at 25 °C and pH 5.5. The favorable condition for H. coralloides (MFLUCC 21-0050) growth was MYPA medium, at 30 °C and pH 5.5. All five strains presented higher mycelial growth on wheat grain. Carbon and nitrogen sources promoted higher rates using molasses and yeast extract respectively, and a ratio of these media components of 10:1 resulted in higher growth rates. The data presented provide growth requirements that will be useful in the future development of the cultivation of Hericium mushrooms.
Collapse
|
11
|
Kulik T, Molcan T, Fiedorowicz G, van Diepeningen A, Stakheev A, Treder K, Olszewski J, Bilska K, Beyer M, Pasquali M, Stenglein S. Whole-genome single nucleotide polymorphism analysis for typing the pandemic pathogen Fusarium graminearum sensu stricto. Front Microbiol 2022; 13:885978. [PMID: 35923405 PMCID: PMC9339996 DOI: 10.3389/fmicb.2022.885978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Recent improvements in microbiology and molecular epidemiology were largely stimulated by whole- genome sequencing (WGS), which provides an unprecedented resolution in discriminating highly related genetic backgrounds. WGS is becoming the method of choice in epidemiology of fungal diseases, but its application is still in a pioneer stage, mainly due to the limited number of available genomes. Fungal pathogens often belong to complexes composed of numerous cryptic species. Detecting cryptic diversity is fundamental to understand the dynamics and the evolutionary relationships underlying disease outbreaks. In this study, we explore the value of whole-genome SNP analyses in identification of the pandemic pathogen Fusarium graminearum sensu stricto (F.g.). This species is responsible for cereal diseases and negatively impacts grain production worldwide. The fungus belongs to the monophyletic fungal complex referred to as F. graminearum species complex including at least sixteen cryptic species, a few among them may be involved in cereal diseases in certain agricultural areas. We analyzed WGS data from a collection of 99 F.g. strains and 33 strains representing all known cryptic species belonging to the FGSC complex. As a first step, we performed a phylogenomic analysis to reveal species-specific clustering. A RAxML maximum likelihood tree grouped all analyzed strains of F.g. into a single clade, supporting the clustering-based identification approach. Although, phylogenetic reconstructions are essential in detecting cryptic species, a phylogenomic tree does not fulfill the criteria for rapid and cost-effective approach for identification of fungi, due to the time-consuming nature of the analysis. As an alternative, analysis of WGS information by mapping sequence data from individual strains against reference genomes may provide useful markers for the rapid identification of fungi. We provide a robust framework for typing F.g. through the web-based PhaME workflow available at EDGE bioinformatics. The method was validated through multiple comparisons of assembly genomes to F.g. reference strain PH-1. We showed that the difference between intra- and interspecies variability was at least two times higher than intraspecific variation facilitating successful typing of F.g. This is the first study which employs WGS data for typing plant pathogenic fusaria.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- *Correspondence: Tomasz Kulik,,
| | - Tomasz Molcan
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAN), Warsaw, Poland
| | - Grzegorz Fiedorowicz
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anne van Diepeningen
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Alexander Stakheev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kinga Treder
- Department of Agriculture Systems, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marco Beyer
- Agro-Environmental Systems, Environmental Monitoring and Sensing Unit, Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sebastian Stenglein
- National Scientific and Technical Research Council, Godoy Cruz, Argentina
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| |
Collapse
|
12
|
Zhang YZ, Zhang P, Buyck B, Tang LP, Liang ZQ, Su MS, Hao YJ, Huang HY, Zhang WH, Chen ZH, Zeng NK. A Contribution to Knowledge of Craterellus (Hydnaceae, Cantharellales) in China: Three New Taxa and Amended Descriptions of Two Previous Species. Front Microbiol 2022; 13:906296. [PMID: 35903463 PMCID: PMC9325540 DOI: 10.3389/fmicb.2022.906296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Species of Craterellus (Hydnaceae, Cantharellales) in China are investigated on the basis of morphological and molecular phylogenetic analyses of DNA sequences from nuc 28S rDNA D1-D2 domains (28S) and nuc rDNA internal transcribed spacer ITS1-5.8S-ITS2 region. Five species are recognized in China, of which three of them are described as new, viz. C. fulviceps, C. minor, and C. parvopullus, while two of them are previously described taxa, viz. C. aureus, and C. lutescens. A key to the known Chinese taxa of the genus is also provided.
Collapse
Affiliation(s)
- Yu-Zhuo Zhang
- College of Science, Hainan University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Ping Zhang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Bart Buyck
- Institut Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Muséum National d’ Histoire Naturelle, CNRS, Sorbonne Université, Paris, France
| | - Li-Ping Tang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Zhi-Qun Liang
- College of Science, Hainan University, Haikou, China
| | - Ming-Sheng Su
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yan-Jia Hao
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Hong-Yan Huang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Wen-Hao Zhang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Zuo-Hong Chen
- College of Life Science, Hunan Normal University, Changsha, China
| | - Nian-Kai Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| |
Collapse
|
13
|
Menolli N, Sánchez-Ramírez S, Sánchez-García M, Wang C, Patev S, Ishikawa NK, Mata JL, Lenz AR, Vargas-Isla R, Liderman L, Lamb M, Nuhn M, Hughes KW, Xiao Y, Hibbett DS. Global phylogeny of the Shiitake mushroom and related Lentinula species uncovers novel diversity and suggests an origin in the Neotropics. Mol Phylogenet Evol 2022; 173:107494. [PMID: 35490968 DOI: 10.1016/j.ympev.2022.107494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/18/2023]
Abstract
Lentinula (Basidiomycota, Agaricales) includes the most widely cultivated mushroom in the world, Lentinula edodes, also known as shiitake (Japanese) or xiang-gu (Chinese). At present, nine species are recognized in the genus, based on morphology, mating criteria, and geographic distributions. However, analyses of internal transcribed spacers (ITS) of ribosomal RNA genes have suggested that there are cryptic lineages. We analyzed a global-scale phylogenetic dataset from 325 Lentinula individuals from 24 countries in Asia-Australasia and the Americas plus Madagascar, with 325 sequences of ITS, 80 LSU sequences, and 111 sequences of translation elongation factor (tef1-α) genes. We recovered 15 independent lineages (Groups 1-15) that may correspond to species. Lineages in Asia-Australasia (Groups 1-5) and the Americas plus Madagascar (Groups 6-15) formed sister clades. Four lineages are represented only by sequences from single individuals and require further molecular sampling, including L. aff. raphanica (Group 7), L. ixodes (Group 8), L. boryana (Group 12), and L. aff. aciculospora (Group 14). Groups 1 and 5 are here referred to L. edodes and L. aff. edodes, respectively. However, these groups most likely represent the same species and are only recognized as (unsupported) monophyletic lineages by maximum likelihood analyses of ITS alone. Other putative species resolved here include L. lateritia (Group 2), L. novae-zelandieae (Group 3), L. aff. lateritia (Group 4), L. raphanica (Group 6), L. aff. detonsa (Group 9), L. detonsa (Group 10), L. guzmanii sp. nov. (Group 11), L. aciculospora (Group 13), and L. madagasikarensis (Group 15). Groups 9-12 represent the "L. boryana complex". Molecular clock and historical biogeographic analyses suggest that the most recent common ancestor (MRCA) of Lentinula can be placed in the middle Oligocene, ca. 30 million years ago (Ma), and had a likely presence in neotropical America. The MRCA of Lentinula in the Americas and Madagascar lived ca. 22 Ma in the Neotropics and the MRCA of Lentinula in Asia-Australasia lived ca. 6 Ma in Oceania. Given the current knowledge about plate tectonics and paleoclimatic models of the last 30 Myr, our phylogenetic hypothesis suggests that the extant distribution of Lentinula is likely to have arisen, in large part, due to long-distance dispersal. Lentinula collections include at least four dubious taxa that need further taxonomic studies: L. reticeps from the USA (Ohio); L. guarapiensis from Paraguay; Lentinus puiggarii from Brazil (São Paulo); and "L. platinedodes" from Vietnam. Approximately ten of the fifteen Groups are reported on Fagaceae, which appears to be the ancestral substrate of Lentinula.
Collapse
Affiliation(s)
- Nelson Menolli
- IFungiLab, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus São Paulo (SPO), Departamento de Ciências da Natureza e Matemática (DCM) / Subárea de Biologia (SAB), Rua Pedro Vicente 625, São Paulo, SP 01109-010, Brazil.
| | - Santiago Sánchez-Ramírez
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - Marisol Sánchez-García
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75005, Sweden
| | - Chaoqun Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sean Patev
- Biology Department, Clark University, Worcester, MA 01610, USA
| | - Noemia Kazue Ishikawa
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Petrópolis, Manaus, AM 69067-375, Brazil
| | - Juan L Mata
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Alexandre Rafael Lenz
- Departamento de Ciências Exatas e da Terra, Colegiado de Sistemas de Informação, Campus I, Universidade do Estado da Bahia (UNEB), Salvador, BA, Brazil
| | - Ruby Vargas-Isla
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Petrópolis, Manaus, AM 69067-375, Brazil
| | - Lauren Liderman
- Biology Department, Clark University, Worcester, MA 01610, USA
| | - Meriel Lamb
- Biology Department, Clark University, Worcester, MA 01610, USA
| | - Mitchell Nuhn
- Biology Department, Clark University, Worcester, MA 01610, USA
| | - Karen W Hughes
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Yang Xiao
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - David S Hibbett
- Biology Department, Clark University, Worcester, MA 01610, USA
| |
Collapse
|
14
|
Fochi V, Sillo F, Travaglia F, Coïsson JD, Balestrini R, Arlorio M. A Rapid and Efficient Loop-mediated Isothermal Amplification (LAMP) Assay for the Authentication of Food Supplements Based on Maitake (Grifola Frondosa). FOOD ANAL METHOD 2022; 15:1803-1815. [PMID: 35282313 PMCID: PMC8903311 DOI: 10.1007/s12161-022-02235-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/21/2022] [Indexed: 12/22/2022]
Abstract
Grifola frondosa (“Maitake”) is an edible fungus with several nutraceutical properties, largely used in traditional medicine. The increased use of Maitake as a food supplements ingredient raised the need of accurate authentication methods since the morphological identification of G. frondosa is not feasible in formulated food supplements. We developed a diagnostic tool based on loop-mediated isothermal AMPlification (LAMP) for the detection of G. frondosa in food supplements. First, a modified CTAB protocol for DNA extraction from food supplements has been set up and it has been shown to be able to isolate amplifiable total genomic material from different types of commercial products. Subsequently, the LAMP assay confirmed high specificity and good analytical sensitivity, allowing to detect up to 0.62 pg of genomic DNA in less than 20 min. Ten related fungal species resulted negative, confirming the specificity of the assay. The presence of Maitake in commercial food supplements was confirmed, except for one, revealing a mislabeling (or a food fraud). This assay proved to be a rapid powerful tool for food authentication purposes and routine inspections at any level of the supply chain of Maitake-based products and it can be used as a model for other quality control assays of fungal food products.
Collapse
Affiliation(s)
- Valeria Fochi
- Dipartimento Di Scienze del Farmaco & Drug and Food Biotechnology (DFB) Center, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Fabiano Sillo
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Fabiano Travaglia
- Dipartimento Di Scienze del Farmaco & Drug and Food Biotechnology (DFB) Center, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Jean Daniel Coïsson
- Dipartimento Di Scienze del Farmaco & Drug and Food Biotechnology (DFB) Center, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Raffaella Balestrini
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Marco Arlorio
- Dipartimento Di Scienze del Farmaco & Drug and Food Biotechnology (DFB) Center, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
15
|
Rapid identification of Hebeloma crustuliniforme species using real-time fluorescence and visual loop-mediated isothermal amplification based on the internal transcribed spacer sequence. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Poli A, Prigione V, Bovio E, Perugini I, Varese GC. Insights on Lulworthiales Inhabiting the Mediterranean Sea and Description of Three Novel Species of the Genus Paralulworthia. J Fungi (Basel) 2021; 7:940. [PMID: 34829227 PMCID: PMC8623521 DOI: 10.3390/jof7110940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
The order Lulworthiales, with its sole family Lulworthiaceae, consists of strictly marine genera found on a wide range of substrates such as seagrasses, seaweeds, and seafoam. Twenty-one unidentified Lulworthiales were isolated in previous surveys aimed at broadening our understanding of the biodiversity hosted in the Mediterranean Sea. Here, these organisms, mostly found in association with Posidonia oceanica and with submerged woods, were examined using thorough multi-locus phylogenetic analyses and morphological observations. Maximum-likelihood and Bayesian phylogeny based on nrITS, nrSSU, nrLSU, and four protein-coding genes led to the introduction of three novel species of the genus Paralulworthia: P. candida, P. elbensis, and P. mediterranea. Once again, the marine environment is a confirmed huge reservoir of novel fungal lineages with an under-investigated biotechnological potential waiting to be explored.
Collapse
Affiliation(s)
| | - Valeria Prigione
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy; (A.P.); (E.B.); (I.P.); (G.C.V.)
| | | | | | | |
Collapse
|
17
|
Raja HA, Oberlies NH, Stadler M. Occasional comment: Fungal identification to species-level can be challenging. PHYTOCHEMISTRY 2021; 190:112855. [PMID: 34273757 DOI: 10.1016/j.phytochem.2021.112855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, PO Box 26170, Greensboro, NC, 27402-6170, USA.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, PO Box 26170, Greensboro, NC, 27402-6170, USA.
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| |
Collapse
|
18
|
Yan Z, Liu H, Li J, Wang Y. Application of Identification and Evaluation Techniques for Edible Mushrooms: A Review. Crit Rev Anal Chem 2021; 53:634-654. [PMID: 34435928 DOI: 10.1080/10408347.2021.1969886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Edible mushrooms are healthy food with high nutritional value, which is popular with consumers. With the increase of the problem of mushrooms being confused with the real and pollution in the market, people pay more and more attention to food safety. More than 167 articles of edible mushroom published in the past 20 years were reviewed in this paper. The analysis tools and data analysis methods of identification and quality evaluation of edible mushroom species, origin, mineral elements were reviewed. Five techniques for identification and evaluation of edible mushrooms were introduced and summarized. The macroscopic, microscopic and molecular identification techniques can be used to identify species. Chromatography, spectroscopy technology combined with chemometrics can be used for qualitative and quantitative study of mushroom and evaluation of mushroom quality. In addition, multiple supervised pattern-recognition techniques have good classification ability. Deep learning is more and more widely used in edible mushroom, which shows its advantages in image recognition and prediction. These techniques and analytical methods can provide strong support and guarantee for the identification and evaluation of mushroom, which is of great significance to the development and utilization of edible mushroom.
Collapse
Affiliation(s)
- Ziyun Yan
- College of Resources and Environmental, Yunnan Agricultural University, Kunming, China
| | | | - Jieqing Li
- College of Resources and Environmental, Yunnan Agricultural University, Kunming, China
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
19
|
Cutler Ii WD, Bradshaw AJ, Dentinger BTM. What's for dinner this time?: DNA authentication of "wild mushrooms" in food products sold in the USA. PeerJ 2021; 9:e11747. [PMID: 34414024 PMCID: PMC8340906 DOI: 10.7717/peerj.11747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 06/19/2021] [Indexed: 12/30/2022] Open
Abstract
Mushrooms have been consumed by humans for thousands of years, and while some have gastronomic and nutritional value, it has long been recognized that only select species of mushrooms are suitable for consumption. Adverse health effects of consuming poisonous mushrooms range from mild illness to death. Many valuable edible mushrooms are either impractical or unable to be grown commercially, requiring them to be harvested from the wild. In the U.S., products containing these wild-collected mushrooms are often sold with the nonspecific and undefined label “wild mushrooms,” although in some cases particular species are listed in the ingredients. However, the ambiguity of the definition of “wild mushrooms” in foods makes it impossible to know which species are involved or whether they are truly wild-collected or cultivated varieties. As a consequence, any individual adverse reactions to consuming the mushrooms in these products cannot be traced to the source due to the minimal regulations around the harvest and sale of wild mushrooms. For this study, we set out to shed light on what species of fungi are being sold as “wild mushrooms” using DNA metabarcoding to identify fungal contents of various food products acquired from locally sourced grocers and a large online retail site. Twenty-eight species of mushroom were identified across 16 food products, ranging from commonly cultivated species to wild species not represented in global DNA databases. Our results demonstrate that “wild mushroom” ingredients often consist entirely or in part of cultivated species such as the ubiquitous white and brown “button” mushrooms and portabella (Agaricus bisporus), oyster (Pleurotus spp.) and shiitake (Lentinula edodes). In other cases truly wild mushrooms were detected but they were not always consistent with the species on the label. More alarmingly, a few products with large distribution potential contained species whose edibility is at best dubious, and at worst potentially toxic.
Collapse
Affiliation(s)
- W Dalley Cutler Ii
- Natural History Museum of Utah & School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Alexander J Bradshaw
- Natural History Museum of Utah & School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Bryn T M Dentinger
- Natural History Museum of Utah & School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
20
|
Soliman ERS, El-Sayed H. Molecular identification and antimicrobial activities of some wild Egyptian mushrooms: Bjerkandera adusta as a promising source of bioactive antimicrobial phenolic compounds. J Genet Eng Biotechnol 2021; 19:106. [PMID: 34279789 PMCID: PMC8289975 DOI: 10.1186/s43141-021-00200-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/16/2021] [Indexed: 12/02/2022]
Abstract
Background The discovery of potential, new cost-effective drug resources in the form of bioactive compounds from mushrooms is one way to control the resistant pathogens. In the present research, the fruiting bodies of five wild mushrooms were collected from Egypt and identified using internal transcribed spacer region (ITS) of the rRNA encoding gene and their phylogenetic relationships, antimicrobial activities, and biochemical and phenolic compounds were evaluated. Results The sequences revealed identity to Bjerkandera adusta, Cyclocybe cylindracea, Agrocybe aegerita, Chlorophyllum molybdites, and Lentinus squarrosulus in which Cyclocybe cylindracea and Agrocybe aegerita were closely related, while Chlorophyllum molybdites was far distant. Cyclocybe cylindracea and Agrocybe aegerita showed 100% similarity based on the sequenced ITS-rDNA fragment and dissimilar antimicrobial activities and chemical composition were detected. Bjerkandera adusta and Cyclocybe cylindracea showed strong antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Micrococcus luteus, Streptococcus pneumoniae, and Candida albicans. This activity could be attributed to the detected phenolic and related compounds’ contents. Conclusion Our finding provides a quick and robust implement for mushroom identification that would facilitate mushroom domestication and characterization for human benefit.
Collapse
Affiliation(s)
- Elham R S Soliman
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt.
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| |
Collapse
|
21
|
Cao T, Hu YP, Yu JR, Wei TZ, Yuan HS. A phylogenetic overview of the Hydnaceae ( Cantharellales, Basidiomycota) with new taxa from China. Stud Mycol 2021; 99:100121. [PMID: 35035603 PMCID: PMC8717575 DOI: 10.1016/j.simyco.2021.100121] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The family Hydnaceae (Cantharellales, Basidiomycota) is a group of fungi found worldwide which exhibit stichic nuclear division. The group is highly diverse in morphology, ecology, and phylogeny, and includes some edible species which are popular all over the world. Traditionally, Hydnaceae together with Cantharellaceae, Clavulinaceae and Sistotremataceae are four families in the Cantharellales. The four families were combined and redefined as "Hydnaceae", however, a comprehensive phylogeny based on multiple-marker dataset for the entire Hydnaceae sensu stricto is still lacking and the delimitation is also unclear. We inferred Maximum Likelihood and Bayesian phylogenies for the family Hydnaceae from the data of five DNA regions: the large subunit of nuclear ribosomal RNA gene (nLSU), the internal transcribed spacer regions (ITS), the mitochondrial small subunit rDNA gene (mtSSU), the second largest subunit of RNA polymerase II (RPB2) and the translation elongation factor 1-alpha gene (TEF1). We also produced three more phylogenetic trees for Cantharellus based on 5.8S, nLSU, mtSSU, RPB2 and TEF1, Craterellus and Hydnum both based on the combined nLSU and ITS. This study has reproduced the status of Hydnaceae in the order Cantharellales, and phylogenetically confirmed seventeen genera in Hydnaceae. Twenty nine new taxa or synonyms are described, revealed, proposed, or reported, including eight new subgenera (Cantharellus subgenus Magnus, Craterellus subgenus Cariosi, subg. Craterellus, subg. Imperforati, subg. Lamelles, subg. Longibasidiosi, subg. Ovoidei, and Hydnum subgenus Brevispina); seventeen new species (Ca. laevihymeninus, Ca. magnus, Ca. subminor, Cr. badiogriseus, Cr. croceialbus, Cr. macrosporus, Cr. squamatus, H. brevispinum, H. flabellatum, H. flavidocanum, H. longibasidium, H. pallidocroceum, H. pallidomarginatum, H. sphaericum, H. tangerinum, H. tenuistipitum and H. ventricosum); two synonyms (Ca. anzutake and Ca. tuberculosporus as Ca. yunnanensis), and two newly recorded species (H. albomagnum and H. minum). The distinguishing characters of the new species and subgenera as well as their allied taxa are discussed in the notes which follow them. The delimitation and diversity in morphology, ecology, and phylogeny of Hydnaceae is discussed. Notes of seventeen genera which are phylogenetically accepted in Hydnaceae by this study and a key to the genera in Hydnaceae are provided.
Collapse
Key Words
- Cantharellales
- Cantharellus anzutake W. Ogawa, N. Endo, M. Fukuda and A. Yamada and Ca. tuberculosporus M. Zang as Ca. yunnanensis W.F. Chiu
- Cantharellus laevihymeninus T. Cao & H.S. Yuan, Ca. magnus T. Cao & H.S. Yuan, Ca. subminor T. Cao & H.S. Yuan
- Craterellus badiogriseus T. Cao & H.S. Yuan, Cr. croceialbus T. Cao & H.S. Yuan, Cr. macrosporus T. Cao & H.S. Yuan, Cr. squamatus T. Cao & H.S. Yuan
- Hydnaceae
- Hydnum albomagnum Banker
- Hydnum brevispinum T. Cao & H.S. Yuan, H. flabellatum T. Cao & H.S. Yuan, H. flavidocanum T. Cao & H.S. Yuan, H. longibasidium T. Cao & H.S. Yuan, H. pallidocroceum T. Cao & H.S. Yuan, H. pallidomarginatum T. Cao & H.S. Yuan, H. sphaericum T. Cao & H.S. Yuan, H. tangerinum T. Cao & H.S. Yuan, H. tenuistipitum T. Cao & H.S. Yuan, H. ventricosum T. Cao & H.S. Yuan
- Hydnum minum Yanaga & N. Maek
- In genus Cantharellus: Cantharellus subgenus Magnus T. Cao & H.S. Yuan
- Multiple-marker phylogeny
- Taxonomy
- in genus Craterellus: Craterellus subgenus Cariosi T. Cao & H.S. Yuan, subg. Craterellus, subg. Imperforati T. Cao & H.S. Yuan, subg. Lamelles T. Cao & H.S. Yuan, subg. Longibasidiosi T. Cao & H.S. Yuan, subg. Ovoidei T. Cao & H.S. Yuan
- in genus Hydnum: Hydnum subgenus Brevispina T. Cao & H.S. Yuan
Collapse
Affiliation(s)
- Ting Cao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ya-Ping Hu
- Nanjing Institute of Environmental Sciences, MEE/State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains, Nanjing 210042, PR China
| | - Jia-Rui Yu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tie-Zheng Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
22
|
Giusti A, Ricci E, Gasperetti L, Galgani M, Polidori L, Verdigi F, Narducci R, Armani A. Building of an Internal Transcribed Spacer (ITS) Gene Dataset to Support the Italian Health Service in Mushroom Identification. Foods 2021; 10:foods10061193. [PMID: 34070525 PMCID: PMC8227961 DOI: 10.3390/foods10061193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 01/26/2023] Open
Abstract
This study aims at building an ITS gene dataset to support the Italian Health Service in mushroom identification. The target species were selected among those mostly involved in regional (Tuscany) poisoning cases. For each target species, all the ITS sequences already deposited in GenBank and BOLD databases were retrieved and accurately assessed for quality and reliability by a systematic filtering process. Wild specimens of target species were also collected to produce reference ITS sequences. These were used partly to set up and partly to validate the dataset by BLAST analysis. Overall, 7270 sequences were found in the two databases. After filtering, 1293 sequences (17.8%) were discarded, with a final retrieval of 5977 sequences. Ninety-seven ITS reference sequences were obtained from 76 collected mushroom specimens: 15 of them, obtained from 10 species with no sequences available after the filtering, were used to build the dataset, with a final taxonomic coverage of 96.7%. The other 82 sequences (66 species) were used for the dataset validation. In most of the cases (n = 71; 86.6%) they matched with identity values ≥ 97–100% with the corresponding species. The dataset was able to identify the species involved in regional poisoning incidents. As some of these species are also involved in poisonings at the national level, the dataset may be used for supporting the National Health Service throughout the Italian territory. Moreover, it can support the official control activities aimed at detecting frauds in commercial mushroom-based products and safeguarding consumers.
Collapse
Affiliation(s)
- Alice Giusti
- FishLab, Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (M.G.); (A.A.)
- Correspondence: ; Tel.: +39-0502210204
| | - Enrica Ricci
- Experimental Zooprophylactic Institute of Lazio and Tuscany M. Aleandri, UOT Toscana Nord, SS Abetone e Brennero 4, 56124 Pisa, Italy; (E.R.); (L.G.)
| | - Laura Gasperetti
- Experimental Zooprophylactic Institute of Lazio and Tuscany M. Aleandri, UOT Toscana Nord, SS Abetone e Brennero 4, 56124 Pisa, Italy; (E.R.); (L.G.)
| | - Marta Galgani
- FishLab, Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (M.G.); (A.A.)
| | - Luca Polidori
- Tuscany Mycological Groups Association, via Turi, 8 Santa Croce sull’Arno, 56124 Pisa, Italy; (L.P.); (R.N.)
| | - Francesco Verdigi
- North West Tuscany LHA (Mycological Inspectorate), via A. Cocchi, 7/9, 56124 Pisa, Italy;
| | - Roberto Narducci
- Tuscany Mycological Groups Association, via Turi, 8 Santa Croce sull’Arno, 56124 Pisa, Italy; (L.P.); (R.N.)
| | - Andrea Armani
- FishLab, Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (M.G.); (A.A.)
| |
Collapse
|
23
|
Zhao P, Ji SP, Cheng XH, Bau T, Dong HX, Gao XX. DNA Barcoding Mushroom Spawn Using EF-1α Barcodes: A Case Study in Oyster Mushrooms ( Pleurotus). Front Microbiol 2021; 12:624347. [PMID: 34093459 PMCID: PMC8176306 DOI: 10.3389/fmicb.2021.624347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/09/2021] [Indexed: 11/20/2022] Open
Abstract
Oyster mushrooms (genus Pleurotus) are widespread and comprise the most commonly cultivated edible mushrooms in the world. Species identification of oyster mushroom spawn based on cultural, morphological, and cultivated characteristics is time consuming and can be extraordinarily difficult, which has impeded mushroom breeding and caused economic loss for mushroom growers. To explore a precise and concise approach for species identification, the nuclear ribosomal internal transcribed spacer (ITS), 28S rDNA, and the widely used protein-coding marker translation elongation factor 1α (EF-1α) gene were evaluated as candidate DNA barcode markers to investigate their feasibility in identifying 13 oyster mushroom species. A total of 160 sequences of the candidate loci were analyzed. Intra- and interspecific divergences and the ease of nucleotide sequence acquisition were the criteria used to evaluate the candidate genes. EF-1α showed the best intra- and interspecific variation among the candidate markers and discriminated 84.6% of the species tested, only being unable to distinguish two closely related species Pleurotus citrinopileatus and Pleurotus cornucopiae. Furthermore, EF-1α was more likely to be acquired than ITS or 28S rDNA, with an 84% success rate of PCR amplification and sequencing. For ITS and 28S rDNA, the intraspecific differences of several species were distinctly larger than the interspecific differences, and the species identification efficiency of the two candidate markers was worse (61.5 and 46.2%, respectively). In addition, these markers had some sequencing problems, with 55 and 76% success rates of sequencing, respectively. Hence, we propose EF-1α as a possible DNA barcode marker for oyster mushroom spawn.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Shandong Province for Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Sen-Peng Ji
- Key Laboratory of Shandong Province for Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Xian-Hao Cheng
- Key Laboratory of Shandong Province for Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Tolgor Bau
- Institute of Mycology, Jilin Agricultural University, Changchun, China
| | - Hong-Xin Dong
- Key Laboratory of Shandong Province for Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Xing-Xi Gao
- Key Laboratory of Shandong Province for Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
24
|
Zhang Y, Mo M, Yang L, Mi F, Cao Y, Liu C, Tang X, Wang P, Xu J. Exploring the Species Diversity of Edible Mushrooms in Yunnan, Southwestern China, by DNA Barcoding. J Fungi (Basel) 2021; 7:310. [PMID: 33920593 PMCID: PMC8074183 DOI: 10.3390/jof7040310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Yunnan Province, China, is famous for its abundant wild edible mushroom diversity and a rich source of the world's wild mushroom trade markets. However, much remains unknown about the diversity of edible mushrooms, including the number of wild edible mushroom species and their distributions. In this study, we collected and analyzed 3585 mushroom samples from wild mushroom markets in 35 counties across Yunnan Province from 2010 to 2019. Among these samples, we successfully obtained the DNA barcode sequences from 2198 samples. Sequence comparisons revealed that these 2198 samples likely belonged to 159 known species in 56 different genera, 31 families, 11 orders, 2 classes, and 2 phyla. Significantly, 51.13% of these samples had sequence similarities to known species at lower than 97%, likely representing new taxa. Further phylogenetic analyses on several common mushroom groups including 1536 internal transcribed spacer (ITS) sequences suggested the existence of 20 new (cryptic) species in these groups. The extensive new and cryptic species diversity in wild mushroom markets in Yunnan calls for greater attention for the conservation and utilization of these resources. Our results on both the distinct barcode sequences and the distributions of these sequences should facilitate new mushroom species discovery and forensic authentication of high-valued mushrooms and contribute to the scientific inventory for the management of wild mushroom markets.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Meizi Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Liu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Fei Mi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Yang Cao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Chunli Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Xiaozhao Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Pengfei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
25
|
Shen S, Liu SL, Jiang JH, Zhou LW. Addressing widespread misidentifications of traditional medicinal mushrooms in Sanghuangporus (Basidiomycota) through ITS barcoding and designation of reference sequences. IMA Fungus 2021; 12:10. [PMID: 33853671 PMCID: PMC8048060 DOI: 10.1186/s43008-021-00059-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/09/2021] [Indexed: 01/27/2023] Open
Abstract
"Sanghuang" refers to a group of important traditionally-used medicinal mushrooms belonging to the genus Sanghuangporus. In practice, species of Sanghuangporus referred to in medicinal studies and industry are now differentiated mainly by a BLAST search of GenBank with the ITS barcoding region as a query. However, inappropriately labeled ITS sequences of "Sanghuang" in GenBank restrict accurate species identification and, to some extent, the utilization of these species as medicinal resources. We examined all available 271 ITS sequences related to "Sanghuang" in GenBank including 31 newly submitted sequences from this study. Of these sequences, more than half were mislabeled so we have now corrected the corresponding species names. The mislabeled sequences mainly came from strains utilized by non-taxonomists. Based on the analyses of ITS sequences submitted by taxonomists as well as morphological characters, we separate the newly described Sanghuangporus subbaumii from S. baumii and treat S. toxicodendri as a later synonym of S. quercicola. Fourteen species of Sanghuangporus are accepted, with intraspecific distances up to 1.30% (except in S. vaninii, S. weirianus and S. zonatus) and interspecific distances above 1.30% (except between S. alpinus and S. lonicerinus, and S. baumii and S. subbaumii). To stabilize the concept of these 14 species of Sanghuangporus, their taxonomic information and reliable ITS reference sequences are provided. Moreover, ten potential diagnostic sequences are provided for Hyperbranched Rolling Circle Amplification to rapidly confirm three common commercial species, viz. S. baumii, S. sanghuang, and S. vaninii. Our results provide a practical method for ITS barcoding-based species identification of Sanghuangporus and will promote medicinal studies and commercial development from taxonomically correct material.
Collapse
Affiliation(s)
- Shan Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Liang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ji-Hang Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
26
|
da Silva JJ, Iamanaka BT, Ferranti LS, Massi FP, Taniwaki MH, Puel O, Lorber S, Frisvad JC, Fungaro MHP. Diversity within Aspergillus niger Clade and Description of a New Species: Aspergillus vinaceus sp. nov. J Fungi (Basel) 2020; 6:jof6040371. [PMID: 33348541 PMCID: PMC7767288 DOI: 10.3390/jof6040371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022] Open
Abstract
Diversity of species within Aspergillus niger clade, currently represented by A. niger sensu stricto and A. welwitshiae, was investigated combining three-locus gene sequences, Random Amplified Polymorphic DNA, secondary metabolites profile and morphology. Firstly, approximately 700 accessions belonging to this clade were investigated using calmodulin gene sequences. Based on these sequences, eight haplotypes were clearly identified as A. niger (n = 247) and 17 as A. welwitschiae (n = 403). However, calmodulin sequences did not provide definitive species identities for six haplotypes. To elucidate the taxonomic position of these haplotypes, two other loci, part of the beta-tubulin gene and part of the RNA polymerase II gene, were sequenced and used to perform an analysis of Genealogical Concordance Phylogenetic Species Recognition. This analysis enabled the recognition of two new phylogenetic species. One of the new phylogenetic species showed morphological and chemical distinguishable features in comparison to the known species A. welwitschiae and A. niger. This species is illustrated and described as Aspergillus vinaceus sp. nov. In contrast to A. niger and A. welwitschiae, A. vinaceus strains produced asperazine, but none of them were found to produce ochratoxin A and/or fumonisins. Sclerotium production on laboratory media, which does not occur in strains of A. niger and A. welwitschiae, and strictly sclerotium-associated secondary metabolites (14-Epi-hydroxy-10,23-dihydro-24,25-dehydroaflavinine; 10,23-Dihydro-24,25-dehydroaflavinine; 10,23-Dihydro-24,25-dehydro-21-oxo-aflavinine) were found in A. vinaceus. The strain type of A. vinaceus sp. nov. is ITAL 47,456 (T) (=IBT 35556).
Collapse
Affiliation(s)
- Josué J. da Silva
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
| | - Beatriz T. Iamanaka
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos, Campinas, São Paulo 13070-178, Brazil; (B.T.I.); (M.H.T.)
| | - Larissa S. Ferranti
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
| | - Fernanda P. Massi
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
| | - Marta H. Taniwaki
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos, Campinas, São Paulo 13070-178, Brazil; (B.T.I.); (M.H.T.)
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, 31027 Toulouse, France; (O.P.); (S.L.)
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, 31027 Toulouse, France; (O.P.); (S.L.)
| | - Jens C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Maria Helena P. Fungaro
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
- Correspondence: ; Tel.: +55-4399-955-4100
| |
Collapse
|
27
|
Wu F, Li SJ, Dong CH, Dai YC, Papp V. The Genus Pachyma (Syn. Wolfiporia) Reinstated and Species Clarification of the Cultivated Medicinal Mushroom "Fuling" in China. Front Microbiol 2020; 11:590788. [PMID: 33424793 PMCID: PMC7793888 DOI: 10.3389/fmicb.2020.590788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
The fungus "Fuling" has been used in Chinese traditional medicine for more than 2000 years, and its sclerotia have a wide range of biological activities including antitumour, immunomodulation, anti-inflammation, antioxidation, anti-aging etc. This prized medicinal mushroom also known as "Hoelen" is resurrected from a piece of pre-Linnean scientific literature. Fries treated it as Pachyma hoelen Fr. and mentioned that it was cultivated on pine trees in China. However, this name had been almost forgotten, and Poria cocos (syn. Wolfiporia cocos), originally described from North America, and known as "Tuckahoe" has been applied to "Fuling" in most publications. Although Merrill mentioned a 100 years ago that Asian Pachyma hoelen and North American P. cocos are similar but different, no comprehensive taxonomical studies have been carried out on the East Asian Pachyma hoelen and its related species. Based on phylogenetic analyses and morphological examination on both the sclerotia and the basidiocarps which are very seldomly developed, the East Asian samples of Pachyma hoelen including sclerotia, commercial strains for cultivation and fruiting bodies, nested in a strongly supported, homogeneous lineage which clearly separated from the lineages of North American Wolfiporia cocos and other species. So we confirm that the widely cultivated "Fuling" Pachyma hoelen in East Asia is not conspecific with the North American Wolfiporia cocos. Based on the changes in Art. 59 of the International Code of Nomenclature for algae, fungi, and plants, the generic name Pachyma, which was sanctioned by Fries, has nomenclatural priority (ICN, Art. F.3.1), and this name well represents the economically important stage of the generic type. So we propose to use Pachyma rather than Wolfiporia, and subsequently Pachyma hoelen and Pachyma cocos are the valid names for "Fuling" in East Asia and "Tuckahoe" in North America, respectively. In addition, a new combination, Pachyma pseudococos, is proposed. Furthermore, it seems that Pachyma cocos is a species complex, and that three species exist in North America.
Collapse
Affiliation(s)
- Fang Wu
- Institute of Microbilogy, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Shou-Jian Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cai-Hong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Cheng Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Viktor Papp
- Institute of Horticultural Plant Biology, Szent István University, Budapest, Hungary
| |
Collapse
|
28
|
Gunnels T, Creswell M, McFerrin J, Whittall JB. The ITS region provides a reliable DNA barcode for identifying reishi/lingzhi (Ganoderma) from herbal supplements. PLoS One 2020; 15:e0236774. [PMID: 33180770 PMCID: PMC7660467 DOI: 10.1371/journal.pone.0236774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/28/2020] [Indexed: 11/18/2022] Open
Abstract
The dietary supplement industry is rapidly growing yet, a recent study revealed that up to 60% of supplements may have substituted ingredients, some of which can be harmful contaminants or additives. When ingredients cannot be verified morphologically or biochemically, DNA barcoding complemented with a molecular phylogenetic analysis can be a powerful method for species authentication. We employed a molecular phylogenetic analysis for species authentication of the commonly used fungal supplement, reishi (Ganoderma lingzhi), by amplifying and sequencing the nuclear ribosomal internal transcribed spacer regions (ITS) with genus-specific primers. PCR of six powdered samples and one dried sample all sold as G. lucidum representing independent suppliers produced single, strong amplification products in the expected size-range for Ganoderma. Both best-hit BLAST and molecular phylogenetic analyses clearly identified the presence of G. lingzhi DNA in all seven herbal supplements. We detected variation in the ITS sequences among our samples, but all herbal supplement samples fall within a large clade of G. lingzhi ITS sequences. ITS-based phylogenetic analysis is a successful and cost-effective method for DNA-based species authentication that could be used in the herbal supplement industry for this and other fungal and plant species that are otherwise difficult to identify.
Collapse
Affiliation(s)
- Tess Gunnels
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
- Oregon’s Wild Harvest, Redmond, Oregon, United States of America
| | - Matthew Creswell
- Oregon’s Wild Harvest, Redmond, Oregon, United States of America
| | - Janis McFerrin
- Oregon’s Wild Harvest, Redmond, Oregon, United States of America
| | - Justen B. Whittall
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
| |
Collapse
|
29
|
Mešić A, Šamec D, Jadan M, Bahun V, Tkalčec Z. Integrated morphological with molecular identification and bioactive compounds of 23 Croatian wild mushrooms samples. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Flores-Bocanegra L, Raja HA, Graf TN, Augustinović M, Wallace ED, Hematian S, Kellogg JJ, Todd DA, Cech NB, Oberlies NH. The Chemistry of Kratom [ Mitragyna speciosa]: Updated Characterization Data and Methods to Elucidate Indole and Oxindole Alkaloids. JOURNAL OF NATURAL PRODUCTS 2020; 83:2165-2177. [PMID: 32597657 PMCID: PMC7718854 DOI: 10.1021/acs.jnatprod.0c00257] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Two separate commercial products of kratom [Mitragyna speciosa (Korth.) Havil. Rubiaceae] were used to generate reference standards of its indole and oxindole alkaloids. While kratom has been studied for over a century, the characterization data in the literature for many of the alkaloids are either incomplete or inconsistent with modern standards. As such, full 1H and 13C NMR spectra, along with HRESIMS and ECD data, are reported for alkaloids 1-19. Of these, four new alkaloids (7, 11, 17, and 18) were characterized using 2D NMR data, and the absolute configurations of 7, 17, and 18 were established by comparison of experimental and calculated ECD spectra. The absolute configuration for the N(4)-oxide (11) was established by comparison of NMR and ECD spectra of its reduced product with those for compound 7. In total, 19 alkaloids were characterized, including the indole alkaloid mitragynine (1) and its diastereoisomers speciociliatine (2), speciogynine (3), and mitraciliatine (4); the indole alkaloid paynantheine (5) and its diastereoisomers isopaynantheine (6) and epiallo-isopaynantheine (7); the N(4)-oxides mitragynine-N(4)-oxide (8), speciociliatine-N(4)-oxide (9), isopaynantheine-N(4)-oxide (10), and epiallo-isopaynantheine-N(4)-oxide (11); the 9-hydroxylated oxindole alkaloids speciofoline (12), isorotundifoleine (13), and isospeciofoleine (14); and the 9-unsubstituted oxindoles corynoxine A (15), corynoxine B (16), 3-epirhynchophylline (17), 3-epicorynoxine B (18), and corynoxeine (19). With the ability to analyze the spectroscopic data of all of these compounds concomitantly, a decision tree was developed to differentiate these kratom alkaloids based on a few key chemical shifts in the 1H and/or 13C NMR spectra.
Collapse
Affiliation(s)
- Laura Flores-Bocanegra
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Tyler N Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Mario Augustinović
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - E Diane Wallace
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Shabnam Hematian
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Joshua J Kellogg
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Daniel A Todd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Nadja B Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
31
|
Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Öpik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020; 11:14. [PMID: 32714773 PMCID: PMC7353689 DOI: 10.1186/s43008-020-00033-z] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
| | - M. Catherine Aime
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| | - Andrew N. Miller
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820-6970 USA
| | - Hiran A. Ariyawansa
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipe City, Taiwan
| | - Takayuki Aoki
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Agriculture and Food Research Organization, Genetic Resources Center, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Gianluigi Cardinali
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
| | - Pedro W. Crous
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Irina S. Druzhinina
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - David M. Geiser
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802 USA
| | - David L. Hawksworth
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS UK
- Geography and Environment, University of Southampton, Southampton, SO17 1BJ UK
- Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Kevin D. Hyde
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- World Agroforestry Centre, East and Central Asia, Kunming, 650201 Yunnan China
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Rai, 50150 Thailand
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Peter R. Johnston
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Manaaki Whenua – Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand
| | | | - Elaine Malosso
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Micologia, Laboratório de Hifomicetos de Folhedo, Avenida da Engenharia, s/n Cidade Universitária, Recife, PE 50.740-600 Brazil
| | - Tom W. May
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004 Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Maarja Öpik
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- University of Tartu, 40 Lai Street, 51 005 Tartu, Estonia
| | - Vincent Robert
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marc Stadler
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marco Thines
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60439 Frankfurt (Main); Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Andrey M. Yurkov
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ning Zhang
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| | - Conrad L. Schoch
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
32
|
Kulik T, Bilska K, Żelechowski M. Promising Perspectives for Detection, Identification, and Quantification of Plant Pathogenic Fungi and Oomycetes through Targeting Mitochondrial DNA. Int J Mol Sci 2020; 21:E2645. [PMID: 32290169 PMCID: PMC7177237 DOI: 10.3390/ijms21072645] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Fungi and oomycetes encompass many pathogens affecting crops worldwide. Their effective control requires screening pathogens across the local and international trade networks along with the monitoring of pathogen inocula in the field. Fundamentals to all of these concerns are their efficient detection, identification, and quantification. The use of molecular markers showed the best promise in the field of plant pathogen diagnostics. However, despite the unquestionable benefits of DNA-based methods, two significant limitations are associated with their use. The first limitation concerns the insufficient level of sensitivity due to the very low and uneven distribution of pathogens in plant material. The second limitation pertains to the inability of widely used diagnostic assays to detect cryptic species. Targeting mtDNA appears to provide a solution to these challenges. Its high copy number in microbial cells makes mtDNA an attractive target for developing highly sensitive assays. In addition, previous studies on different pathogen taxa indicated that mitogenome sequence variation could improve cryptic species delimitation accuracy. This review sheds light on the potential application of mtDNA for pathogen diagnostics. This paper covers a brief description of qPCR and DNA barcoding as two major strategies enabling the diagnostics of plant pathogenic fungi and oomycetes. Both strategies are discussed along with the potential use of mtDNA, including their strengths and weaknesses.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| |
Collapse
|
33
|
Singh M, Singh N. DNA Barcoding for Species Identification in Genetically Engineered Fungi. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM. Notes, outline and divergence times of Basidiomycota. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Collapse
|
35
|
Yao S, Li JQ, Duan ZL, Li T, Wang YZ. Fusion of Ultraviolet and Infrared Spectra Using Support Vector Machine and Random Forest Models for the Discrimination of Wild and Cultivated Mushrooms. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1692857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sen Yao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Jie-Qing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhi-Li Duan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tao Li
- College of Resources and Environment, Yuxi Normal University, Yuxi, Yunnan, China
| | - Yuan-Zhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
36
|
Development of a consensus approach for botanical safety evaluation - A roundtable report. Toxicol Lett 2019; 314:10-17. [PMID: 31082523 DOI: 10.1016/j.toxlet.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 11/24/2022]
Abstract
Botanical safety science continues to evolve as new tools for risk assessment become available alongside continual desire by consumers for "natural" botanical ingredients in consumer products. Focusing on botanical food/dietary supplements a recent international roundtable meeting brought together scientists to discuss the needs, available tools, and ongoing data gaps in the botanical safety risk assessment process. Participants discussed the key elements of botanical safety evaluations. They provided perspective on the use of a decision tree methodology to conduct a robust risk assessment and concluded with alignment on a series of consensus statements. This discussion highlighted the strengths and vulnerabilities in common assumptions, and the participants shared additional perspective to ensure that this end-to-end safety approach is sufficient, actionable and timely. Critical areas and data gaps were identified as opportunities for future focus. These include, better context on history of use, systematic assessment of weight of evidence, use of in silico approaches, inclusion of threshold of toxicological concern considerations, individual substances/matrix interactions of plant constituents, assessing botanical-drug interactions and adaptations needed to apply to in vitro and in vivo pharmacokinetic modelling of botanical constituents.
Collapse
|
37
|
Kellogg JJ, Paine MF, McCune JS, Oberlies NH, Cech NB. Selection and characterization of botanical natural products for research studies: a NaPDI center recommended approach. Nat Prod Rep 2019; 36:1196-1221. [PMID: 30681109 PMCID: PMC6658353 DOI: 10.1039/c8np00065d] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Covering: up to the end of 2018 Dietary supplements, which include botanical (plant-based) natural products, constitute a multi-billion-dollar industry in the US. Regulation and quality control for this industry is an ongoing challenge. While there is general agreement that rigorous scientific studies are needed to evaluate the safety and efficacy of botanical natural products used by consumers, researchers conducting such studies face a unique set of challenges. Botanical natural products are inherently complex mixtures, with composition that differs depending on myriad factors including variability in genetics, cultivation conditions, and processing methods. Unfortunately, many studies of botanical natural products are carried out with poorly characterized study material, such that the results are irreproducible and difficult to interpret. This review provides recommended approaches for addressing the critical questions that researchers must address prior to in vitro or in vivo (including clinical) evaluation of botanical natural products. We describe selection and authentication of botanical material and identification of key biologically active compounds, and compare state-of-the-art methodologies such as untargeted metabolomics with more traditional targeted methods of characterization. The topics are chosen to be of maximal relevance to researchers, and are reviewed critically with commentary as to which approaches are most practical and useful and what common pitfalls should be avoided.
Collapse
Affiliation(s)
- Joshua J. Kellogg
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Jeannine S. McCune
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Nicholas H. Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Nadja B. Cech
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| |
Collapse
|
38
|
Young AP, Evans RC, Newell R, Walker AK. Development of a DNA Barcoding Protocol for Fungal Specimens from the E.C. Smith Herbarium (ACAD). Northeast Nat (Steuben) 2019. [DOI: 10.1656/045.026.0302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Alexander P. Young
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS B4P 2R6, Canada
| | - Rodger C. Evans
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS B4P 2R6, Canada
| | - Ruth Newell
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS B4P 2R6, Canada
| | - Allison K. Walker
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS B4P 2R6, Canada
| |
Collapse
|
39
|
|
40
|
Detection of adulteration in Hydrastis canadensis (goldenseal) dietary supplements via untargeted mass spectrometry-based metabolomics. Food Chem Toxicol 2018; 120:439-447. [PMID: 30031041 DOI: 10.1016/j.fct.2018.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 11/20/2022]
Abstract
Current estimates report that approximately 25% of U.S. adults use dietary supplements for medicinal purposes. Yet, regulation and transparency within the dietary supplement industry remains a challenge, and economic incentives encourage adulteration or augmentation of botanical dietary supplement products. Undisclosed changes to the dietary supplement composition could impact safety and efficacy; thus, there is a continued need to monitor possible botanical adulteration or mis-identification. Goldenseal, Hydrastis canadensis L. (Ranunculaceae), is a well-known botanical used to combat bacterial infections and digestive problems and is widely available as a dietary supplement. The goal of this study was to evaluate potential adulteration in commercial botanical products using untargeted metabolomics, with H. canadensis supplements serving as a test case. An untargeted ultraperformance liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis was performed on 35 H. canadensis commercial products. Visual inspection of the chemometric data via principal component analysis (PCA) revealed several products that were distinct from the main groupings of samples, and subsequent evaluation of contributing metabolites led to their confirmation of the outliers as originating from a non-goldenseal species or a mixture of plant materials. The obtained results demonstrate the potential for untargeted metabolomics to discriminate between multiple unknown products and predict possible adulteration.
Collapse
|
41
|
Marizzi C, Florio A, Lee M, Khalfan M, Ghiban C, Nash B, Dorey J, McKenzie S, Mazza C, Cellini F, Baria C, Bepat R, Cosentino L, Dvorak A, Gacevic A, Guzman-Moumtzis C, Heller F, Holt NA, Horenstein J, Joralemon V, Kaur M, Kaur T, Khan A, Kuppan J, Laverty S, Lock C, Pena M, Petrychyn I, Puthenkalam I, Ram D, Ramos A, Scoca N, Sin R, Gonzalez I, Thakur A, Usmanov H, Han K, Wu A, Zhu T, Micklos DA. DNA barcoding Brooklyn (New York): A first assessment of biodiversity in Marine Park by citizen scientists. PLoS One 2018; 13:e0199015. [PMID: 30020927 PMCID: PMC6051577 DOI: 10.1371/journal.pone.0199015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/30/2018] [Indexed: 11/18/2022] Open
Abstract
DNA barcoding is both an important research and science education tool. The technique allows for quick and accurate species identification using only minimal amounts of tissue samples taken from any organism at any developmental phase. DNA barcoding has many practical applications including furthering the study of taxonomy and monitoring biodiversity. In addition to these uses, DNA barcoding is a powerful tool to empower, engage, and educate students in the scientific method while conducting productive and creative research. The study presented here provides the first assessment of Marine Park (Brooklyn, New York, USA) biodiversity using DNA barcoding. New York City citizen scientists (high school students and their teachers) were trained to identify species using DNA barcoding during a two-week long institute. By performing NCBI GenBank BLAST searches, students taxonomically identified 187 samples (1 fungus, 70 animals and 116 plants) and also published 12 novel DNA barcodes on GenBank. Students also identified 7 ant species and demonstrated the potential of DNA barcoding for identification of this especially diverse group when coupled with traditional taxonomy using morphology. Here we outline how DNA barcoding allows citizen scientists to make preliminary taxonomic identifications and contribute to modern biodiversity research.
Collapse
Affiliation(s)
- Christine Marizzi
- DNA Learning Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Antonia Florio
- Department of Herpetology, American Museum of Natural History, New York, New York, United States of America
| | - Melissa Lee
- DNA Learning Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Mohammed Khalfan
- New York University, New York, New York, United States of America
| | - Cornel Ghiban
- DNA Learning Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Bruce Nash
- DNA Learning Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jenna Dorey
- DNA Learning Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- The New York Botanical Garden, Bronx, New York, United States of America
| | - Sean McKenzie
- The Rockefeller University, New York, New York, United States of America
| | - Christine Mazza
- Genovesi Environmental Study Center, New York City Department of Education, Brooklyn, New York, United States of America
| | - Fabiana Cellini
- Genovesi Environmental Study Center, New York City Department of Education, Brooklyn, New York, United States of America
| | - Carlo Baria
- CSI for International Studies, New York City Department of Education, Staten Island, New York, United States of America
| | - Ron Bepat
- High School for Construction Trades, Engineering and Architecture, New York City Department of Education, Queens, New York, United States of America
| | - Lena Cosentino
- CSI for International Studies, New York City Department of Education, Staten Island, New York, United States of America
| | - Alexander Dvorak
- International High School at Union Square, New York City Department of Education New York, New York, United States of America
| | - Amina Gacevic
- High School for Health Professions and Human Services, New York City Department of Education, New York, New York, United States of America
| | - Cristina Guzman-Moumtzis
- Frank McCourt High School, New York City Department of Education, New York, New York, United States of America
| | - Francesca Heller
- Franklin D. Roosevelt High School, New York City Department of Education, Brooklyn, New York, United States of America
| | - Nicholas Alexander Holt
- High School for Construction Trades, Engineering and Architecture, New York City Department of Education, Queens, New York, United States of America
| | - Jeffrey Horenstein
- Stuyvesant High School, New York City Department of Education, New York, New York, United States of America
| | - Vincent Joralemon
- Frank McCourt High School, New York City Department of Education, New York, New York, United States of America
| | - Manveer Kaur
- High School for Health Professions and Human Services, New York City Department of Education, New York, New York, United States of America
| | - Tanveer Kaur
- High School for Health Professions and Human Services, New York City Department of Education, New York, New York, United States of America
| | - Armani Khan
- High School for Construction Trades, Engineering and Architecture, New York City Department of Education, Queens, New York, United States of America
| | - Jessica Kuppan
- High School for Construction Trades, Engineering and Architecture, New York City Department of Education, Queens, New York, United States of America
| | - Scott Laverty
- CSI for International Studies, New York City Department of Education, Staten Island, New York, United States of America
| | - Camila Lock
- Forest Hills High School, New York City Department of Education, Queens, New York, United States of America
| | - Marianne Pena
- High School for Health Professions and Human Services, New York City Department of Education, New York, New York, United States of America
| | - Ilona Petrychyn
- Forest Hills High School, New York City Department of Education, Queens, New York, United States of America
| | - Indu Puthenkalam
- Forest Hills High School, New York City Department of Education, Queens, New York, United States of America
| | - Daval Ram
- High School for Construction Trades, Engineering and Architecture, New York City Department of Education, Queens, New York, United States of America
| | - Arlene Ramos
- High School for Health Professions and Human Services, New York City Department of Education, New York, New York, United States of America
| | - Noelle Scoca
- Brooklyn International High School, New York City Department of Education, Brooklyn, New York, United States of America
| | - Rachel Sin
- Franklin D. Roosevelt High School, New York City Department of Education, Brooklyn, New York, United States of America
| | - Izabel Gonzalez
- High School for Health Professions and Human Services, New York City Department of Education, New York, New York, United States of America
| | - Akansha Thakur
- Forest Hills High School, New York City Department of Education, Queens, New York, United States of America
| | - Husan Usmanov
- Franklin D. Roosevelt High School, New York City Department of Education, Brooklyn, New York, United States of America
| | - Karen Han
- High School for Construction Trades, Engineering and Architecture, New York City Department of Education, Queens, New York, United States of America
| | - Andy Wu
- Franklin D. Roosevelt High School, New York City Department of Education, Brooklyn, New York, United States of America
| | - Tiger Zhu
- Stuyvesant High School, New York City Department of Education, New York, New York, United States of America
| | - David Andrew Micklos
- DNA Learning Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
42
|
Jiao J, Huang W, Bai Z, Liu F, Ma C, Liang Z. DNA barcoding for the efficient and accurate identification of medicinal polygonati rhizoma in China. PLoS One 2018; 13:e0201015. [PMID: 30021015 PMCID: PMC6051646 DOI: 10.1371/journal.pone.0201015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/06/2018] [Indexed: 12/23/2022] Open
Abstract
Polygonati rhizoma (PR), a traditional medicinal and edible product with various bioactive components (Polygonatum polysaccharides, saponins, phenols, and flavonoids), is widely consumed in China. However, other species with morphological characteristics similar to those of the actual components are being used to replace or adulterate PR, causing issues with quality control and product safety. The morphological similarity of PR and its substitutes makes classic morphological identification challenging. To address this issue, DNA barcoding-based identification using ITS2 and psbA-trnH sequences was applied in this study to evaluate the efficiency and accuracy of this approach in identifying PR samples collected from 39 different regions in China. The identification of PR by this method was confirmed by other methods (phylogeny-based and character-based methods), and all the samples were clearly and accurately distinguished. This study highlights the efficient and accurate nature of DNA barcoding in PR identification. Applying this technique will provide a means to differentiate PR from other altered formulations, thus improving product quality and safety for consumers of PR and its products.
Collapse
Affiliation(s)
- Jie Jiao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenli Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Zhenqing Bai
- College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Feng Liu
- Research Department, Buchang Pharma, Xi’an, Shaanxi, China
| | - Cunde Ma
- Research Department, Buchang Pharma, Xi’an, Shaanxi, China
| | - Zongsuo Liang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Science, Zhejiang SCI-TECH University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
43
|
Loyd AL, Richter BS, Jusino MA, Truong C, Smith ME, Blanchette RA, Smith JA. Identifying the "Mushroom of Immortality": Assessing the Ganoderma Species Composition in Commercial Reishi Products. Front Microbiol 2018; 9:1557. [PMID: 30061872 PMCID: PMC6055023 DOI: 10.3389/fmicb.2018.01557] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 01/04/2023] Open
Abstract
Species of Ganoderma, commonly called reishi (in Japan) or lingzhi (in China), have been used in traditional medicine for thousands of years, and their use has gained interest from pharmaceutical industries in recent years. Globally, the taxonomy of Ganoderma species is chaotic, and the taxon name Ganoderma lucidum has been used for most laccate (shiny) Ganoderma species. However, it is now known that G. lucidum sensu stricto has a limited native distribution in Europe and some parts of China. It is likely that differences in the quality and quantity of medicinally relevant chemicals occur among Ganoderma species. To determine what species are being sold in commercially available products, twenty manufactured products (e.g., pills, tablets, teas, etc.) and seventeen grow your own (GYO) kits labeled as containing G. lucidum were analyzed. DNA was extracted, and the internal transcribed spacer (ITS) region and translation elongation factor 1-alpha (tef1α) were sequenced with specific fungal primers. The majority (93%) of the manufactured reishi products and almost half of the GYO kits were identified as Ganoderma lingzhi. G. lingzhi is native to Asia and is the most widely cultivated and studied taxon for medicinal use. Illumina MiSeq sequencing of the ITS1 region was performed to determine if multiple Ganoderma species were present. None of the manufactured products tested contained G. lucidum sensu stricto, and it was detected in only one GYO kit. G. lingzhi was detected in most products, but other Ganoderma species were also present, including G. applanatum, G. australe, G. gibbosum, G. sessile, and G. sinense. Our results indicate that the content of these products vary and that better labeling is needed to inform consumers before these products are ingested or marketed as medicine. Of the 17 GYO kits tested, 11 kits contained Ganoderma taxa that are not native to the United States. If fruiting bodies of exotic Ganoderma taxa are cultivated, these GYO kits will likely end up in the environment. The effects of these exotic species to natural ecosystems needs investigation.
Collapse
Affiliation(s)
- Andrew L Loyd
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
| | - Brantlee S Richter
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Michelle A Jusino
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Camille Truong
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States.,Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Robert A Blanchette
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Jason A Smith
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
| |
Collapse
|
44
|
Seethapathy GS, Tadesse M, Urumarudappa SKJ, V Gunaga S, Vasudeva R, Malterud KE, Shaanker RU, de Boer HJ, Ravikanth G, Wangensteen H. Authentication of Garcinia fruits and food supplements using DNA barcoding and NMR spectroscopy. Sci Rep 2018. [PMID: 30002410 DOI: 10.1038/s41598-018-28635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Garcinia L. (Clusiaceae) fruits are a rich source of (-)-hydroxycitric acid, and this has gained considerable attention as an anti-obesity agent and a popular weight loss food supplement. In this study, we assessed adulteration of morphologically similar samples of Garcinia using DNA barcoding, and used NMR to quantify the content of (-)-hydroxycitric acid and (-)-hydroxycitric acid lactone in raw herbal drugs and Garcinia food supplements. DNA barcoding revealed that mostly G. gummi-gutta (previously known as G. cambogia) and G. indica were traded in Indian herbal markets, and there was no adulteration. The content of (-)-hydroxycitric acid and (-)-hydroxycitric acid lactone in the two species varied from 1.7% to 16.3%, and 3.5% to 20.7% respectively. Analysis of ten Garcinia food supplements revealed a large variation in the content of (-)-hydroxycitric acid, from 29 mg (4.6%) to 289 mg (50.6%) content per capsule or tablet. Only one product contained quantifiable amounts of (-)-hydroxycitric acid lactone. Furthermore the study demonstrates that DNA barcoding and NMR could be effectively used as a regulatory tool to authenticate Garcinia fruit rinds and food supplements.
Collapse
Affiliation(s)
- Gopalakrishnan Saroja Seethapathy
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India
- Natural History Museum, University of Oslo, P.O. Box 1172, 0318, Oslo, Norway
| | - Margey Tadesse
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway
| | - Santhosh Kumar J Urumarudappa
- Department of Crop Physiology, School of Ecology and Conservation, University of Agricultural Sciences, Gandhi Krishi Vigyan Kendra, Bangalore, 560065, India
| | - Srikanth V Gunaga
- Department of Forest Biology, College of Forestry, University of Agricultural Sciences, Sirsi, 581401, India
| | - Ramesh Vasudeva
- Department of Forest Biology, College of Forestry, University of Agricultural Sciences, Sirsi, 581401, India
| | - Karl Egil Malterud
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway
| | - Ramanan Uma Shaanker
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India
- Department of Crop Physiology, School of Ecology and Conservation, University of Agricultural Sciences, Gandhi Krishi Vigyan Kendra, Bangalore, 560065, India
| | - Hugo J de Boer
- Natural History Museum, University of Oslo, P.O. Box 1172, 0318, Oslo, Norway
| | - Gudasalamani Ravikanth
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur Post, Bangalore, 560064, India.
| | - Helle Wangensteen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway.
| |
Collapse
|
45
|
Authentication of Garcinia fruits and food supplements using DNA barcoding and NMR spectroscopy. Sci Rep 2018; 8:10561. [PMID: 30002410 PMCID: PMC6043575 DOI: 10.1038/s41598-018-28635-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/26/2018] [Indexed: 12/27/2022] Open
Abstract
Garcinia L. (Clusiaceae) fruits are a rich source of (−)-hydroxycitric acid, and this has gained considerable attention as an anti-obesity agent and a popular weight loss food supplement. In this study, we assessed adulteration of morphologically similar samples of Garcinia using DNA barcoding, and used NMR to quantify the content of (−)-hydroxycitric acid and (−)-hydroxycitric acid lactone in raw herbal drugs and Garcinia food supplements. DNA barcoding revealed that mostly G. gummi-gutta (previously known as G. cambogia) and G. indica were traded in Indian herbal markets, and there was no adulteration. The content of (−)-hydroxycitric acid and (−)-hydroxycitric acid lactone in the two species varied from 1.7% to 16.3%, and 3.5% to 20.7% respectively. Analysis of ten Garcinia food supplements revealed a large variation in the content of (−)-hydroxycitric acid, from 29 mg (4.6%) to 289 mg (50.6%) content per capsule or tablet. Only one product contained quantifiable amounts of (−)-hydroxycitric acid lactone. Furthermore the study demonstrates that DNA barcoding and NMR could be effectively used as a regulatory tool to authenticate Garcinia fruit rinds and food supplements.
Collapse
|
46
|
DNA Barcoding for Identification of Consumer-Relevant Fungi Sold in New York: A Powerful Tool for Citizen Scientists? Foods 2018; 7:foods7060087. [PMID: 29890621 PMCID: PMC6025134 DOI: 10.3390/foods7060087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/24/2022] Open
Abstract
Although significant progress has been made in our understanding of fungal diversity, identification based on phenotype can be difficult, even for trained experts. Fungi typically have a cryptic nature and can have a similar appearance to distantly related species. Moreover, the appearance of industrially processed mushrooms complicates species identification, as they are often sold sliced and dried. Here we present a small-scale citizen science project, wherein the participants generated and analyzed DNA sequences from fruiting bodies of dried and fresh fungi that were sold for commercial use in New York City supermarkets. We report positive outcomes and the limitations of a youth citizen scientist, aiming to identify dried mushrooms, using established DNA barcoding protocols and exclusively open-access data analysis tools for species identification. Our results indicate that the single-locus nuclear ribosomal internal transcribed spacer (ITS) DNA barcoding approach allowed for identification of only a subset of all of the samples at the species level, although the generated high-quality DNA barcodes were submitted to three different databases. Our results highlight the need for a curated, centralized, and open access ITS reference database that allows rapid third-party annotations for the benefit of both traditional research as well as the emerging citizen science community.
Collapse
|
47
|
Authentication of Iceland Moss (Cetraria islandica) by UPLC-QToF-MS chemical profiling and DNA barcoding. Food Chem 2018; 245:989-996. [DOI: 10.1016/j.foodchem.2017.11.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/11/2017] [Accepted: 11/18/2017] [Indexed: 11/21/2022]
|
48
|
Sica VP, Rees ER, Raja HA, Rivera-Chávez J, Burdette JE, Pearce CJ, Oberlies NH. In situ mass spectrometry monitoring of fungal cultures led to the identification of four peptaibols with a rare threonine residue. PHYTOCHEMISTRY 2017; 143:45-53. [PMID: 28772192 PMCID: PMC5603414 DOI: 10.1016/j.phytochem.2017.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 05/03/2023]
Abstract
Peptaibols are an intriguing class of fungal metabolites due both to their wide range of reported bioactivities and to the structural variability that can be generated by the exchange of variable amino acid building blocks. In an effort to streamline the discovery of structurally diverse peptaibols, a mass spectrometry surface sampling technique was applied to screen the chemistry of fungal cultures in situ. Four previously undescribed peptaibols, all containing a rare threonine residue, were identified from a fungal culture (MSX53554), which was identified as Nectriopsis Maire (Bionectriaceae, Hypocreales, Ascomycota). These compounds not only increased the known threonine-containing peptaibols by nearly 20%, but also, the threonine residue was situated in a unique place compared to the other reported threonine-containing peptaibols. After the initial in situ detection and characterization, a large-scale solid fermentation culture was grown. The four peptaibols were isolated and characterized by mass spectrometry. In addition, one of the peptaibols was fully characterized by NMR and amino acid analysis using Marfey's reagent and exhibited moderate in vitro anticancer activity.
Collapse
Affiliation(s)
- Vincent P Sica
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Evan R Rees
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - José Rivera-Chávez
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., 505 Meadowlands Dr., Suite103, Hillsborough, NC 27278, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States.
| |
Collapse
|
49
|
Wainwright BJ, Zahn GL, Spalding HL, Sherwood AR, Smith CM, Amend AS. Fungi associated with mesophotic macroalgae from the 'Au'au Channel, west Maui are differentiated by host and overlap terrestrial communities. PeerJ 2017; 5:e3532. [PMID: 28713652 PMCID: PMC5508810 DOI: 10.7717/peerj.3532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/12/2017] [Indexed: 11/20/2022] Open
Abstract
Mesophotic coral ecosystems are an almost entirely unexplored and undocumented environment that likely contains vast reservoirs of undescribed biodiversity. Twenty-four macroalgae samples, representing four genera, were collected from a Hawaiian mesophotic reef at water depths between 65 and 86 m in the 'Au'au Channel, Maui, Hawai'i. Algal tissues were surveyed for the presence and diversity of fungi by sequencing the ITS1 gene using Illumina technology. Fungi from these algae were then compared to previous fungal surveys conducted in Hawaiian terrestrial ecosystems. Twenty-seven percent of the OTUs present on the mesophotic coral ecosystem samples were shared between the marine and terrestrial environment. Subsequent analyses indicated that host species of algae significantly differentiate fungal community composition. This work demonstrates yet another understudied habitat with a moderate diversity of fungi that should be considered when estimating global fungal diversity.
Collapse
Affiliation(s)
- Benjamin J Wainwright
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Geoffrey L Zahn
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Heather L Spalding
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Alison R Sherwood
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Celia M Smith
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Anthony S Amend
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| |
Collapse
|
50
|
Raja H, Miller AN, Pearce CJ, Oberlies NH. Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. JOURNAL OF NATURAL PRODUCTS 2017; 80:756-770. [PMID: 28199101 PMCID: PMC5368684 DOI: 10.1021/acs.jnatprod.6b01085] [Citation(s) in RCA: 417] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 05/17/2023]
Abstract
Fungi are morphologically, ecologically, metabolically, and phylogenetically diverse. They are known to produce numerous bioactive molecules, which makes them very useful for natural products researchers in their pursuit of discovering new chemical diversity with agricultural, industrial, and pharmaceutical applications. Despite their importance in natural products chemistry, identification of fungi remains a daunting task for chemists, especially those who do not work with a trained mycologist. The purpose of this review is to update natural products researchers about the tools available for molecular identification of fungi. In particular, we discuss (1) problems of using morphology alone in the identification of fungi to the species level; (2) the three nuclear ribosomal genes most commonly used in fungal identification and the potential advantages and limitations of the ITS region, which is the official DNA barcoding marker for species-level identification of fungi; (3) how to use NCBI-BLAST search for DNA barcoding, with a cautionary note regarding its limitations; (4) the numerous curated molecular databases containing fungal sequences; (5) the various protein-coding genes used to augment or supplant ITS in species-level identification of certain fungal groups; and (6) methods used in the construction of phylogenetic trees from DNA sequences to facilitate fungal species identification. We recommend that, whenever possible, both morphology and molecular data be used for fungal identification. Our goal is that this review will provide a set of standardized procedures for the molecular identification of fungi that can be utilized by the natural products research community.
Collapse
Affiliation(s)
- Huzefa
A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Andrew N. Miller
- Illinois
Natural History Survey, University of Illinois, Champaign, Illinois 61820, United States
| | - Cedric J. Pearce
- Mycosynthetix,
Inc., 505 Meadowland
Drive, Suite 103, Hillsborough, North Carolina 27278, United States
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|