1
|
Hussain M, Qayum A, Xiuxiu Z, Liu L, Hussain K, Yue P, Yue S, Y F Koko M, Hussain A, Li X. Potato protein: An emerging source of high quality and allergy free protein, and its possible future based products. Food Res Int 2021; 148:110583. [PMID: 34507729 DOI: 10.1016/j.foodres.2021.110583] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/15/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023]
Abstract
Recently protein has gained eminence due to awareness and demand for healthy food. Potato proteins are extracted from potato fruit juice and industrial potato waste; its nutritional and functional values have been found more significant than other vegetables and cereal proteins. Potato proteins can be easily extracted by various separation techniques, including an ion exchange (IEX) and expanded bed adsorption (EBA), and their functional properties can be modified for desire purposes. It contains many essential amino acids necessary for the human body, with an amino acid score (AAS) of 65%. Recent research on potato proteins resulted in several descriptions of new technologies to produce food-grade potato protein. It has recently drawn more attention as a protein source for human consumption, especially as an allergy free protein source and selective activity against cancer cells. Growing shreds of evidence have highlighted that potato protein can be used in many upcoming nutraceuticals and allergy-free food products. Therefore it is gaining more attention from nutritionists and food scientists. This review has summarized the recent knowledge on the nutritional and functional aspects of potato proteins, especially its non-allergic properties, enhancement in functional properties, and possible future-based products.
Collapse
Affiliation(s)
- Muhammad Hussain
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Abdul Qayum
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Zhang Xiuxiu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Kifayat Hussain
- Departments of Animal Nutrition, Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Pakistan
| | - Pan Yue
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Sun Yue
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Marwa Y F Koko
- Department of Food, Greases and Vegetable Protein Engineering, School of Food Sciences, Northeast Agriculture University Harbin, China
| | - Abid Hussain
- Department of Agriculture and Food Science, Karakorum International University, Gilgit, Pakistan
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| |
Collapse
|
2
|
Hussain M, Qayum A, Zhang X, Hao X, Liu L, Wang Y, Hussain K, Li X. Improvement in bioactive, functional, structural and digestibility of potato protein and its fraction patatin via ultra-sonication. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Potato Industry By-Products as a Source of Protein with Beneficial Nutritional, Functional, Health-Promoting and Antimicrobial Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most potato proteins are fractions of albumin and globulin, soluble in water and in water and salt solutions, respectively; these are patatin glycoproteins, with a pIs in the range of 4.8–5.2. This group of proteins is typical of potato and they are referred to as patatin or tuberin. Around 30–50% of soluble potato proteins comprise numerous fractions of protease inhibitors with a molecular weight in the range of 7–21 kDa; they are often heat-resistant, showing a wide spectrum of health-promoting effects. The nutritional value of proteins is related to the content of amino acids, their mutual proportions and digestibility. Natural proteins of the patatin fraction are characterized by favorable functional properties, including foam formation and stabilization, fat emulsification or gelling. Native potato proteins may also exhibit beneficial non-food properties, such as antimicrobial or antitumor, as well as antioxidant and antiradical. Depending on the method of isolation and the applied factors, such as pH, ionic strength and temperature, the directions of using potato protein preparations will be different.
Collapse
|
4
|
Boukid F, Rosell CM, Rosene S, Bover-Cid S, Castellari M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:6390-6420. [PMID: 33775185 DOI: 10.1080/10408398.2021.1901649] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumer interest in protein rich diets is increasing, with more attention being paid to the protein source. Despite the occurrence of animal proteins in the human diet, non-animal proteins are gaining popularity around the world due to their health benefits, environmental sustainability, and ethical merit. These sources of protein qualify for vegan, vegetarian, and flexitarian diets. Non-animal proteins are versatile, derived mainly from cereals, vegetables, pulses, algae (seaweed and microalgae), fungi, and bacteria. This review's intent is to analyze the current and future direction of research and innovation in non-animal proteins, and to elucidate the extent (limitations and opportunities) of their applications in food and beverage industries. Prior knowledge provided relevant information on protein features (processing, structure, and techno-functionality) with particular focus on those derived from soy and wheat. In the current food landscape, beyond conventionally used plant sources, other plant proteins are gaining traction as alternative ingredients to formulate animal-free foodstuffs (e.g., meat alternatives, beverages, baked products, snack foods, and others). Microbial proteins derived from fungi and algae are also food ingredients of interest due to their high protein quantity and quality, however there is no commercial food application for bacterial protein yet. In the future, key points to consider are the importance of strain/variety selection, advances in extraction technologies, toxicity assessment, and how this source can be used to create food products for personalized nutrition.
Collapse
Affiliation(s)
- Fatma Boukid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Sara Rosene
- General Mills, Golden Valley, Minnesota, USA
| | - Sara Bover-Cid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Massimo Castellari
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| |
Collapse
|
5
|
Farag MM, Moghannem SA, Shehabeldine AM, Azab MS. Antitumor effect of exopolysaccharide produced by Bacillus mycoides. Microb Pathog 2020; 140:103947. [DOI: 10.1016/j.micpath.2019.103947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022]
|
6
|
Zhao L, Cheng L, Deng Y, Li Z, Hong Y, Li C, Ban X, Gu Z. Study on rapid drying and spoilage prevention of potato pulp using solid-state fermentation with Aspergillus aculeatus. BIORESOURCE TECHNOLOGY 2020; 296:122323. [PMID: 31698224 DOI: 10.1016/j.biortech.2019.122323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Effects of solid-state fermentation on rapid drying and spoilage prevention of potato pulp were evaluated. Pectin hydrolyzing and antibacterial ability of pectinase-secreting Aspergillus aculeatus and Bacillus subtilis were compared. A. aculeatus grew better in potato pulp, with highest pectinase yield of 342.71 ± 5.09 U/mL and rapid pH reduction to 3.76 ± 0.01. Next generation sequencing showed that the abundance of genera Candida and Enterobacter, which probably caused undesirable fermentation and spoilage, were significantly reduced after inoculation with A. aculeatus. In addition, fermentation with A. aculeatus significantly reduced water holding capacity from 16.63 ± 0.36 g/g to 7.78 ± 0.12 g/g, which resulted in lower viscosity and water binding capacity, and concomitantly significantly decreased moisture content from 76.05 ± 0.24% to 12.95 ± 0.19% after filtration and airflow drying. These results suggested that solid-state fermentation might be a promising technology for efficient processing and utilization of potato pulp.
Collapse
Affiliation(s)
- Liyao Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Waglay A, Achouri A, Karboune S, Zareifard MR, L'Hocine L. Pilot plant extraction of potato proteins and their structural and functional properties. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108275] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Kowalczewski PŁ, Olejnik A, Białas W, Rybicka I, Zielińska-Dawidziak M, Siger A, Kubiak P, Lewandowicz G. The Nutritional Value and Biological Activity of Concentrated Protein Fraction of Potato Juice. Nutrients 2019; 11:E1523. [PMID: 31277482 PMCID: PMC6683274 DOI: 10.3390/nu11071523] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/27/2023] Open
Abstract
Potato protein is recognized as one of the most valuable nonanimal proteins due to the high content of essential amino acids. So far, it has not been used in human nutrition on a large scale due to technological limitations regarding its acquisition. In this study, the protein fraction of potato juice was concentrated with the use of membrane separation. The obtained potato juice protein concentrate (PJPC) was characterized in terms of nutritional value and biological activity, and the amino acid composition, mineral content, and antioxidant properties were determined. Moreover, in vitro cytotoxic activity against cancer cells of the gastrointestinal tract was investigated. The results of the present study indicate that PJPC is an excellent source of lysine and threonine, while leucine is its limiting amino acid, with an amino acid score (AAS) of 65%. Moreover, PJPC contains substantial amounts of Fe, Mn, K, and Cu. As demonstrated experimentally, PJPC is also characterized by higher antioxidant potential than potato itself. Biological activity, however, is not limited to antioxidant activity alone. Cytotoxicity studies using a gastric cancer cell line (Hs 746T), a colon cancer cell line (HT-29), and human colon normal cells (CCD 841 CoN) proved that PJPC is characterized by selective activity against cancer cells. It can thus be concluded that the developed method of producing protein concentrate from potato juice affords a product with moderate nutritional value and interesting biological activity.
Collapse
Affiliation(s)
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 60-627 Poznań, Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 60-627 Poznań, Poland
| | - Iga Rybicka
- Department of Technology and Instrumental Analysis, Poznań University of Economics and Business, 61-875 Poznań, Poland
| | - Magdalena Zielińska-Dawidziak
- Department of Biochemistry and Food Analysis, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-623 Poznań, Poland
| | - Aleksander Siger
- Department of Biochemistry and Food Analysis, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-623 Poznań, Poland
| | - Piotr Kubiak
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 60-627 Poznań, Poland
| | - Grażyna Lewandowicz
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 60-627 Poznań, Poland
| |
Collapse
|
9
|
Lange L, Meyer AS. Potentials and possible safety issues of using biorefinery products in food value chains. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Mouzo D, López-Pedrouso M, Bernal J, García L, Franco D, Zapata C. Association of Patatin-Based Proteomic Distances with Potato ( Solanum tuberosum L.) Quality Traits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11864-11872. [PMID: 30350976 DOI: 10.1021/acs.jafc.8b03203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Patatin is the major tuber storage protein constituted by multiple isoforms highly variable across potato ( S. tuberosum) varieties. Here, we report a first association study of the variability of patatin isoforms between cultivars with their differences in tuber quality traits. Patatin-based proteomic distances were assessed between 15 table and/or processing potato cultivars from profiles of patatin obtained by two-dimensional electrophoresis. The content of ash, dry matter, reducing sugars, starch, total protein, and amino acid composition was also evaluated in tubers of each cultivar. Results showed that proteomic distances were significantly ( P < 0.05) associated with differences in the content of ash, dry matter, and essential amino acids. Proteomic distances were also able to identify outlier cultivars regarding the content of dry matter, content of protein, and protein quality. In conclusion, patatin-based proteomic distances can shorten the screening and selection processes of potato cultivars with advantageous characteristics in molecular breeding.
Collapse
Affiliation(s)
- Daniel Mouzo
- Department of Zoology, Genetics and Physical Anthropology , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Javier Bernal
- Department of Zoology, Genetics and Physical Anthropology , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Lucio García
- Meat Technology Center of Galicia, r/Galicia 4 , Parque Tecnolóxico de Galicia , San Cibrao das Viñas , Ourense 32900 , Spain
| | - Daniel Franco
- Meat Technology Center of Galicia, r/Galicia 4 , Parque Tecnolóxico de Galicia , San Cibrao das Viñas , Ourense 32900 , Spain
| | - Carlos Zapata
- Department of Zoology, Genetics and Physical Anthropology , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| |
Collapse
|
11
|
A comparative study for the isolation and characterization of mannoproteins from Saccharomyces cerevisiae yeast cell wall. Int J Biol Macromol 2018; 119:654-661. [DOI: 10.1016/j.ijbiomac.2018.07.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022]
|
12
|
Du J, Cheng L, Hong Y, Deng Y, Li Z, Li C, Gu Z. Enzyme assisted fermentation of potato pulp: An effective way to reduce water holding capacity and improve drying efficiency. Food Chem 2018; 258:118-123. [DOI: 10.1016/j.foodchem.2018.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022]
|
13
|
Malick A, Khodaei N, Benkerroum N, Karboune S. Production of exopolysaccharides by selected Bacillus strains: Optimization of media composition to maximize the yield and structural characterization. Int J Biol Macromol 2017; 102:539-549. [DOI: 10.1016/j.ijbiomac.2017.03.151] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/23/2022]
|
14
|
Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. SUSTAINABILITY 2017. [DOI: 10.3390/su9081492] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Cheng Y, Liu Y, Wu J, Ofori Donkor P, Li T, Ma H. Improving the enzymolysis efficiency of potato protein by simultaneous dual-frequency energy-gathered ultrasound pretreatment: Thermodynamics and kinetics. ULTRASONICS SONOCHEMISTRY 2017; 37:351-359. [PMID: 28427643 DOI: 10.1016/j.ultsonch.2017.01.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 06/07/2023]
Abstract
The thermodynamics and kinetics of traditional and simultaneous dual frequency energy-gathered ultrasound (SDFU) assisted enzymolysis of potato protein were investigated to get the knowledge of the mechanisms on the SDFU's promoting efficiency during enzymolysis. The concentration of potato protein hydrolysate and parameters of thermodynamic and kinetic during traditional and SDFU assisted enzymolysis were determined. The results showed that potato protein hydrolysate concentration of SDFU assisted enzymolysis was higher than traditional enzymolysis at the hydrolysis time of 60min (p<0.05) whereas not significantly different at 120min (p>0.05). In some cases, SDFU assisted enzymolysis took less hydrolysis time than traditional enzymolysis when the similar conversion rates of potato protein were obtained. The thermodynamic papameters including the energy of activation (Ea), enthalpy of activation (△H), entropy of activation (△S) were reduced by ultrasound pretreatment while Gibbs free energy of activation (△G) increased little (1.6%). Also, kinetic papameters including Michaelis constant (KM) and catalytic rate constant (kcat) decreased by ultrasound pretreatment. On the contrary, reaction rate constants (k) of SDFU assisted enzymolysis were higher than that of traditional enzymolysis (p<0.05). It was indicated that the efficiency of SDFU assisted enzymolysis was higher than traditional enzymolysis in a limited time. The higher efficiency of SDFU assisted enzymolysis was related with the decrease of Ea and KM by lowering the energy barrier between ground and active state and increasing affinity between substrate and enzyme.
Collapse
Affiliation(s)
- Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Yun Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Juan Wu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Prince Ofori Donkor
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ting Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|