1
|
Pfeifer LM, Sensbach J, Pipp F, Werkmann D, Hewitt P. Increasing sustainability and reproducibility of in vitro toxicology applications: serum-free cultivation of HepG2 cells. FRONTIERS IN TOXICOLOGY 2024; 6:1439031. [PMID: 39650261 PMCID: PMC11621109 DOI: 10.3389/ftox.2024.1439031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
Fetal Bovine Serum (FBS) is an important ingredient in cell culture media and the current standard for most cells in vitro. However, the use of FBS is controversial for several reasons, including ethical concerns, political, and societal pressure, as well as scientific problems due to the undefined and variable nature of FBS. Nevertheless, scientists hesitate to change the paradigm without solid data de-risking the switch of their assays to alternatives. In this study, HepG2 cells, a human hepatoblastoma cell line commonly used to study drug hepatotoxicity, were adapted to serum-free conditions by using different commercially available media and FBS replacements. After transition to these new culture conditions, the success of adaptation was determined based on cell morphology and growth characteristics. Long-term culturing capacity for each medium was defined as the number of passages HepG2 cells could be cultured without any alterations in morphology or growth behavior. Two media (Advanced DMEM/F12 from ThermoFisher and TCM® Serum Replacement from MP Biomedicals) showed a long-term cultivation capacity comparable to media containing FBS and were selected for further analysis. Both media can be characterized as serum-free, however still contain animal-derived components: bovine serum albumin (both media) and bovine transferrin (only TCM® serum replacement). To assess the functionality of the cells cultivated in either of the two media, HepG2 cells were treated with reference compounds, specifically selected for their known hepatotoxicity characteristics in man. Different toxicological assays focusing on viability, mitochondrial toxicity, oxidative stress, and intracellular drug response were performed. Throughout the different assays, response to reference compounds was comparable, with a slightly higher sensitivity of serum-free cultivated HepG2 cells when assessing viability/cell death and a lower sensitivity towards oxidative stress. Taken together, the two selected media were shown to support growth, morphology, and function of serum-free cultivated HepG2 cells in the early preclinical safety space. Therefore, these results can serve as a starting point to further optimize culture conditions with the goal to remove any remaining animal-derived components.
Collapse
Affiliation(s)
| | - Janike Sensbach
- Early Investigative Toxicology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Frederic Pipp
- Corporate Animal Affairs, Merck KGaA, Darmstadt, Germany
| | - Daniela Werkmann
- Cell Design Lab, Molecular Biology, Merck KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Early Investigative Toxicology, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
2
|
Peng Q, Ma Y, Wang Z, Wang J. Inhibition mechanism of different structural polyphenols against α-amylase studied by solid-state NMR and molecular docking. Int J Biol Macromol 2024; 275:133757. [PMID: 38986997 DOI: 10.1016/j.ijbiomac.2024.133757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/22/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Polyphenol has the considerable effects for inhibition of digestive enzymes, however, inhibition mechanism of molecular size-dependent polyphenols on enzyme activity is still lacking. Herein, inhibition effect and binding interactions of three different structural polyphenols (catechol, quercetin and hesperidin) on α-amylase were studied. Inhibition assays proved that polyphenols significantly inhibited α-amylase and their effects were increased with their molecular sizes. Hesperidin showed the highest inhibition ability of α-amylase, which was determined as IC50 = 0.43 mg/mL. Fluorescence and FT-IR spectroscopy proved that inter-molecular interactions between polyphenols and α-amylase occurred through non-covalent bonds. Besides, the secondary structure of α-amylase was obviously changed after binding with polyphenols. Inter-molecular interactions were investigated using solid-state NMR and molecular docking. Findings proved that hydrogen bonds and π-π stacking interactions were the mainly inter-molecular interactions. We hope this contribution could provide a theoretical basis for developing some digestive enzyme inhibitors from natural polyphenols.
Collapse
Affiliation(s)
- Qiyue Peng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Zhipeng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| |
Collapse
|
3
|
Wójciak K, Materska M, Pełka A, Michalska A, Małecka-Massalska T, Kačániová M, Čmiková N, Słowiński M. Effect of the Addition of Dandelion ( Taraxacum officinale) on the Protein Profile, Antiradical Activity, and Microbiological Status of Raw-Ripening Pork Sausage. Molecules 2024; 29:2249. [PMID: 38792111 PMCID: PMC11124098 DOI: 10.3390/molecules29102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The study evaluated the effect of adding dandelion extract on the characteristics of raw-ripening pork sausages while reducing the nitrite addition from 150 to 80 mg/kg. The sausages were made primarily from pork ham (80%) and pork jowl (20%). The process involved curing, preparing the meat stuffing, forming the links, and then subjecting the sausages to a 21-day ripening period. Physicochemical parameters such as pH, water activity, and oxidation-reduction potential were compared at the beginning of production and after the ripening process. The study also examined the impact of ripening on protein metabolism in pork sausages and compared the protein profiles of different sausage variants. The obtained research results indicate that dandelion-leaf extract (Taraxacum officinale) were rich in phenolic acids, flavonoids, coumarins, and their derivatives (LC-QTOF-MS method). Antiradical activity test against the ABTS+* and DPPH radical, and the TBARS index, demonstrated that addition of dandelion (0.5-1%) significantly improved the oxidative stability of raw-ripening sausages with nitrite content reduction to 80 mg/kg. A microbiological evaluation of the sausages was also carried out to assess the correctness of the ripening process. The total number of viable bacteria, lactic acid bacteria, and coliforms were evaluated and subsequently identified by mass spectrometry.
Collapse
Affiliation(s)
- Karolina Wójciak
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.P.); (A.M.)
| | - Małgorzata Materska
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Arkadiusz Pełka
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.P.); (A.M.)
| | - Agata Michalska
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.P.); (A.M.)
| | - Teresa Małecka-Massalska
- Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia or (M.K.); (N.Č.)
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warszawa, Poland
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia or (M.K.); (N.Č.)
| | - Mirosław Słowiński
- Division of Meat Technology, Department of Food Technology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| |
Collapse
|
4
|
Yu C, Shan J, Fu Z, Ju H, Chen X, Xu G, Liu Y, Li H, Wu Y. Co-Encapsulation of Curcumin and Diosmetin in Nanoparticles Formed by Plant-Food-Protein Interaction Using a pH-Driven Method. Foods 2023; 12:2861. [PMID: 37569129 PMCID: PMC10418428 DOI: 10.3390/foods12152861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
In this work, a pH-driven method was used to prepare zein-soy protein isolate (SPI) composite nanoparticles (NPs). The mass ratio of SPI to zein influenced the Z-average size (Z-ave). Once the zeta potential stabilized, SPI was completely coated on the periphery of the zein NPs. The optimal mass ratio of zein:SPI was found to be 2:3. After determining the structure using TEM, curcumin (Cur) and/or diosmetin (Dio) were loaded into zein-SPI NPs for co-encapsulation or individual delivery. The co-encapsulation of Cur and Dio altered their protein conformations, and both Cur and Dio transformed from a crystalline structure to an amorphous form. The protein conformation change increased the number of binding sites between Dio and zein NPs. As a result, the encapsulation efficiency (EE%) of Dio improved from 43.07% to 73.41%, and thereby increased the loading efficiency (LE%) of zein-SPI NPs to 16.54%. Compared to Dio-loaded zein-SPI NPs, Cur/Dio-loaded zein-SPI NPs improved the storage stability of Dio from 61.96% to 82.41% within four weeks. The extended release of bioactive substances in the intestine during simulated gastrointestinal digestion improved the bioavailability. When exposed to a concentration of 0-800 µg/mL blank-loaded zein-SPI NPs, the viability of HepG2 and LO-2 cells was more than 90%, as shown in MTT assay tests. The zein-SPI NPs are non-toxic, biocompatible, and have potential applications in the food industry.
Collapse
Affiliation(s)
- Chong Yu
- Harbin Jilida Technology Co., Ltd., Harbin 150001, China;
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Jingyu Shan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Ze Fu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Hao Ju
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Xiao Chen
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Guangsen Xu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yang Liu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Huijing Li
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yanchao Wu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|
5
|
Han Y, Liu L, Zang B, Liang R, Zhao X, Liu B. Advances in natural products and antibody drugs for SLE: new therapeutic ideas. Front Pharmacol 2023; 14:1235440. [PMID: 37492083 PMCID: PMC10363611 DOI: 10.3389/fphar.2023.1235440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune systemic disease with a wide range of clinical symptoms, complex development processes, and uncertain prognosis. The clinical treatment of SLE is mainly based on hormones and immunosuppressants. Research on novel therapy strategies for SLE has flourished in recent years, especially the emergence of new targeted drugs and natural products that can modulate related symptoms. This review discusses the current experience including B-cell targeted drugs (belimumab, tabalumab, blisibimod, atacicept, rituximab, ofatumumab, ocrelizumab, obexelimab, and epratuzumab), T-cell targeted drugs (abatacept, dapirolizumab, and inhibitor of syk and CaMKIV), cytokines targeted drugs (anifrolumab and sifalimumab), and natural products (curcumin, oleuropein, punicalagin, sulforaphane, icariin, apigenin, and resveratrol). The aim of this paper is to combine the existing in vitro and in vivo models and clinical research results to summarize the efficacy and mechanism of natural drugs and targeted drugs in SLE for the reference and consideration of researchers.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Liu
- Department of Rheumatology, The Affiliated Hospital of Qingdao University, Shandong, China
| |
Collapse
|
6
|
An D, Ban Q, Du H, Wang Q, Teng F, Li L, Xiao H. Nanofibrils of food-grade proteins: Formation mechanism, delivery systems, and application evaluation. Compr Rev Food Sci Food Saf 2022; 21:4847-4871. [PMID: 36201382 DOI: 10.1111/1541-4337.13028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
Due to the high aspect ratio, appealing mechanical characteristics, and various adjustable functional groups on the surface proteins, food-grade protein nanofibrils have attracted great research interest in the field of food science. Fibrillation, known as a process of peptide self-assembly, is recognized as a common attribute for food-grade proteins. Converting food-grade proteins into nanofibrils is a promising strategy to broaden their functionality and applications, such as improvement of the properties of gelling and emulsifying, especially for constructing various delivery systems for bioactive compounds. Protein source and processing conditions have a great impact on the size, structure, and morphology of nanofibrils, resulting in extreme differences in functionality. With this feature, it is possible to engineer nanofibrils into four different delivery systems, including gels, microcapsules, emulsions, and complexes. Construction of nanofibril-based gels via multiple cross-linking methods can endow gels with special network structures to efficiently capture bioactive compounds and extra mechanical behavior. The adsorption behavior of nanofibrils at the interface is highly complex due to the influence of several intrinsic factors, which makes it challenging to form stabilized nanofibril-based emulsion systems. Based on electrostatic interactions, microcapsules and complexes prepared using nanofibrils and polysaccharides have combined functional properties, resulting in adjustable release behavior and higher encapsulation efficiency. The bioactive compounds delivery system based on nanofibrils is a potential solution to enhance their absorption in the gastrointestinal tract, improve their bioavailability, and deliver them to target organs. Although food-grade protein nanofibrils show unknown toxicity to humans, further research can contribute to broadening the application of nanofibrils in delivery systems.
Collapse
Affiliation(s)
- Di An
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
7
|
Single/co-encapsulation capacity and physicochemical stability of zein and foxtail millet prolamin nanoparticles. Colloids Surf B Biointerfaces 2022; 217:112685. [DOI: 10.1016/j.colsurfb.2022.112685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 12/22/2022]
|
8
|
Navarro‐Orcajada S, Conesa I, Matencio A, García‐Carmona F, López‐Nicolás JM. Molecular encapsulation and bioactivity of gnetol, a resveratrol analogue, for use in foods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4296-4303. [PMID: 35043401 PMCID: PMC9303806 DOI: 10.1002/jsfa.11781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Gnetol is a stilbene whose characterization and bioactivity have been poorly studied. It shares some bioactivities with its analogue resveratrol, such as anti-inflammatory, anti-thrombotic, cardioprotective and anti-cancer activities. However, the low solubility of stilbenes may limit their potential applications in functional foods. Encapsulation in cyclodextrins could be a solution. RESULTS The antioxidant activity of gnetol was evaluated by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation and ferric reducing antioxidant power methods (Trolox equivalents 13.48 μmol L-1 and 37.08 μmol L-1 respectively at the highest concentration) and it was higher than that of resveratrol, and depending on the method, similar or higher to that of oxyresveratrol. Spectrophotometric and spectrofluorimetric characterization of gnetol is published for the first time. Moreover, its water solubility was determined and improved almost threefold after its molecular encapsulation in cyclodextrins, as well as its stability after storage for a week. A physicochemical and computational study revealed that cyclodextrins complex gnetol in a 1:1 stoichiometry, with better affinity for like 2-hydroxypropyl-β-cyclodextrin (KF = 4542.90 ± 227.15 mol-1 L). Temperature and pH affected the encapsulation constants. CONCLUSION These results could increase interest of gnetol as an alternative to the most studied stilbene, resveratrol, as well as aid in the development of more stable inclusion complexes that improve its aqueous solubility and stability so that it can be incorporated into functional foods. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Silvia Navarro‐Orcajada
- Departamento de Bioquímica y Biología Molecular‐A, Facultad de BiologíaUniversidad de Murcia – Regional Campus of International Excellence “Campus Mare Nostrum”MurciaSpain
| | - Irene Conesa
- Departamento de Bioquímica y Biología Molecular‐A, Facultad de BiologíaUniversidad de Murcia – Regional Campus of International Excellence “Campus Mare Nostrum”MurciaSpain
| | | | - Francisco García‐Carmona
- Departamento de Bioquímica y Biología Molecular‐A, Facultad de BiologíaUniversidad de Murcia – Regional Campus of International Excellence “Campus Mare Nostrum”MurciaSpain
| | - José Manuel López‐Nicolás
- Departamento de Bioquímica y Biología Molecular‐A, Facultad de BiologíaUniversidad de Murcia – Regional Campus of International Excellence “Campus Mare Nostrum”MurciaSpain
| |
Collapse
|
9
|
Cao Y. Nutrient molecule corona: An update for nanomaterial-food component interactions. Toxicology 2022; 476:153253. [PMID: 35811011 DOI: 10.1016/j.tox.2022.153253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
The adsorption of biological molecules to nanomaterials (NMs) will significantly impact NMs' behavior in complex microenvironments. Previously we proposed the need to consider the interactions between food components and NMs for the evaluation of oral toxicity of NMs. This review updated this concept as nutrient molecule corona, that the adsorption of nutrient molecules alters the uptake of nutrient molecules and/or NMs, as well as the signaling pathways to induce a combined toxicity due to the biologically active nature of nutrient molecules. Even with the presence of protein corona, nutrient molecules may still bind to NMs to change the identities of NMs in vivo. Furthermore, this review proposed the binding of excessive nutrient molecules to NMs to induce a combined toxicity under pathological conditions such as metabolic diseases. The structures of nutrient molecules and physicochemical properties of NMs determine nutrient molecule corona formation, and these aspects should be considered to limit the unwanted effects brought by nutrient molecule corona. In conclusion, similar to other biological molecule corona, the formation of nutrient molecule corona due to the presence of food components or excessive nutrient molecules in pathophysiological microenvironments will alter the behaviors of NMs.
Collapse
Affiliation(s)
- Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
10
|
Koh YC, Lin SJ, Nagabhushanam K, Ho CT, Pan MH. The Anti-Obesity and Anti-Inflammatory Capabilities of Pterostilbene and its Colonic Metabolite Pinostilbene Protect against Tight Junction Disruption from Western Diet Feeding. Mol Nutr Food Res 2022; 66:e2200146. [PMID: 35751615 DOI: 10.1002/mnfr.202200146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Indexed: 11/10/2022]
Abstract
SCOPE Tight junctions (TJs) are a member of the intestinal epithelium barrier that provides the first line of protection against external factors. Anti-obesity and protective effects of pterostilbene (PSB) on TJs have previously been reported, but the effect of its colonic metabolite, pinostilbene (PIN), is less understood. METHODS AND RESULTS A 16-week animal model fed with western-diet to induced colonic TJs disruption was designed, supplemented with PSB and PIN to evaluate their potent in colonic TJ protection. The results showed that both PSB and PIN exerted suppressive effects on obesity, hepatic steatosis, and chronic inflammation in western-diet-fed mice. Western-diet feeding significantly reduced expression of TJ proteins, including ZO-1, occludin, and claudin-1, while PSB and PIN supplementation effectively protected TJ proteins against disruption. Increment in serum, hepatic, and mesenteric pro-inflammatory cytokines suggest their probable involvement in TJ disruption supported with the findings in macrophage polarization. The adverse were revered by PSB and PIN. The protective effect of PSB and PIN on TJ proteins may stem from their anti-inflammation capabilities. CONCLUSION This is the first study suggesting that PIN, the metabolite of PSB, demonstrates a similar protective effect on colonic TJ proteins via its anti-obesity, hepatic protection and anti-inflammatory capabilities. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan
| | - Shin-Jhih Lin
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
11
|
Maciel-Silva VL, da Rocha CQ, Alencar LMR, Castelo-Branco PV, Sousa IHD, Azevedo-Santos AP, Vale AAM, Monteiro SG, Soares REP, Guimarães SJA, Nascimento JRD, Pereira SRF. Unusual dimeric flavonoids (brachydins) induce ultrastructural membrane alterations associated with antitumor activity in cancer cell lines. Drug Chem Toxicol 2022:1-12. [PMID: 35635136 DOI: 10.1080/01480545.2022.2080217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Notwithstanding the advances in molecular target-based drugs, chemotherapy remains the most common cancer treatment, despite its high toxicity. Consequently, effective anticancer therapies with fewer adverse effects are needed. Therefore, this study aimed to determine the anticancer activity of the dichloromethane fraction (DCMF) isolated from Arrabidae brachypoda roots, whose components are three unusual dimeric flavonoids. The toxicity of DCMF was investigated in breast (MCF-7), prostate (DU145), and cervical (HeLa) tumor cells, as well as non-tumor cells (PNT2), using sulforhodamine B (cell viability), Comet (genotoxicity), clonogenicity (reproductive capacity) and wound healing (cell migration) assays, and atomic force microscopy (AFM) for ultrastructural cell membrane alterations. Molecular docking revealed affinity between albumin and each rare flavonoid, supporting the impact of fetal bovine serum in DCMF antitumor activity. The IC50 values for MCF7, HeLa, and DU145 were 2.77, 2.46, and 2.51 µg/mL, respectively, and 4.08 µg/mL for PNT2. DCFM was not genotoxic to tumor or normal cells when exposed to twice the IC50 for up to 24 h, but it inhibited tumor cell migration and reproduction compared to normal cells. Additionally, AFM revealed alterations in the ultrastructure of tumor nuclear membrane surfaces, with a positive correlation between DCMF concentration and tumor cell roughness. Finally, we found a negative correlation between roughness and the ability of DCMF-treated tumor cells to migrate and form colonies with more than 50 cells. These findings suggest that DCFM acts by causing ultrastructural changes in tumor cell membranes while having fewer toxicological effects on normal cells.
Collapse
Affiliation(s)
- Vera Lucia Maciel-Silva
- Postgraduate Program in Biodiversity and Biotechnology-Bionorte, Federal University of Maranhão, São Luis, Brazil.,Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil.,Department of Biology, State University of Maranhão, São Luis, Brazil
| | - Claudia Quintino da Rocha
- Laboratory of Natural Products, Department of Chemistry, Federal University of Maranhão, São Luís, Brazil
| | | | | | - Israel Higino de Sousa
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil
| | - Ana Paula Azevedo-Santos
- Laboratory of Immunology Applied to Cancer, Department of Physiological Sciences, Federal University of Maranhão, São Luis, Brazil
| | - André Alvares Marques Vale
- Laboratory of Immunology Applied to Cancer, Department of Physiological Sciences, Federal University of Maranhão, São Luis, Brazil.,Postgraduate Program in Health Sciences, Federal University of Maranhão, Maranhão, Brazil
| | - Silvio Gomes Monteiro
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil
| | - Rossy-Eric Pereira Soares
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil
| | - Sulayne Janayna Araujo Guimarães
- Laboratory of Immunology Applied to Cancer, Department of Physiological Sciences, Federal University of Maranhão, São Luis, Brazil.,Postgraduate Program in Health Sciences, Federal University of Maranhão, Maranhão, Brazil
| | | | - Silma Regina Ferreira Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luis, Brazil
| |
Collapse
|
12
|
Nassarawa SS, Nayik GA, Gupta SD, Areche FO, Jagdale YD, Ansari MJ, Hemeg HA, Al-Farga A, Alotaibi SS. Chemical aspects of polyphenol-protein interactions and their antibacterial activity. Crit Rev Food Sci Nutr 2022; 63:9482-9505. [PMID: 35475717 DOI: 10.1080/10408398.2022.2067830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The hunt for novel antibiotics has become a global public health imperative due to the rise in multidrug-resistant microorganisms, untreatable infection cases, overuse, and inefficacy of modern antibiotics. Polyphenols are getting much attention in research due to their multiple biological effects; their use as antimicrobial agents is attributed to their activity and that microbes have a hard time developing resistance to these natural compounds. Polyphenols are secondary metabolites produced in higher plants. They are known to possess various functional properties in the human body. Polyphenols also exhibit antibacterial activities against foodborne pathogens. Their antibacterial mechanism is based on inhibiting bacterial biofilm formation or inactivating enzymes. This review focused on polyphenol-protein interactions and the creation of this complex as a possible antibacterial agent. Also, different phenolic interactions on bacterial proteins, efflux pump, cell membrane, bacterial adhesion, toxins, and other bacterial proteins will be explored; these interactions can work in a synergic combination with antibiotics or act alone to assure bacterial inhibition. Additionally, our review will focus on polyphenol-protein interaction as a possible strategy to eradicate bacteria because polyphenols have shown a robust enzyme-inhibitory characteristic and a high tendency to complex with proteins, a response that neutralizes any bactericidal potential.
Collapse
Affiliation(s)
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College Shopian, Srinagar, Jammu and Kashmir, India
| | - S Dutta Gupta
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Franklin Ore Areche
- Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica, Peru
| | - Yash D Jagdale
- MIT School of Food Technology, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University), Bareilly, Uttar Pradesh, India
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Monawra, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
13
|
Synthesis, characterization and investigating the binding mechanism of novel coumarin derivatives with human serum albumin: Spectroscopic and computational approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Structure dependent stability and antioxidant capacity of strawberry polyphenols in the presence of canola protein. Food Chem 2022; 385:132630. [PMID: 35334342 DOI: 10.1016/j.foodchem.2022.132630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022]
Abstract
Polyphenol stability in processed food affects sensorial and health-promoting properties. Thus, understanding the effects of various food components on polyphenols degradation, as a function of their chemical structure, can contribute to optimal product engineering. The current study focuses on the impact of polyphenol structure on polyphenol-protein interactions in correlation with their stability and total antioxidant capacity (TAC) during shelf-life. A strawberry polyphenol extract (SPE) and canola protein extract (CPE) were used as multicomponent polyphenol and plant-based protein models. A non-covalent interaction of SPE and CPE was observed at pH = 3. Among CPE proteins cruciferin was the most involved in interactions, and the polyphenols with the highest relative binding were flavonols (45 ± 3%-68 ± 2%), while anthocyanins presented lower values (0 ± 0.4%-27 ± 1%). The presence of the proteins enhanced mostly the anthocyanins' stability, yet the extent of the impact was not correlated with the relative binding. TAC was not better preserved by the presence of CPE.
Collapse
|
15
|
Navarro-Orcajada S, Conesa I, Vidal-Sánchez FJ, Matencio A, Albaladejo-Maricó L, García-Carmona F, López-Nicolás JM. Stilbenes: Characterization, bioactivity, encapsulation and structural modifications. A review of their current limitations and promising approaches. Crit Rev Food Sci Nutr 2022; 63:7269-7287. [PMID: 35234546 DOI: 10.1080/10408398.2022.2045558] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stilbenes are phenolic compounds naturally synthesized as secondary metabolites by the shikimate pathway in plants. Research on them has increased in recent years due to their therapeutic potential as antioxidant, antimicrobial, anti-inflammatory, anticancer, cardioprotective and anti-obesity agents. Amongst them, resveratrol has attracted the most attention, although there are other natural and synthesized stilbenes with enhanced properties. However, stilbenes have some physicochemical and pharmacokinetic problems that need to be overcome before considering their applications. Human clinical evidence of their bioactivity is still controversial due to this fact and hence, exhaustive basis science on stilbenes is needed before applied science. This review gathers the main physicochemical and biological properties of natural stilbenes, establishes structure-activity relationships among them, emphasizing the current problems that limit their applications and presenting some promising approaches to overcome these issues: the encapsulation in different agents and the structural modification to obtain novel stilbenes with better features. The bioactivity of stilbenes should move from promising to evident.
Collapse
Affiliation(s)
- Silvia Navarro-Orcajada
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Irene Conesa
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Francisco José Vidal-Sánchez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | | | - Lorena Albaladejo-Maricó
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| |
Collapse
|
16
|
Phenolic-protein interactions in foods and post ingestion: Switches empowering health outcomes. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Contente ML, Annunziata F, Cannazza P, Donzella S, Pinna C, Romano D, Tamborini L, Barbosa FG, Molinari F, Pinto A. Biocatalytic Approaches for an Efficient and Sustainable Preparation of Polyphenols and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13669-13681. [PMID: 34762407 DOI: 10.1021/acs.jafc.1c05088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many sectors of industry, such as food, cosmetics, nutraceuticals, and pharmaceuticals, have increased their interest in polyphenols due to their beneficial properties. These molecules are widely found in Nature (plants) and can be obtained through direct extraction from vegetable matrices. Polyphenols introduced through the diet may be metabolized in the human body via different biotransformations leading to compounds having different bioactivities. In this context, enzyme-catalyzed reactions are the most suitable approach to produce modified polyphenols that not only can be studied for their bioactivity but also can be labeled as green, natural products. This review aims to give an overview of the potential of biocatalysis as a powerful tool for the modification of polyphenols to enhance their bioaccessibility, bioavailability, biological activity or modification of their physicochemical properties. The main polyphenol transformations occurring during their metabolism in the human body have been also presented.
Collapse
Affiliation(s)
- Martina Letizia Contente
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Francesca Annunziata
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Pietro Cannazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Cecilia Pinna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Diego Romano
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Francisco Geraldo Barbosa
- Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Fortaleza-CE 60455-970, Brazil
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
18
|
Koh YC, Ho CT, Pan MH. Recent Advances in Health Benefits of Stilbenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10036-10057. [PMID: 34460268 DOI: 10.1021/acs.jafc.1c03699] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biological targeting or molecular targeting is the main strategy in drug development and disease prevention. However, the problem of "off-targets" cannot be neglected. Naturally derived drugs are preferred over synthetic compounds in pharmaceutical markets, and the main goals are high effectiveness, lower cost, and fewer side effects. Single-target drug binding may be the major cause of failure, as the pathogenesis of diseases is predominantly multifactorial. Naturally derived drugs are advantageous because they are expected to have multitarget effects, but not off-targets, in disease prevention or therapeutic actions. The capability of phytochemicals to modulate molecular signals in numerous diseases has been widely discussed. Among them, stilbenoids, especially resveratrol, have been well-studied, along with their potential molecular targets, including AMPK, Sirt1, NF-κB, PKC, Nrf2, and PPARs. The analogues of resveratrol, pterostilbene, and hydroxylated-pterostilbene may have similar, if not more, potential biological targeting effects compared with their original counterpart. Furthermore, new targets that have been discussed in recent studies are reviewed in this paper.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan 404
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, Taiwan 413
| |
Collapse
|
19
|
Jiang Y, Jin W, Li J, Huang Q. Associations between caseinophosphopeptides and theaflavin-3,3'-digallate and their impact on cellular antioxidant activity. Food Funct 2021; 12:7390-7401. [PMID: 34190287 DOI: 10.1039/d1fo01413g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Caseinophosphopeptides (CPPs) are a group of bioactive polypeptides hydrolyzed from caseins. Theaflavin-3,3'-digallate (TF-3) is a characteristic biofunctional polyphenol in black tea. In the present study, the interactions between CPPs and TF-3 were systematically investigated with fluorescence quenching, quartz crystal microbalance with dissipation monitoring (QCM-D), circular dichroism (CD), and small-angle X-ray scattering (SAXS). Both fluorescence quenching and QCM-D studies demonstrated that TF-3 interacted with CPPs primarily through hydrogen bonding. Other forces were also involved. The addition of TF-3 did not change the secondary structures and the radius of gyration of CPPs, but it induced the aggregation of CPPs. The size of the aggregates increased with the concentration of TF-3. The impact of the association between TF-3 and CPPs on the antioxidant activity of TF-3 was studied by the cellular antioxidant activity (CAA) assay, which revealed that the cellular antioxidant activity of TF-3 was enhanced after binding to CPPs.
Collapse
Affiliation(s)
- Yike Jiang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA
| | | | | | | |
Collapse
|
20
|
Liu T, Liu M, Liu H, Ren Y, Zhao Y, Yan H, Wang Q, Zhang N, Ding Z, Wang Z. Co-encapsulation of (-)-epigallocatechin-3-gallate and piceatannol/oxyresveratrol in β-lactoglobulin: effect of ligand-protein binding on the antioxidant activity, stability, solubility and cytotoxicity. Food Funct 2021; 12:7126-7144. [PMID: 34180492 DOI: 10.1039/d1fo00481f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The co-encapsulation of multiple bioactive components in a carrier may produce synergistic effects and improve health benefits. In this study, the interactions of β-lactoglobulin (β-LG) with epigallocatechin-3-gallate (EGCG) and/or piceatannol (PIC)/oxyresveratrol (OXY) were investigated by multispectroscopic techniques, isothermal titration calorimetry, and molecular docking. The static quenching mechanism of β-LG by EGCG, PIC and OXY was confirmed by fluorescence spectroscopy and UV-vis absorption difference spectroscopy. The binding sites of these three polyphenols in β-LG were identified by site marking fluorescence experiments and molecular docking. The thermodynamic parameters of the β-LG + EGCG/PIC/OXY binary complex and β-LG + EGCG + PIC/OXY ternary complex were obtained from fluorescence data and used to analyze the main driving force for complex formation. The exothermic binding process was further confirmed by isothermal titration calorimetry. The α-helical content, particle size and morphology of free and ligand-bound β-LG were determined by circular dichroism spectroscopy, dynamic light scattering and transmission electron microscopy, respectively. The effect of EGCG, PIC and OXY on the conformation of β-LG was studied by Fourier transform infrared spectroscopy. In addition, the maximum synergistic antioxidant activity between EGCG and PIC/OXY was obtained by response surface analysis. The effects of β-LG in the binary and ternary systems on the antioxidant activity, stability, solubility and cytotoxicity of the polyphenols were also studied. Finally, the different cytotoxicities of the complexes and nanoparticles of the binary and ternary systems were compared. The results of this study are expected to provide a theoretical basis for the development of β-LG-based carriers co-encapsulating a variety of bioactive components.
Collapse
Affiliation(s)
- Tingting Liu
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cao H, Saroglu O, Karadag A, Diaconeasa Z, Zoccatelli G, Conte‐Junior CA, Gonzalez‐Aguilar GA, Ou J, Bai W, Zamarioli CM, de Freitas LAP, Shpigelman A, Campelo PH, Capanoglu E, Hii CL, Jafari SM, Qi Y, Liao P, Wang M, Zou L, Bourke P, Simal‐Gandara J, Xiao J. Available technologies on improving the stability of polyphenols in food processing. FOOD FRONTIERS 2021; 2:109-139. [DOI: 10.1002/fft2.65] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractPolyphenols are the most important phytochemicals in our diets and have received great attention due to their broad benefits for human health by suppressing oxidative stress and playing a protective role in preventing different pathologies such as cardiovascular disease, cancer, diabetes, and obesity. The stability of polyphenols depends on their environments of processing and storage, such as pH and temperature. A wide range of technologies has been developed to stabilize polyphenols during processing. This review will provide an overview of the stability of polyphenols in relation to their structure, the factors impacting the stability of polyphenols, the new products deriving from unstable polyphenols, and the effect of a series of technologies for the stabilization of polyphenols, such as chemical modification, nanotechnology, lyophilization, encapsulation, cold plasma treatment, polyphenol–protein interaction, and emulsion as a means of improving stability. Finally, the effects of cooking and storage on the stability of polyphenols were discussed.
Collapse
Affiliation(s)
- Hui Cao
- College of Food Science and Technology Guangdong Ocean University Zhanjiang Guangdong China
| | - Oznur Saroglu
- Food Engineering Department Yıldız Technical University Istanbul Turkey
| | - Ayse Karadag
- Food Engineering Department Yıldız Technical University Istanbul Turkey
| | - Zoriţa Diaconeasa
- Faculty of Food Science and Technology University of Agricultural Science and Veterinary Medicine Cluj‐Napoca Cluj‐Napoca Romania
| | | | - Carlos Adam Conte‐Junior
- Laboratory of Advanced Analyses in Biochemistry and Molecular Biology (LAABBM) Department of Biochemistry Institute of Chemistry Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Gustavo A. Gonzalez‐Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal Centro de Investigación en Alimentación y Desarrollo A. C. Hermosillo Mexico
| | - Juanying Ou
- Institute of Food Safety and Nutrition Jinan University Guangzhou China
| | - Weibin Bai
- Institute of Food Safety and Nutrition Jinan University Guangzhou China
| | - Cristina Mara Zamarioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Núcleo de Pesquisa em Produtos Naturais e Sintéticos – Universidade de São Paulo Ribeirão Preto Brazil
| | - Luis Alexandre Pedro de Freitas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Núcleo de Pesquisa em Produtos Naturais e Sintéticos – Universidade de São Paulo Ribeirão Preto Brazil
| | - Avi Shpigelman
- Faculty of Biotechnology and Food Engineering and Russell Berrie Nanotechnology Institute Technion – Israel Institute of Technology Haifa Israel
| | - Pedro H. Campelo
- School of Agrarian Science Federal University of Amazonas Manaus Brazil
| | - Esra Capanoglu
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering İstanbul Technical University Istanbul Turkey
| | - Ching Lik Hii
- Faculty of Science and Engineering University of Nottingham Malaysia Semenyih Malaysia
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology Gorgan University of Agricultural Science and Natural Resources Gorgan Iran
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute Purdue University West Lafayette Indiana USA
| | - Pan Liao
- Department of Biochemistry Purdue University West Lafayette Indiana USA
| | - Mingfu Wang
- School of Biological Sciences The University of Hong Kong Pokfulam Road Hong Kong
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu China
| | - Paula Bourke
- Plasma Research Group, School of Biosystems and Food Engineering University College Dublin Dublin Ireland
- School of Biological Sciences Institute for Global Food Security Queens University Belfast Belfast UK
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science Faculty of Food Science and Technology University of Vigo – Ourense Campus Ourense Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science Faculty of Food Science and Technology University of Vigo – Ourense Campus Ourense Spain
| |
Collapse
|
22
|
The synergistic effect of high pressure processing and pectin on the physicochemical stability and antioxidant properties of biopolymer complexes composed of soy protein and coumarin. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Li Y, He D, Li B, Lund MN, Xing Y, Wang Y, Li F, Cao X, Liu Y, Chen X, Yu J, Zhu J, Zhang M, Wang Q, Zhang Y, Li B, Wang J, Xing X, Li L. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Flavonoids-Macromolecules Interactions in Human Diseases with Focus on Alzheimer, Atherosclerosis and Cancer. Antioxidants (Basel) 2021; 10:antiox10030423. [PMID: 33802084 PMCID: PMC7999194 DOI: 10.3390/antiox10030423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Flavonoids, a class of polyphenols, consumed daily in our diet, are associated with a reduced risk for oxidative stress (OS)-related chronic diseases, such as cardiovascular disease, neurodegenerative diseases, cancer, and inflammation. The involvement of flavonoids with OS-related chronic diseases have been traditionally attributed to their antioxidant activity. However, evidence from recent studies indicate that flavonoids' beneficial impact may be assigned to their interaction with cellular macromolecules, rather than exerting a direct antioxidant effect. This review provides an overview of the recent evolving research on interactions between the flavonoids and lipoproteins, proteins, chromatin, DNA, and cell-signaling molecules that are involved in the OS-related chronic diseases; it focuses on the mechanisms by which flavonoids attenuate the development of the aforementioned chronic diseases via direct and indirect effects on gene expression and cellular functions. The current review summarizes data from the literature and from our recent research and then compares specific flavonoids' interactions with their targets, focusing on flavonoid structure-activity relationships. In addition, the various methods of evaluating flavonoid-protein and flavonoid-DNA interactions are presented. Our aim is to shed light on flavonoids action in the body, beyond their well-established, direct antioxidant activity, and to provide insights into the mechanisms by which these small molecules, consumed daily, influence cellular functions.
Collapse
|
25
|
Miao L, Xu Y, Jia C, Zhang B, Niu M, Zhao S. Structural changes of rice starch and activity inhibition of starch digestive enzymes by anthocyanins retarded starch digestibility. Carbohydr Polym 2021; 261:117841. [PMID: 33766339 DOI: 10.1016/j.carbpol.2021.117841] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/21/2023]
Abstract
The effects of anthocyanins on in vitro and in vivo digestibility of rice starch were evaluated in this study. Then, the effects of anthocyanins on physicochemical properties of rice starch and on starch digestive enzymes (α-amylase and α-glucosidase) were investigated to understand the mechanism of the effects of anthocyanins on starch digestibility. Characterization of physicochemical properties of rice starch indicates a structural change due to the presence of anthocyanins, hindering its access to starch digestive enzymes. Besides, anthocyanins inhibited the activities of starch digestive enzymes by binding to their active sites, competing with the substrates and changing the secondary structure of the enzymes. The above stated changes of rice starch and starch digestive enzymes due to the presence of anthocyanins both contributed to retarding the digestibility of rice starch. This study could offer some theoretical guidance to the development of new type rice-based food with low glycemic index.
Collapse
Affiliation(s)
- Lange Miao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China.
| | - Yan Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China.
| | - Caihua Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China.
| | - Binjia Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China.
| | - Meng Niu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China.
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China.
| |
Collapse
|
26
|
Pecyna P, Wargula J, Murias M, Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020; 10:E1111. [PMID: 32726968 PMCID: PMC7465418 DOI: 10.3390/biom10081111] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
Affiliation(s)
- Paulina Pecyna
- Department of Genetics and Pharmaceutical Microbiology, University of Medical Sciences, Swiecickiego 4 Street, 60-781 Poznan, Poland;
| | - Joanna Wargula
- Department of Organic Chemistry, University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland;
| | - Marek Murias
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| | - Malgorzata Kucinska
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| |
Collapse
|
27
|
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
|
28
|
Wang D, Jiang Y, Sun-Waterhouse DX, Zhai H, Guan H, Rong X, Li F, Yu JC, Li DP. MicroRNA-based regulatory mechanisms underlying the synergistic antioxidant action of quercetin and catechin in H 2O 2-stimulated HepG2 cells: Roles of BACH1 in Nrf2-dependent pathways. Free Radic Biol Med 2020; 153:122-131. [PMID: 32344103 DOI: 10.1016/j.freeradbiomed.2020.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022]
Abstract
The microRNA-based mechanisms underlying the antioxidant action(s) of co-existing flavonoids in response to oxidative stress are of high interest. This study aimed to extend the existing knowledge and provide insights into the potential regulatory network in response to oxidative stress and the co-presence of quercetin and catechin antioxidants, via a preclinical approach using H2O2-stimulated HepG2 cells. It was confirmed that BACH1 serves as an essential and direct negative regulator of the Keap1-Nrf2 signaling pathway and the antioxidant synergism between quercetin and catechin. BACH1 promoted reactive oxygen species (ROS) accumulation while inhibiting cell growth, which could be reversed by the synergistic action of let-7a-5p and miR-25-3p in the co-presence of quercetin and catechin. Both let-7a-5p and miR-25-3p could directly regulate the expression and function of BACH1 (e.g. upregulation of the two miRNAs could rescue largely overexpression of BACH1). Although these molecular interactions likely represented only some aspects of the overall regulatory network, this research confirms the feasibility of the combined uses of dietary flavonoids with chemopreventive properties in synergy during multiple-target interactions and multiple-pathway regulation.
Collapse
Affiliation(s)
- Dan Wang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China; Shandong Institute of Pomology, Taian, PR China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China
| | - Dong-Xiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China; School of Chemical Sciences, The University of Auckland, New Zealand
| | - Hao Zhai
- Shandong Institute of Pomology, Taian, PR China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China
| | - Xue Rong
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China
| | - Jia-Cheng Yu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China
| | - Da-Peng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China.
| |
Collapse
|
29
|
Cheng J, Zhu M, Liu X. Insight into the conformational and functional properties of myofibrillar protein modified by mulberry polyphenols. Food Chem 2020; 308:125592. [DOI: 10.1016/j.foodchem.2019.125592] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
|
30
|
Molecular insight on the binding of monascin to bovine serum albumin (BSA) and its effect on antioxidant characteristics of monascin. Food Chem 2020; 315:126228. [PMID: 31991257 DOI: 10.1016/j.foodchem.2020.126228] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 11/21/2022]
Abstract
Monascin (MS) is a yellow lipid-soluble azaphilonoid pigment identified from Monascus-fermented products with promising biological activities. This work studied interactions between MS and bovine serum albumin (BSA) as well as their influences on the antioxidant activity of MS. Experimental results demonstrated that the fluorescence emission of BSA was quenched by MS via static quenching mechanism and the formed BSA-MS complex was mainly maintained by hydrophobic and hydrogen bond interactions. Meanwhile, the probable binding pocket of MS located near site I of BSA and the corresponding conformational and structural alterations of BSA were determined. Furthermore, the molecular modeling approach was performed to understand the visual representation of binding mode between BSA and MS. It was noticeable that the BSA-MS complex exhibited reduced DPPH radical-scavenging ability, which might be attributed to the restraining effect of BSA on the relevant reaction pathways involved in antioxidation by MS.
Collapse
|
31
|
Dai T, Li R, Liu C, Liu W, Li T, Chen J, Kharat M, McClements DJ. Effect of rice glutelin-resveratrol interactions on the formation and stability of emulsions: A multiphotonic spectroscopy and molecular docking study. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105234] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Rezende JDP, Hudson EA, De Paula HMC, Meinel RS, Da Silva AD, Da Silva LHM, Pires ACDS. Human serum albumin-resveratrol complex formation: Effect of the phenolic chemical structure on the kinetic and thermodynamic parameters of the interactions. Food Chem 2019; 307:125514. [PMID: 31639576 DOI: 10.1016/j.foodchem.2019.125514] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
The thermodynamics and kinetics of binding between human serum albumin (HSA) and resveratrol (RES) or its analog (RESAn1) were investigated by surface plasmon resonance (SPR). The binding constant and the kinetic constants of association and dissociation indicated that RESAn1 has higher affinity toward HSA than does RES. The formation of these complexes was entropically driven ( [Formula: see text] , [Formula: see text] KJ mol-1). However, for both polyphenols, the activation energy (Eact) of association (a) of free molecules was higher than that for dissociation (d) of the stable complex ( [Formula: see text] KJ mol-1), and the rate of association was faster than that of dissociation since the activation Gibbs free energy (ΔG‡) was lower for the former (ΔGaHSA-RES‡≅54.73,ΔGdHSA-RES‡≅73.83,ΔGaHSA-RESAn1‡≅54.14,ΔGdHSA-RESAn1‡≅73.97 KJ mol-1). This study showed that small differences in the structure of polyphenols such as RES and RESAn1 influenced the thermodynamics and kinetics of the complex formation with HSA.
Collapse
Affiliation(s)
- Jaqueline de Paula Rezende
- Applied Molecular Thermodynamics Group (THERMA), Department of Food Technology, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil
| | - Eliara Acipreste Hudson
- Applied Molecular Thermodynamics Group (THERMA), Department of Food Technology, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil
| | - Hauster Maximiler Campos De Paula
- Colloidal and Macromolecular Green Chemistry Group (QUIVECOM), Department of Chemistry, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil
| | - Raissa Soares Meinel
- Department of Chemistry, Institute of Exact Sciences (I.C.E.), Federal University of Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Adilson David Da Silva
- Department of Chemistry, Institute of Exact Sciences (I.C.E.), Federal University of Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Luis Henrique Mendes Da Silva
- Colloidal and Macromolecular Green Chemistry Group (QUIVECOM), Department of Chemistry, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil.
| | - Ana Clarissa Dos Santos Pires
- Applied Molecular Thermodynamics Group (THERMA), Department of Food Technology, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil.
| |
Collapse
|
33
|
Leláková V, Šmejkal K, Jakubczyk K, Veselý O, Landa P, Václavík J, Bobáľ P, Pížová H, Temml V, Steinacher T, Schuster D, Granica S, Hanáková Z, Hošek J. Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. Food Chem 2019; 285:431-440. [PMID: 30797367 DOI: 10.1016/j.foodchem.2019.01.128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/07/2018] [Accepted: 01/25/2019] [Indexed: 12/25/2022]
Abstract
Stilbenoids represent a large group of bioactive compounds, which occur in food and medicinal plants. Twenty-five stilbenoids were screened in vitro for their ability to inhibit COX-1, COX-2 and 5-LOX. Piceatannol and pinostilbene showed activity comparable to the zileuton and ibuprofen, respectively. The anti-inflammatory potential of stilbenoids was further evaluated using THP-1 human monocytic leukemia cell line. Tests of the cytotoxicity on the THP-1 and HCT116 cell lines showed very low toxic effects. The tested stilbenoids were evaluated for their ability to attenuate the LPS-stimulated activation of NF-κB/AP-1. Most of the tested substances reduced the activity of NF-κB/AP-1 and later attenuated the expression of TNF-α. The effects of selected stilbenoids were further investigated on inflammatory signaling pathways. Non-prenylated stilbenoids regulated attenuation of NF-ĸB/AP-1 activity upstream by inhibiting the phosphorylation of MAPKs. A docking study used to in silico analyze the tested compounds confirmed their interaction with NF-ĸB, COX-2 and 5-LOX.
Collapse
Affiliation(s)
- Veronika Leláková
- Department of Natural Drugs, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic; Department of Molecular Biology and Pharmaceutical Biotechnology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic.
| | - Karolina Jakubczyk
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Ondřej Veselý
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka129, 165 21 Prague 6 - Suchdol, Czech Republic
| | - Přemysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Jiří Václavík
- Department of Natural Drugs, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic
| | - Pavel Bobáľ
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic
| | - Hana Pížová
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic
| | - Veronika Temml
- Department of Pharmacy/Pharmacognosy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Theresa Steinacher
- Department of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Zuzana Hanáková
- Department of Natural Drugs, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic
| | - Jan Hošek
- Department of Molecular Biology and Pharmaceutical Biotechnology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242 Brno, Czech Republic
| |
Collapse
|
34
|
Huang X, Liu M, Liu X, Liu Q, Chen X. Polyethyleneimine Functionalized Multi-walled Carbon Nanotubes-Based Solid Phase Extraction for Selective Screening of Carboxylic Acid Compounds in Natural Products. Chromatographia 2019. [DOI: 10.1007/s10337-019-03737-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Tan H, Chen L, Ma L, Liu S, Zhou H, Zhang Y, Guo T, Liu W, Dai H, Yu Y. Fluorescence Spectroscopic Investigation of Competitive Interactions between Quercetin and Aflatoxin B₁ for Binding to Human Serum Albumin. Toxins (Basel) 2019; 11:toxins11040214. [PMID: 30970656 PMCID: PMC6521043 DOI: 10.3390/toxins11040214] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/06/2023] Open
Abstract
Aflatoxin B1 (AFB₁) is a highly toxic mycotoxin found worldwide in cereals, food, and animal feeds. AFB₁ binds to human serum albumin (HSA) with high affinity. In previous experiments, it has been revealed that reducing the binding rate of AFB₁ with HSA could speed up the elimination rate of AFB₁. Therefore, we examined the ability of quercetin to compete with AFB₁ for binding HSA by fluorescence spectroscopy, synchronous spectroscopy, ultrafiltration studies, etc. It was shown that AFB₁ and quercetin bind to HSA in the same Sudlow site Ӏ (subdomain IIA), and the binding constant (Ka) of the quercetin-HSA complex is significantly stronger than the complex of AFB₁-HSA. Our data in this experiment showed that quercetin is able to remove the AFB₁ from HSA and reduce its bound fraction. This exploratory work may be of significance for studies in the future regarding decreasing its bound fraction and then increasing its elimination rate for detoxification. This exploratory study may initiate future epidemiological research designs to obtain further in vivo evidence of the long-term (potential protective) effects of competing substances on human patients.
Collapse
Affiliation(s)
- Hongxia Tan
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Lu Chen
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China.
- Biological Science Research Center, Southwest University, Chongqing 400715, China.
| | - Shuang Liu
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China.
- Biological Science Research Center, Southwest University, Chongqing 400715, China.
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Wei Liu
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Yong Yu
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
36
|
Chen G, Wang S, Feng B, Jiang B, Miao M. Interaction between soybean protein and tea polyphenols under high pressure. Food Chem 2019; 277:632-638. [PMID: 30502197 DOI: 10.1016/j.foodchem.2018.11.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/29/2018] [Accepted: 11/04/2018] [Indexed: 11/23/2022]
Abstract
Tea polyphenols (TP) and soybean proteins (SP) are important materials in food industry. High hydrostatic pressure (HHP) is a useful tool for improvement of protein's function. This study evaluated the interactions between the polyphenol and HHP-treated protein using circular dichroism, fluorescence spectroscopy and molecular modeling. The high pressure at 400 MPa significantly modified the secondary structure of SP by increasing the β-sheet content and decreasing the α-helix content, while the addition of 0.1% (w/v) tea ployphenol appeared to protect the α-helix structure. The surface hydrophobicity decreased with HHP treatment and the addition of TP. The optimal solubility of native SP was 0.258 g/mL at 0.08% (w/v) TP. Together with HHP treatment; TP increased the protein solubility to 0.50 g/mL and the emulsifying activity was enhanced approximately three times, up to 43.5%. The micro-texture of SP matrix was also improved with TP and HHP treatment. Both the hydrogen bonding and hydrophobic interaction between TP and SP were elucidated using docking method. Apart from the hydrogen bonding, the Pi-Pi interaction was observed in the binding of phenolic compounds to 7S or 11S globular protein.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China; School of Food Science and Technology, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, PR China
| | - Shuting Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
37
|
Zhang H, Zhang T, Wang Y. Mechanistic understanding and binding analysis of two-dimensional MoS 2 nanosheets with human serum albumin by the biochemical and biophysical approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:18-25. [PMID: 30502580 DOI: 10.1016/j.saa.2018.11.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
With the advent of molybdenum disulfide nanosheets (MoS2 NSs) for biological applications, their complex interactions with human serum albumin (HSA) need to be understood in great detail for the molecular mechanisms of protein structure and activity. It was observed that MoS2 NSs quench the intrinsic fluorescence of HSA as a consequence of ground-state complex formation by the electron transfer, van der Waals, and hydrophobic forces. The presence of MoS2 NSs partly altered the conformation of HSA and destroyed the binding domain of HSA with bilirubin. In addition, MoS2 NSs can decrease the rate of the formation of beta sheet structures of HSA, reduce the non-enzymatic glycosylation, and increase the esterase-like activity of HSA. We hope that the present study will be helpful to understand the fundamental interactions of the two-dimensional materials with various biomacromolecules in human blood.
Collapse
Affiliation(s)
- Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224007, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Tingting Zhang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224007, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| |
Collapse
|
38
|
Kozłowska J, Grela E, Baczyńska D, Grabowiecka A, Anioł M. Novel O-alkyl Derivatives of Naringenin and Their Oximes with Antimicrobial and Anticancer Activity. Molecules 2019; 24:molecules24040679. [PMID: 30769816 PMCID: PMC6413393 DOI: 10.3390/molecules24040679] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 11/16/2022] Open
Abstract
In our investigation, we concentrated on naringenin (NG)—a widely studied flavanone that occurs in citrus fruits. As a result of a reaction with a range of alkyl iodides, 7 novel O-alkyl derivatives of naringenin (7a–11a, 13a, 17a) were obtained. Another chemical modification led to 9 oximes of O-alkyl naringenin derivatives (7b–13b, 16b–17b) that were never described before. The obtained compounds were evaluated for their potential antibacterial activity against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The results were reported as the standard minimal inhibitory concentration (MIC) values and compared with naringenin and its known O-alkyl derivatives. Compounds 4a, 10a, 12a, 14a, 4b, 10b, 11b, and 14b were described with MIC of 25 µg/mL or lower. The strongest bacteriostatic activity was observed for 7-O-butylnaringenin (12a) against S. aureus (MIC = 6.25 µg/mL). Moreover, the antitumor effect of flavonoids was examined on human colon cancer cell line HT-29. Twenty-six compounds were characterized as possessing an antiproliferative activity stronger than that of naringenin. The replacement of the carbonyl group with an oxime moiety significantly increased the anticancer properties. The IC50 values below 5 µg/mL were demonstrated for four oxime derivatives (8b, 11b, 13b and 16b).
Collapse
Affiliation(s)
- Joanna Kozłowska
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Ewa Grela
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| | - Agnieszka Grabowiecka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Mirosław Anioł
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
39
|
Chen Z, Wang C, Gao X, Chen Y, Kumar Santhanam R, Wang C, Xu L, Chen H. Interaction characterization of preheated soy protein isolate with cyanidin-3-O-glucoside and their effects on the stability of black soybean seed coat anthocyanins extracts. Food Chem 2019; 271:266-273. [PMID: 30236676 DOI: 10.1016/j.foodchem.2018.07.170] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 01/05/2023]
Abstract
The interactions of soy protein isolate with cyanidin-3-O-glucoside were investigated to study the protective effect of protein on anthocyanin's stability by UV-Vis spectrophotometry, Fourier transform infrared spectroscopy, circular dichroism and fluorescence spectroscopy. Preheat treatment and binding of cyanidin-3-O-glucoside effectively changed the secondary structure of soy protein isolate, with a decrease in α-helix, random coil structure and an increase in β-sheet and β-turn. The soy protein isolate preheated at 121 °C exhibited a strong binding affinity towards cyanidin-3-O-glucoside with strong Ks of 147.40 × 104 M-1 and also effectively increased the thermal and oxidation stabilities of black soybean seed coat extract via decreasing the degradation rate by 67% and 23%, respectively. Soy protein isolate interacted with cyanidin-3-O-glucoside mainly through hydrophobic interactions and static quenching process. Altogether, the results suggested that preheated soy protein isolate-cyanidin-3-O-glucoside interaction could effectively protect anthocyanins' stability through strong binding affinity influenced by the systematic alterations in the secondary structure.
Collapse
Affiliation(s)
- Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Cong Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ramesh Kumar Santhanam
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Chunli Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Leilei Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
40
|
Luca SV, Macovei I, Bujor A, Miron A, Skalicka-Woźniak K, Aprotosoaie AC, Trifan A. Bioactivity of dietary polyphenols: The role of metabolites. Crit Rev Food Sci Nutr 2019; 60:626-659. [PMID: 30614249 DOI: 10.1080/10408398.2018.1546669] [Citation(s) in RCA: 396] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A polyphenol-rich diet protects against chronic pathologies by modulating numerous physiological processes, such as cellular redox potential, enzymatic activity, cell proliferation and signaling transduction pathways. However, polyphenols have a low oral bioavailability mainly due to an extensive biotransformation mediated by phase I and phase II reactions in enterocytes and liver but also by gut microbiota. Despite low oral bioavailability, most polyphenols proved significant biological effects which brought into attention the low bioavailability/high bioactivity paradox. In recent years, polyphenol metabolites have attracted great interest as many of them showed similar or higher intrinsic biological effects in comparison to the parent compounds. There is a huge body of literature reporting on the biological functions of polyphenol metabolites generated by phase I and phase II metabolic reactions and gut microbiota-mediated biotransformation. In this respect, the review highlights the pharmacokinetic fate of the major dietary polyphenols (resveratrol, curcumin, quercetin, rutin, genistein, daidzein, ellagitannins, proanthocyanidins) in order to further address the efficacy of biometabolites as compared to parent molecules. The present work strongly supports the contribution of metabolites to the health benefits of polyphenols, thus offering a better perspective in understanding the role played by dietary polyphenols in human health.
Collapse
Affiliation(s)
- Simon Vlad Luca
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania.,Department of Pharmacognosy with Medicinal Plant Unit, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Lublin, Poland
| | - Irina Macovei
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Alexandra Bujor
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Anca Miron
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plant Unit, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Lublin, Poland
| | - Ana Clara Aprotosoaie
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Adriana Trifan
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| |
Collapse
|
41
|
Wang Q, Cao J, Yu H, Zhang J, Yuan Y, Shen X, Li C. The effects of EGCG on the mechanical, bioactivities, cross-linking and release properties of gelatin film. Food Chem 2019; 271:204-210. [DOI: 10.1016/j.foodchem.2018.07.168] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 01/14/2023]
|
42
|
Influence of Bovine Serum Albumin-Flavonoid Interaction on the Antioxidant Activity of Dietary Flavonoids: New Evidence from Electrochemical Quantification. Molecules 2018; 24:molecules24010070. [PMID: 30585235 PMCID: PMC6337117 DOI: 10.3390/molecules24010070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 01/13/2023] Open
Abstract
Interaction between dietary flavonoids and albumins plays an important role in the bioavailability and bioactivity of flavonoids. Therefore, the influence of this interaction on the antioxidant activity of flavonoid has attracted much interest. In this study, a ceric reducing/antioxidant capacity assay (CRAC) was employed to investigate the effects of albumin-flavonoid interaction on the antioxidant activity of seven common flavonoids. The results obtained from the CRAC assay were also compared separately with the results from the spectrophotometric methods including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. All the flavonoids show a decreasing in the antioxidant activity detected by CRAC assay, indicting a "masking effect" of bovine serum albumin (BSA)-flavonoid interaction. However, the results from DPPH and FRAP assays were conflicting, which may be attributed to the influence of solvent systems.
Collapse
|
43
|
Liu M, Tang F, Liu Q, Xiao J, Cao H, Chen X. Inhibition of resveratrol glucosides (REs) on advanced glycation endproducts (AGEs) formation: inhibitory mechanism and structure-activity relationship. Nat Prod Res 2018; 34:2490-2494. [PMID: 30582367 DOI: 10.1080/14786419.2018.1538224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The study on inhibitory effects of resveratrol glucosides (REs) on advanced glycation endproducts (AGEs) formation is still unmet. Herein, for the first time, the antiglycation activities of five REs in the fetal bovine serum proteins (FBS)/fructose system were evaluated, and its structure-activity relationship and antiglycation mechanism were further explored. These REs showed remarkable inhibition toward AGEs formation. Among them, Piceatannol-3'-O-glucoside (PG) exhibited highest antiglycation activity as reflected in approximately 80% inhibition of fluorescent AGEs at the concentration of 1.0 mM. The structure-activity relationship analysis indicated that glucoside attached to the B ring of resveratrol displays a superior antiglycation activity. Moreover, the results of antiglycation mechanism showed that the antiglycation activity of REs was proportional to their antioxidant capacity and methylglyoxal (MGO) trapping capacity. Therefore, the REs are promising candidates worthy of further exploration for preventing AGEs accumulation in vivo, thereby treating AGEs-associated diseases.
Collapse
Affiliation(s)
- Minzhuo Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Fen Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Hui Cao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
| |
Collapse
|
44
|
Zakova T, Rondevaldova J, Bernardos A, Landa P, Kokoska L. The relationship between structure and in vitro antistaphylococcal effect of plant-derived stilbenes. Acta Microbiol Immunol Hung 2018; 65:467-476. [PMID: 30203690 DOI: 10.1556/030.65.2018.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus is a major human pathogen that is responsible for both hospital- and community-acquired infections. Stilbenes are polyphenol compounds of plant origin known to possess a variety of pharmacological properties, such as antibacterial, antiviral, and antifungal effects. This study reports the in vitro growth-inhibitory potential of eight naturally occurring stilbenes against six standard strains and two clinical isolates of S. aureus, using a broth microdilution method, and expressing the results as minimum inhibitory concentrations (MICs). Pterostilbene (MICs = 32-128 μg/ml), piceatannol (MICs = 64-256 μg/ml), and pinostilbene (MICs = 128 μg/ml) are among the active compounds that possess the strongest activity against all microorganisms tested, followed by 3'-hydroxypterostilbene, isorhapontigenin, oxyresveratrol, and rhapontigenin with MICs 128-256 μg/ml. Resveratrol (MIC = 256 μg/ml) exhibited only weak inhibitory effect. Furthermore, structure-activity relationships were studied. Hydroxyl groups at ortho-position (B-3' and -4') played crucial roles for the inhibitory effect of hydroxystilbene piceatannol. Compounds with methoxy groups at ring A (3'-hydroxypterostilbene, pinostilbene, and pterostilbene) produced stronger effect against S. aureus than their analogues (isorhapontigenin and rhapontigenin) with methoxy groups at ring B. These findings provide arguments for further investigation of stilbenes as prospective leading structures for development of novel antistaphylococcal agents for topical treatment of skin infections.
Collapse
Affiliation(s)
- Tereza Zakova
- 1 Faculty of Tropical AgriSciences, Department of Crop Sciences and Agroforestry, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Johana Rondevaldova
- 1 Faculty of Tropical AgriSciences, Department of Crop Sciences and Agroforestry, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Andrea Bernardos
- 2 Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Premysl Landa
- 3 Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, Prague, Czech Republic
| | - Ladislav Kokoska
- 1 Faculty of Tropical AgriSciences, Department of Crop Sciences and Agroforestry, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
45
|
Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation. Food Chem 2018; 279:223-230. [PMID: 30611484 DOI: 10.1016/j.foodchem.2018.11.025] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/26/2018] [Accepted: 11/04/2018] [Indexed: 11/21/2022]
Abstract
In this study, resveratrol was successfully encapsulated using zein-chitosan complex coacervation. The encapsulation efficiency was markedly improved (51.4%) after chitosan coating at 1:2.5 zein/chitosan ratio, compared with 38.6% using native zein. Analysis of multi-model frequency ultrasound treatment effects on resveratrol encapsulation using zein-chitosan complex coacervation showed that 28/40 kHz dual-frequency ultrasound led to the highest encapsulation efficiency (65.2%; 31.9% increase) and loading capacity (5.9%; 31.1% increase) of resveratrol, followed by multi-frequency ultrasound at 20/28/40 kHz (17.8% encapsulation efficiency increase; 17.8% loading capacity increase). Dual-frequency ultrasound treatment significantly reduced the zein-chitosan complex coacervation particle size and reduced their distribution, however, did not change the zeta potential. Fourier transform infrared spectroscopy and fluorescence spectroscopy analysis demonstrated that ultrasound treatment had no effect on secondary structure of zein-chitosan complex but markedly decreased the fluorescence emission intensity. Differential scanning calorimetry and X-ray diffraction results indicated that Dual-frequency ultrasound treatment improved the thermal stability of zein-chitosan complex coacervation but had no effect on the crystal structure. Atomic force microscopy and scanning electron microscopy images revealed uniform distribution of zein-chitosan complex coacervation followed by ultrasonic treatment.
Collapse
|
46
|
Gu Y, Wang Y, Zhang H. Study on the interactions between toxic nitroanilines and lysozyme by spectroscopic approaches and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 202:260-268. [PMID: 29793147 DOI: 10.1016/j.saa.2018.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/06/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Being exogenous environmental pollutants, nitroanilines (NAs) are highly toxic and have mutagenic and carcinogenic activity. Being lack of studies on interactions between NAs and lysozyme at molecular level, the binding interactions of lysozyme with o-nitroaniline (oNA), m-nitroaniline (mNA) and p-nitroaniline (pNA) were investigated by means of steady-state fluorescence, synchronous fluorescence, UV-vis absorption spectroscopy, as well as molecular modeling. The experimental results revealed that the fluorescence of lysozyme is quenched by oNA and mNA through a static quenching, while the fluorescence quenching triggered by pNA is a combined dynamic and static quenching. The number of binding sites (n) and the binding constant (Kb) corresponding thermodynamic parameters ΔH⊖, ΔS⊖, ΔG⊖ at different temperatures were calculated. The reactions between NAs and lysozyme were spontaneous and entropy driven and the binding of NAs to lysozyme induced conformation changes of lysozyme. The difference of the position of -NO2 group affected the binding and the binding constants Kb decreased in the following pattern: Kb (pNA) >Kb (mNA) >Kb (oNA). Molecular docking studies were performed to reveal the most favorable binding sites of NAs on lysozyme. Our recently results could offer mechanistic insights into the nature of the binding interactions between NAs and lysozyme and provide information about the toxicity risk of NAs to human health.
Collapse
Affiliation(s)
- Yunlan Gu
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| | - Yanqing Wang
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Hongmei Zhang
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| |
Collapse
|
47
|
Xiao J. Stability of dietary polyphenols: It's never too late to mend? Food Chem Toxicol 2018; 119:3-5. [PMID: 29626578 DOI: 10.1016/j.fct.2018.03.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 02/08/2023]
Abstract
We have comprehensively investigated the structure-stability relationship of natural polyphenols in DMEM medium without cells. Polyphenols with catechol or pyrogallol structure were evidently instable in DMEM medium without cells. Herein, we further investigate stability of polyphenols when incubated with cancer cells and its related mechanism. After incubated with SK-28 cells and A549 cells at 37 °C in 5% CO2 for 72 h, the new products of quercetin and 5,7,3',4'-tetrahydroxyflavone were found to quite different from different cells. It is time to investigate what really happened for polyphenols and the new products of polyphenols in cancer cells, as well as the related mechanism. It is very important to further check the bioactivity of these new products, which will avoid erroneous conclusions for what's the really bioactive compounds.
Collapse
Affiliation(s)
- Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau.
| |
Collapse
|
48
|
Cao H, Liu X, Ulrih NP, Sengupta PK, Xiao J. Plasma protein binding of dietary polyphenols to human serum albumin: A high performance affinity chromatography approach. Food Chem 2018; 270:257-263. [PMID: 30174044 DOI: 10.1016/j.foodchem.2018.07.111] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 02/08/2023]
Abstract
Herein, the protein binding rates of structurally different flavonoids to human serum albumin (HSA) were elucidated by applying the high performance affinity chromatography (HPAC). The flavonoids with hydroxyl groups on ring A showed a higher protein binding rate compared with those that there was no hydroxyl on ring A. However, the hydroxylation of ring B lowered the protein binding rate. It was also found that an additional methoxy group in flavone ring A would decrease the protein binding rate. Nevertheless, the methoxy group in flavanone ring A (position 6) and isoflavone ring B (position 4') increased the protein binding rate. Methoxy group at other positions of flavonoids slightly enhanced or no significantly affected the binding rates on human serum albumin. Hydrogenation of C2C3 double bond of flavonoids decreased the protein binding rate and had the same effect as glycosylation which decrease the protein binding rate by 5%-25%.
Collapse
Affiliation(s)
- Hui Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau
| | - Xiaojuan Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau
| | | | - Pradeep K Sengupta
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
49
|
Resveratrol Can Be Stable in a Medium Containing Fetal Bovine Serum with Pyruvate but Shortens the Lifespan of Human Fibroblastic Hs68 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2371734. [PMID: 29861826 PMCID: PMC5971351 DOI: 10.1155/2018/2371734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/22/2018] [Accepted: 04/22/2018] [Indexed: 11/29/2022]
Abstract
This study is aimed at developing a method that can inhibit resveratrol (Res) degradation in Dulbecco's modified Eagle medium (DMEM) and at evaluating the effects of Res on the replicative lifespan of Hs68 cells. We hypothesized that Res can extend the lifespan of Hs68 cells if we can inhibit the oxidative degradation of Res in the medium. We found that the addition of ≥5 U/mL SOD to the medium could completely inhibit Res degradation in DMEM. Fetal bovine serum (FBS) contained 29.3 ± 1.1 U/mL of SOD activity. FBS could prevent Res degradation in the medium through SOD activity and Res–FBS interaction, but the regular FBS concentration (i.e., 10% FBS) exhibited an insufficient ability to completely inhibit Res degradation. We found that pyruvate (1 mM) could potentiate SOD to scavenge superoxide at approximately 2.2-fold. Thus, 10% FBS combined with pyruvate (1 mM) could completely inhibit Res degradation. When Res was not degraded, it still shortened the lifespan of Hs68 cells. Overall, the proposed method involving 10% FBS combined with pyruvate (1 mM) could completely prevent Res degradation. However, in contrast to our hypothesis, Res could induce the shortening of the lifespan of Hs68 cells. The stability of Res analogs (i.e., oxy-Res and acetyl-Res) in the medium and their effects on the lifespan of Hs68 cells were also investigated.
Collapse
|
50
|
Zhang J, Zuo B, Poklar Ulrih N, Sengupta PK, Zheng X, Xiao J. Structure-affinity relationship of dietary anthocyanin–HSA interaction. JOURNAL OF BERRY RESEARCH 2018. [DOI: 10.3233/jbr-170167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND: Dietary anthocyanins are plant pigments which occur with different chemical structures, being widely present in fruits and in many vegetables, are claimed to be beneficial for human health. The bioavailability of anthocyanins is the key factor influencing their health benefits. OBJECTIVE: Herein, the molecular structure-affinity relationship of anthocyanin–human serum albumin interaction was investigated. METHODS: Fluorescence quenching method was applied to determine the binding affinities of anthocyanins for human serum albumin. RESULTS: Demethylation of the methoxyl groups in anthocyanins enhanced the binding affinities. The number and position of the hydroxyl groups on ring [B] affect the affinities of anthocyanins for human serum albumin. The glycosylation of hydroxyl groups on ring [C] enhanced their binding affinities for human serum albumin. CONCLUSIONS: Anthocyanidins and anthocyanins, show different characteristics for their binding to human serum albumin when the methoxyl groups on the ring B are demethylated or hydroxylated.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Benrong Zuo
- Department of Biology, Shanghai Normal University, Shanghai, China
| | | | - Pradeep K. Sengupta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|