1
|
Yu SS, Chu YL, Tung YC, Su ZY. Thermal Ageing of Black Garlic Enhances Cellular Antioxidant Potential Through the Activation of the Nrf2-Mediated Pathway. Food Technol Biotechnol 2025; 63:36-45. [PMID: 40322283 PMCID: PMC12044301 DOI: 10.17113/ftb.63.01.25.8474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/11/2025] [Indexed: 05/08/2025] Open
Abstract
Research background Oxidative stress plays a crucial role in different diseases, including chronic hepatitis, cirrhosis and liver cancer, which are a major cause of mortality worldwide. Liver cell injury resulting from oxidative stress contributes to the development of these diseases. Garlic is known for its diverse physiological activities, and black garlic, produced by thermal ageing of raw garlic, has attracted attention due to its biological properties. Experimental approach This study investigates the hepatoprotective potential of black garlic prepared in an electric cooker. The study includes mass loss, browning index, free amino acids, free-reducing sugar content, total phenolic compounds and DPPH radical scavenging activity. Additionally, the sensory evaluation shows a preference for the black garlic sample over raw garlic. The study also investigates the activation of Nrf2-ARE pathway in HepG2-C8 cells and evaluates the protective effect against H2O2-induced damage. Results and conclusions The results indicate that black garlic lost mass, possibly due to water loss and the Maillard reaction, which led to an increase in the browning index and a decrease in free amino acids. However, the content of free reducing sugars increased. After 14 and 21 days, the total phenolic content of black garlic increased and its ability to scavenge DPPH radicals improved. Significant activation of the Nrf2-ARE pathway was observed in HepG2-C8 cells. Sensory evaluation showed a preference for the 14-day aged black garlic. The Nrf2 pathway can be effectively activated in HepG2 cells by a 14-day aged black garlic extract, resulting in protection against H2O2-induced damage. Novelty and scientific contribution Our research shows the significant effect of thermal ageing on black garlic and highlights its enhanced antioxidant properties. A simple approach has been developed to prepare black garlic that is more effective, healthier and can potentially be used to protect the liver and treat diseases related to oxidative stress.
Collapse
Affiliation(s)
- Shan-Shan Yu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 320314, Taiwan, Republic of China
| | - Yung-Lin Chu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung County 912301, Taiwan, Republic of China
| | - Yen-Chen Tung
- Department of Food Science, National Ilan University, Yilan County 260007, Taiwan, Republic of China
| | - Zheng-Yuan Su
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 320314, Taiwan, Republic of China
| |
Collapse
|
2
|
Coelho VS, Aguiar LL, Grancieri M, Lourenço JMP, Braga DP, Saraiva SH, Costa AGV, Silva PI. Incorporation of microencapsulated polyphenols from jabuticaba peel (Plinia spp.) into a dairy drink: stability, in vitro bioaccessibility, and glycemic response. Food Res Int 2024; 189:114567. [PMID: 38876609 DOI: 10.1016/j.foodres.2024.114567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
This work incorporated bioactives extracted from jabuticaba peel in the form of concentrated extract (JBE) and microencapsulated powders with maltodextrin (MDP) and gum arabic (GAP) in a dairy drink, evaluating its stability, in vitro bioaccessibility, and glycemic response. We evaluated the pH, acidity, colorimetry, total phenolics and anthocyanins, antioxidant capacity, degradation kinetics and half-life of anthocyanins, bioaccessibility, and postprandial glycemic physicochemical characteristics response in healthy individuals. The drinks incorporated with polyphenols (JBE, GAP, and MDP) and the control dairy drink (CDD) maintained stable pH and acidity over 28 days. In color, the parameter a*, the most relevant to the study, was reduced for all formulations due to degradation of anthocyanins. Phenolic and antioxidant content remained constant. In bioaccessibility, we found that after the gastrointestinal simulation, there was a decrease in phenolics and anthocyanins in all formulations. In the glycemic response, we observed that the smallest incremental areas of glucose were obtained for GAP and JBE compared to CDD, demonstrating that polyphenols reduced glucose absorption. Then, the bioactives from jabuticaba peel, incorporated into a dairy drink, showed good storage stability and improved the product's functional aspects.
Collapse
Affiliation(s)
- Vinicius Serafim Coelho
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | - Lara Louzada Aguiar
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | - Mariana Grancieri
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | | | | | - Sergio Henriques Saraiva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Food Engineering Department, UFES, zip code: 29500-000, Alegre-ES, Brazil
| | - André Gustavo Vasconcelos Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Pharmacy and Nutrition Department, UFES, zip code: 29500-000, Alegre-ES, Brazil
| | - Pollyanna Ibrahim Silva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Food Engineering Department, UFES, zip code: 29500-000, Alegre-ES, Brazil.
| |
Collapse
|
3
|
Lian Y, Fu G, Liang X, He X, Xu J, Fan H, Wan Y. Combination of Artemisia selengensis Turcz leaves polysaccharides and dicaffeoylquinic acids could be a potential inhibitor for hyperuricemia. Int J Biol Macromol 2024; 271:132687. [PMID: 38806079 DOI: 10.1016/j.ijbiomac.2024.132687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Caffeioyl quinic acids and polysaccharides from Artemisia selengensis Turcz are considered potential bioactive substances for hyperuricemia (HUA) treatment. While the mechanism of multi-component combined intervention of polysaccharides and dicaffeoylquinic acids (diCQAs) is not yet clear. In this study, we investigated the effect of A. selengensis Turcz leaves polysaccharides (APS) on the HUA treatment with diCQAs in vitro by direct inhibition of XOD activities and in vivo by using animal model. The results showed that APS had almost no inhibitory effect on XOD activities in vitro, but the inhibitory activity of diCQAs on XOD was affected by changes in inhibition type and inhibition constant. Compared to APS and diCQAs alone, high-dose APS and diCQAs in combination (ADPSh) could significantly reduce the production of uric acid (16.38 % reduction compared to diCQAs group) and oxidative stress damage. Additionally, this combined therapy showed promise in restoring the gut microbiota balance and increasing the short-chain fatty acids levels. The results suggested that APS and diCQAs in combination could be a potential inhibitor for HUA treatment.
Collapse
Affiliation(s)
- Yingzhu Lian
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xinmei Liang
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xinchao He
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jin Xu
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Haowei Fan
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yin Wan
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
4
|
Liu T, Xie Q, Zhang M, Gu J, Huang D, Cao Q. Reclaiming Agriceuticals from Sweetpotato ( Ipomoea batatas [L.] Lam.) By-Products. Foods 2024; 13:1180. [PMID: 38672853 PMCID: PMC11049097 DOI: 10.3390/foods13081180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Sweetpotato (SP, Ipomoea batatas [L.] Lam.) is a globally significant food crop known for its high nutritional and functional values. Although the contents and compositions of bioactive constituents vary among SP varieties, sweetpotato by-products (SPBs), including aerial parts, storage root peels, and wastes generated from starch processing, are considered as excellent sources of polyphenols (e.g., chlorogenic acid, caffeoylquinic acid, and dicaffeoylquinic acid), lutein, functional carbohydrates (e.g., pectin, polysaccharides, and resin glycosides) or proteins (e.g., polyphenol oxidase, β-amylase, and sporamins). This review summarises the health benefits of these ingredients specifically derived from SPBs in vitro and/or in vivo, such as anti-obesity, anti-cancer, antioxidant, cardioprotective, and anti-diabetic, evidencing their potential to regenerate value-added bio-products in the fields of food and nutraceutical. Accordingly, conventional and novel technologies have been developed and sometimes combined for the pretreatment and extraction processes aimed at optimising the recovery efficiency of bioactive ingredients from SPBs while ensuring sustainability. However, so far, advanced extraction technologies have not been extensively applied for recovering bioactive compounds from SPBs except for SP leaves. Furthermore, the incorporation of reclaimed bioactive ingredients from SPBs into foods or other healthcare products remains limited. This review also briefly discusses current challenges faced by the SPB recycling industry while suggesting that more efforts should be made to facilitate the transition from scientific advances to commercialisation for reutilising and valorising SPBs.
Collapse
Affiliation(s)
- Tiange Liu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China; (M.Z.); (J.G.); (D.H.)
| | - Qingtong Xie
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore;
| | - Min Zhang
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China; (M.Z.); (J.G.); (D.H.)
| | - Jia Gu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China; (M.Z.); (J.G.); (D.H.)
| | - Dejian Huang
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China; (M.Z.); (J.G.); (D.H.)
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore;
| | - Qinghe Cao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China;
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China
| |
Collapse
|
5
|
Günal-Köroğlu D, Lorenzo JM, Capanoglu E. Plant-Based Protein-Phenolic Interactions: Effect on different matrices and in vitro gastrointestinal digestion. Food Res Int 2023; 173:113269. [PMID: 37803589 DOI: 10.1016/j.foodres.2023.113269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
This review summarizes the literature on the interaction between plant-based proteins and phenolics. The structure of the phenolic compound, the plant source of proteins, matrix properties (pH, temperature), and interaction mechanism (covalent and non-covalent) change the secondary structure, ζ-potential, surface hydrophobicity, and thermal stability of proteins as well as their functional properties including solubility, foaming, and emulsifying properties. Studies indicated that the foaming and emulsifying properties may be affected either positively or negatively according to the type and concentration of the phenolic compound. Protein digestibility, on the other hand, differs depending on (1) the phenolic concentration, (2) whether the food matrix is solid or liquid, and (3) the state of the food-whether it is heat-treated or prepared as a mixture without heat treatment in the presence of phenolics. This review comprehensively covers the effects of protein-phenolic interactions on the structure and properties of proteins, including functional properties and digestibility both in model systems and real food matrix.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia 4, Parque Tecnológico de Galicia, 32900 Ourense, Spain.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
6
|
Wang J, Wu W, Wang C, He S, Yu Z, Wu M, Wu Q. Application of carboxymethyl chitosan-based coating in fresh-cut apple preservation: Incorporation of guava leaf flavonoids and their noncovalent interaction study. Int J Biol Macromol 2023; 241:124668. [PMID: 37121413 DOI: 10.1016/j.ijbiomac.2023.124668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Carboxymethyl chitosan (CMCS) has antibacterial activity and coating-forming ability. Under the impact of noncovalent interactions, the bioactivity and functionality of CMCS may be positively affected by the coexistence of flavonoids. This study investigated the effect of a CMCS coating incorporated with flavonoids from guava (Psidium guajava L. cv. Carmine) leaf (GLF) on the refrigeration of fresh-cut apples for preservation. Compared with the CMCS group, apples treated with the CMCS-GLF coating showed better quality (weight loss, browning index, firmness), nutritional value (ascorbic acid and total phenolic content), and microbial safety during storage. The mechanism study indicated that the hydrogen bonding, electrostatic, and hydrophobic interactions between CMCS and GLF (the carboxymethyl moiety of CMCS had the highest response priority and binding strength of the interaction with -C-O of GLF) changed the surface charge distribution and microstructure of CMCS, and increased its molecular weight, particle size, viscosity, and hydrophobicity. Thus, the CMCS-GLF coating exerted better bioactivities (antibacterial and antioxidant activity), and its film showed better mechanical and barrier properties. These results revealed that the noncovalent interaction with GLF could modify the physiochemical properties of CMCS, which was beneficial to improve its bioactivity and application value in fresh fruit preservation.
Collapse
Affiliation(s)
- Jingyi Wang
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Wenjuan Wu
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Chao Wang
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Shumin He
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Zuwei Yu
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Muci Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qian Wu
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
7
|
Zhang Y, Zhu M, Lu W, Zhang C, Chen D, Shah NP, Xiao C. Optimizing Levilactobacillus brevis NPS-QW 145 Fermentation for Gamma-Aminobutyric Acid (GABA) Production in Soybean Sprout Yogurt-like Product. Foods 2023; 12:foods12050977. [PMID: 36900494 PMCID: PMC10000865 DOI: 10.3390/foods12050977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/02/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is a non-protein amino acid with various physiological functions. Levilactobacillus brevis NPS-QW 145 strains active in GABA catabolism and anabolism can be used as a microbial platform for GABA production. Soybean sprouts can be treated as a fermentation substrate for making functional products. This study demonstrated the benefits of using soybean sprouts as a medium to produce GABA by Levilactobacillus brevis NPS-QW 145 when monosodium glutamate (MSG) is the substrate. Based on this method, a GABA yield of up to 2.302 g L-1 was obtained with a soybean germination time of one day and fermentation of 48 h with bacteria using 10 g L-1 glucose according to the response surface methodology. Research revealed a powerful technique for producing GABA by fermentation with Levilactobacillus brevis NPS-QW 145 in foods and is expected to be widely used as a nutritional supplement for consumers.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Food Science, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Hangzhou 310021, China
- School of Biological Science, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Mengjiao Zhu
- School of Biological Science, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Wenjing Lu
- Institute of Food Science, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Hangzhou 310021, China
| | - Cen Zhang
- Institute of Food Science, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Hangzhou 310021, China
| | - Di Chen
- Institute of Food Science, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Hangzhou 310021, China
| | - Nagendra P. Shah
- School of Biological Science, The University of Hong Kong, Pokfulam Road, Hong Kong
- Correspondence: (N.P.S.); (C.X.)
| | - Chaogeng Xiao
- Institute of Food Science, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Hangzhou 310021, China
- Correspondence: (N.P.S.); (C.X.)
| |
Collapse
|
8
|
Rasera GB, de Camargo AC, de Castro RJS. Bioaccessibility of phenolic compounds using the standardized INFOGEST protocol: A narrative review. Compr Rev Food Sci Food Saf 2023; 22:260-286. [PMID: 36385735 DOI: 10.1111/1541-4337.13065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
The INFOGEST protocol creation was a watershed for phenolic bioaccessibility studies. Because of this important initiative to standardize bioaccessibility studies, data comparisons between different laboratories are now expedited. It has been eight years since the INFOGEST protocol creation, and three from the latest update. However, the current status in terms of phenolic bioaccessibility and how far different laboratories are from reaching a consensus are still unrevealed. In this sense, this narrative review considered an evaluation of different studies that applied the INFOGEST protocol to investigate the bioaccessibility of phenolic compounds. The central objective was to compile the main findings and consensus and to identify possible gaps and future opportunities. This approach intends to further facilitate the use of this protocol by professionals in the field of food science and technology and related areas, generating a reflection on the actual level of standardization of the method. Despite the differences in phenolic compounds from diverse food matrices, and their peculiar behavior, some trends could be elucidated, in terms of phenolic release, stability, and/or transformation upon in vivo digestion. In contrast, there was no general consensus regarding sample preparation, how to report results and the form to calculate bioaccessibility, making it difficult to compare different studies. There is still a long road to effectively standardize the results obtained for phenolic bioaccessibility using the INFOGEST protocol, which is also an opportunity in terms of food analysis that can impact the food industry, especially for the development of nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Gabriela Boscariol Rasera
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | | | | |
Collapse
|
9
|
do Carmo LB, Benincá DB, Grancieri M, Pereira LV, Lima Filho T, Saraiva SH, Silva PI, Oliveira DDS, Costa AGV. Green Coffee Extract Microencapsulated: Physicochemical Characteristics, Stability, Bioaccessibility, and Sensory Acceptability through Dairy Beverage Consumption. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13221. [PMID: 36293801 PMCID: PMC9603171 DOI: 10.3390/ijerph192013221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to investigate the effect of spray drying (SD) and freeze-drying (FD) on the microencapsulation of green coffee extracts by using polydextrose (PD) and inulin (IN) as encapsulating agents and their physicochemical, bioactive compounds' stability, phenolic compounds' bioaccessibility after digestion, and sensory effects in unfermented dairy beverages. The extract encapsulated with IN by FD had lower moisture content, water activity, and hygroscopicity, while particles encapsulated by SD exhibited a spherical shape and the structure of the FD products was irregular. No difference was observed in phenolic compounds' bioaccessibility. Dairy beverages with added encapsulated extracts had higher total phenolic content and antioxidant activity. Microencapsulation allowed a controlled release of the bioactive compounds with an increase in the content of caffeine, chlorogenic acid, and trigonelline during storage. The dairy beverage with added extract encapsulated with IN by FD had the highest scores of acceptability regarding the overall impression and purchase intent.
Collapse
Affiliation(s)
- Laísa Bernabé do Carmo
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
| | - Daiane Bonizioli Benincá
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
| | - Mariana Grancieri
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
- Centre of Exact, Natural and Health Sciences, Department of Pharmacy and Nutrition, Federal University of Espirito Santo, Alto Universitário, Guararema, Alegre 29500-000, ES, Brazil
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Lucélia Vieira Pereira
- Centre of Exact, Natural and Health Sciences, Department of Pharmacy and Nutrition, Federal University of Espirito Santo, Alto Universitário, Guararema, Alegre 29500-000, ES, Brazil
| | - Tarcísio Lima Filho
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
- Department of Food Engineering, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
| | - Sérgio Henriques Saraiva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
- Department of Food Engineering, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
| | - Pollyanna Ibrahim Silva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
- Department of Food Engineering, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
| | - Daniela da Silva Oliveira
- Centre of Exact, Natural and Health Sciences, Department of Pharmacy and Nutrition, Federal University of Espirito Santo, Alto Universitário, Guararema, Alegre 29500-000, ES, Brazil
| | - André Gustavo Vasconcelos Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo, Alegre 29500-000, ES, Brazil
- Centre of Exact, Natural and Health Sciences, Department of Pharmacy and Nutrition, Federal University of Espirito Santo, Alto Universitário, Guararema, Alegre 29500-000, ES, Brazil
| |
Collapse
|
10
|
Hu X, Li X, Deng P, Zhang Y, Liu R, Cai D, Xu Q, Jiang X, Sun J, Bai W. The consequence and mechanism of dietary flavonoids on androgen profiles and disorders amelioration. Crit Rev Food Sci Nutr 2022; 63:11327-11350. [PMID: 35796699 DOI: 10.1080/10408398.2022.2090893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Androgen is a kind of steroid hormone that plays a vital role in reproductive system and homeostasis of the body. Disrupted androgen balance serves as the causal contributor to a series of physiological disorders and even diseases. Flavonoids, as an extremely frequent family of natural polyphenols, exist widely in plants and foods and have received great attention when considering their inevitable consumption and estrogen-like effects. Mounting evidence illustrates that flavonoids have a propensity to interfere with androgen synthesis and metabolism, and also have a designated improvement effect on androgen disorders. Therefore, flavonoids were divided into six subclasses based on the structural feature in this paper, and the literature about their effects on androgens published in the past ten years was summarized. It could be concluded that flavonoids have the potential to regulate androgen levels and biological effects, mainly by interfering with the hypothalamic-pituitary-gonadal axis, androgen synthesis and metabolism, androgen binding with its receptors and membrane receptors, and antioxidant effects. The faced challenges about androgen regulation by flavonoids masterly include target mechanism exploration, individual heterogeneity, food matrixes interaction, and lack of clinical study. This review also provides a scientific basis for nutritional intervention using flavonoids to improve androgen disorder symptoms.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Qingjie Xu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
11
|
Ge G, Zhao J, Zheng J, Zhou X, Zhao M, Sun W. Green tea polyphenols bind to soy proteins and decrease the activity of soybean trypsin inhibitors (STIs) in heated soymilk. Food Funct 2022; 13:6726-6736. [PMID: 35661183 DOI: 10.1039/d2fo00316c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction between epigallocatechin gallate (EGCG) and soy proteins at room temperature (25 °C) and after heating at 100 and 121 °C, and their effects on the inactivation of soybean trypsin inhibitors (STIs) in soymilk were investigated. The results of the nitroblue tetrazolium (NBT) staining assay showed that soy proteins can covalently bind to EGCG. The α/α' and A subunits in heated soymilk preferred to bind to EGCG because of their soluble state. More thiols were trapped when EGCG was added before thermal processing, and the free amino groups were depleted more with EGCG addition after heating. Circular dichroism and fluorescence spectroscopy showed that EGCG addition before or after heating induced different secondary and tertiary structural changes for soy proteins. The exposed aromatic amino acids preferred to react with EGCG before protein aggregation in the heating process. The random coil of soymilk proteins increased more when EGCG was added in soymilk after heating, resulting in more disordered structures in protein conformation. The binding between EGCG and soy proteins promoted protein aggregation, which was confirmed by the particle size distribution and gel electrophoresis. The trypsin and chymotrypsin inhibitory activity (TIA and CIA) in soymilk significantly reduced to 693 U mL-1 and 613 U mL-1, respectively, under the conditions of 2 mM EGCG addition after 100 °C heating for 10 min (p < 0.05). Consequently, the influence of EGCG on STI inactivation in soymilk only worked when EGCG was added after heating.
Collapse
Affiliation(s)
- Ge Ge
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Jinsong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Xuesong Zhou
- Guangzhou Honsea Industry Co., Ltd, Guangzhou, 510530, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
12
|
Gomes WPC, Pires JA, Teixeira NN, Bortoleto GG, Gutierrez EMR, Melchert WR. Effects of green coffee bean flour fortification on the chemical and nutritional properties of gluten-free cake. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [PMCID: PMC9168635 DOI: 10.1007/s11694-022-01469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this study was the application of green coffee bean flour in gluten-free cakes with different percentages (4, 8 and 15% (w/w)), to evaluate the optimal value for fortification, and the products were characterized based on their centesimal composition and bioactive compounds (caffeine and total phenolic compounds). Significant differences (p ≤ 0.05) were observed in the content of lipids, total dietary fiber, insoluble fiber, energy values, sodium, caffeine, and total phenolics, mainly in the product in which 15% (w/w) green coffee bean flour was added. Caffeine content was only detected and quantified in products with > 8% (w/w) green coffee bean flour, whereas the total phenolic content was detected and quantified in products with > 4% (w/w) green coffee bean flour. Thus, fortification of these products with 15% green coffee bean flour promoted a higher content of total dietary fiber and lower content of lipids, calories, sodium, and increased bioactive compounds. Thus, green coffee bean flour is an excellent alternative for the production of innovative foods.
Collapse
Affiliation(s)
- Winston Pinheiro Claro Gomes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, 13416-000 Piracicaba, SP Brazil
| | - Juliana Angelo Pires
- College of Agriculture “Luiz de Queiroz”, University of São Paulo, PO Box 9, 13418-970 Piracicaba, SP Brazil
| | - Natalia Navarro Teixeira
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, 13416-000 Piracicaba, SP Brazil
| | - Gisele Gonçalves Bortoleto
- State Center of Technological Education “Paula Souza”/CEETEPS, Technology College of Piracicaba “Dep. Roque Trevisan”, 13414-141 Piracicaba, SP Brazil
| | - Erika Maria Roel Gutierrez
- State Center of Technological Education “Paula Souza”/CEETEPS, Technology College of Piracicaba “Dep. Roque Trevisan”, 13414-141 Piracicaba, SP Brazil
| | - Wanessa R. Melchert
- College of Agriculture “Luiz de Queiroz”, University of São Paulo, PO Box 9, 13418-970 Piracicaba, SP Brazil
| |
Collapse
|
13
|
Rojas-González A, Figueroa-Hernández CY, González-Rios O, Suárez-Quiroz ML, González-Amaro RM, Hernández-Estrada ZJ, Rayas-Duarte P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022; 27:3400. [PMID: 35684338 PMCID: PMC9181911 DOI: 10.3390/molecules27113400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
The demand of foods with high antioxidant capacity have increased and research on these foods continues to grow. This review is focused on chlorogenic acids (CGAs) from green coffee, which is the most abundant source. The main CGA in coffee is 5-O-caffeoylquinic acid (5-CQA). Coffee extracts are currently the most widely used source to enhance the antioxidant activity of foods. Due to the solubility of CGAs, their extraction is mainly performed with organic solvents. CGAs have been associated with health benefits, such as antioxidant, antiviral, antibacterial, anticancer, and anti-inflammatory activity, and others that reduce the risk of cardiovascular diseases, type 2 diabetes, and Alzheimer's disease. However, the biological activities depend on the stability of CGAs, which are sensitive to pH, temperature, and light. The anti-inflammatory activity of 5-CQA is attributed to reducing the proinflammatory activity of cytokines. 5-CQA can negatively affect colon microbiota. An increase in anthocyanins and antioxidant activity was observed when CGAs extracts were added to different food matrices such as dairy products, coffee drinks, chocolate, and bakery products. The fortification of foods with coffee CGAs has the potential to improve the functionality of foods.
Collapse
Affiliation(s)
- Alexis Rojas-González
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo 2779, Veracruz 91897, Mexico;
| | - Oscar González-Rios
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Mirna Leonor Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Rosa María González-Amaro
- CONACYT-Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, Mexico;
| | - Zorba Josué Hernández-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Patricia Rayas-Duarte
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| |
Collapse
|
14
|
Turmeric-Fortified Cow and Soya Milk: Golden Milk as a Street Food to Support Consumer Health. Foods 2022; 11:foods11040558. [PMID: 35206034 PMCID: PMC8871262 DOI: 10.3390/foods11040558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
We studied plant-based milk from soya beans as a means to release and convey the bound antioxidants in turmeric to benefit consumer health. This was compared to cow milk as a carrier because soya milk consumption as an alternative to cow milk is increasing globally. Hence, turmeric paste was added to milk to investigate the release of turmeric antioxidants when changing the matrix (cow vs. soy), the amount of turmeric paste (0%, 2%, and 6%), and the effect of heating (with and without). Proximate, physicochemical, and mineral analysis were carried out for all samples. The total phenol content (TPC) and total antioxidant activity were measured using Folin–Ciocalteu and Quencher methods. Protein ranged from 2.0% to 4.0%, and minerals ranged from 17.8 to 85.1, 0.37 to 0.53, and 0.29 to 0.30 mg/100 mL for calcium, iron, and zinc, respectively. TPC ranged from 0.01 to 0.147 GAE (g/kg) and antioxidant activity from 7.5 to 17.7 TEAC (mmol Trolox/kg sample). Overall, turmeric added nutritional and chemical value to all the samples with and without heat treatment. However, turmeric-fortified soya milk samples showed the highest protein, iron, zinc, TPC, and antioxidant activity. This study identified a cheap, additional nutrient source for developing-countries’ malnourished populations by utilizing soya bean milk to produce golden milk.
Collapse
|
15
|
De B, Goswami TK. Micronutrient Fortification in Foods and Soy Milk, Plant Based Milk Substitute, as a Candidate Vehicle. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220204091748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Background: Food fortification is an effective intervention strategy to combat micronutrient malnutrition, hidden hunger, and improvement of public health and nutritional status. Choice of a cost-effective, widely consumed, compatible, and stable candidate vehicle is essential for a successful fortification.
Objective:
Objective: This comprehensive review discusses the aspects of food fortification along with the suitability of soy milk, plant based milk substitute as a candidate vehicle for fortification.
Methods:
Methods: Literature mining was done in food research journals, Pubmed, Scopus for collection of adopted fortification strategies and preferred vehicles for fortification.
Results:
Results: Soy milk is a popular health beverage, globally consumed and preferred amongst lacto-vegetarians and especially those with bovine milk allergy and lactose intolerance. This plant-based milk alternative is enriched in polyunsaturated fatty acids, phytoestrogens, and isoflavones along with different macro-and micronutrients. As a candidate vehicle, soy milk offers the advantage of incorporating a wide range of fortificants, is widely consumed, stable, and is compatible with fortificants.
Conclusion:
Conclusion: Successful implementation of the fortification strategy and its global scale-up need to overcome different scientific and technological hurdles, socio-economic, ethical, and political barriers as well as legislative issues. Public-private, multi-stake holder and global partnerships, boosting of small-scale food industries, and developing tie-ups with large scale industries, promoting public awareness about the need of fortification are other necessary requisites.
Collapse
Affiliation(s)
- Baishakhi De
- Agricultural and Food Engineering Department, IIT Kharagpur- 721302, India
| | - Tridib Kumar Goswami
- Prof Tridib Kumar Goswami, Department of Agriculture and Food Engineering, IIT Kharagpur- 721302, India
| |
Collapse
|
16
|
Erskine E, Gültekin Subaşı B, Vahapoglu B, Capanoglu E. Coffee Phenolics and Their Interaction with Other Food Phenolics: Antagonistic and Synergistic Effects. ACS OMEGA 2022; 7:1595-1601. [PMID: 35071855 PMCID: PMC8772327 DOI: 10.1021/acsomega.1c06085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Due to its strong aroma and stimulating effect, coffee is the most consumed beverage worldwide, following water. Apart from being a luscious food product, its contents of high phenolic compounds dominated by chlorogenic acid, caffeic acid, and their derivatives have caused coffee to be consumed by individuals at higher ratios and have also encouraged the number of varying research studies for its health-promoting properties. However, it should be noted that these desirable beneficial actions of coffee phenolics are in dynamic behaviors, highly dependent on the roasting process parameters and presence of different types of phenolic compounds in the media. Interactions between coffee phenolics and other phenols might end up with induced or reduced biological activities, which is called synergism or antagonism, respectively. In this paper, bioactive properties such as antioxidant, enzyme inhibition, and chelating power are reviewed in terms of synergism and antagonism of coffee phenolics and other bioactive compounds that are introduced into the matrix, such as cacao, ginger, cinnamon, willow bark, cardamom, and chili pepper. Furthermore, how these properties are affected after in vitro digestion and potential reasons for the outcomes are also briefly discussed with the aim of providing a better understanding of these interactions for the food industry. Revealing the synergistic and antagonistic interactions of the phenolics between coffee and different ingredients in a food matrix and their effects on bioactivity mechanisms is not only important for scientific studies but also for conscious food consumption of individuals.
Collapse
Affiliation(s)
- Ezgi Erskine
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Büşra Gültekin Subaşı
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
- Hafik
Kamer Ornek MYO, Cumhuriyet University, 58140 Sivas, Turkey
| | - Beyza Vahapoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| |
Collapse
|
17
|
Raesi S, Mohammadi R, Khammar Z, Paimard G, Abdalbeygi S, Sarlak Z, Rouhi M. Photocatalytic detoxification of aflatoxin B1 in an aqueous solution and soymilk using nano metal oxides under UV light: Kinetic and isotherm models. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Wang H, You S, Wang W, Zeng Y, Su R, Qi W, Wang K, He Z. Laccase-catalyzed soy protein and gallic acid complexation: Effects on conformational structures and antioxidant activity. Food Chem 2021; 375:131865. [PMID: 34953246 DOI: 10.1016/j.foodchem.2021.131865] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/18/2021] [Accepted: 12/12/2021] [Indexed: 11/04/2022]
Abstract
The ability of laccase to oxidize polyphenols arouses our interest that laccase can be applied for protein-polyphenol cross-linking. In this study, laccase promoted the cross-linking of gallic acid (GA) and soy protein isolate (SPI) under neutral pH. SPI-GA complexes changed the secondary structures with a decrease in β-fold and an increase in α-helix and β-turn. The free-radical scavenging activity and reducing power determination results suggested that GA elevated the SPI antioxidant activity significantly. Specifically, DPPH free radical scavenging rate and ABTS free radical scavenging ability increased almost 5- and 1.5-fold compared with unmodified SPI, respectively. Moreover, the reducing power had more than 3-fold compared to the SPI control. This study provided a novel enzyme-induced approach to modulate the physicochemical properties of SPI binding polyphenol.
Collapse
Affiliation(s)
- Hui Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yan Zeng
- National Technology Innovation Center of Synthetic Biology, PR China
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Kang Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhimin He
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
19
|
Qie X, Cheng Y, Chen Y, Zeng M, Wang Z, Qin F, Chen J, Li W, He Z. In vitro phenolic bioaccessibility of coffee beverages with milk and soy subjected to thermal treatment and protein-phenolic interactions. Food Chem 2021; 375:131644. [PMID: 34823942 DOI: 10.1016/j.foodchem.2021.131644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
The effect of skimmed bovine milk and soy protein on the in vitro bioaccessibility of polyphenols in coffee beverages under thermal treatment (25, 90, and 121 °C) and the protein-phenolic interaction was investigated. Thermal treatment at 90 °C and 121 °C reduced the in vitro bioaccessibility of total and individual phenolic. Skimmed milk and soy protein addition increased the total (by 37.01%-64.21% and 24.74%-47.32%, respectively) and individual phenolic in vitro bioaccessibility (by 4.40%-27.29% and 12.02%-28.61%, respectively) of coffee beverages subjected to thermal treatment at 25, 90 and 121 °C. Compared with soy protein, skimmed milk significantly enhanced the in vitro bioaccessibility of coffee polyphenols, possibly owing to the presence of different types and strengths of noncovalent protein-phenolic interactions. These findings can provide certain theoretical knowledge for optimizing the processing technology and formula of the food industry to help improve the health benefits of milk coffee beverages.
Collapse
Affiliation(s)
- Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ya Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Weiwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
20
|
Wang Y, Guo H, Wu A, Ju C, Jiang J, Chen J. Multiple‐strain
Lactobacillus
‐fermented soymilk with antioxidant capacity and delicate flavour. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- YiWen Wang
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Haocheng Guo
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Andi Wu
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Changxin Ju
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Jing Jiang
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - JianChu Chen
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| |
Collapse
|
21
|
Siemińska-Kuczer A, Szymańska-Chargot M, Zdunek A. Recent advances in interactions between polyphenols and plant cell wall polysaccharides as studied using an adsorption technique. Food Chem 2021; 373:131487. [PMID: 34741970 DOI: 10.1016/j.foodchem.2021.131487] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
Polyphenols include flavonoids, phenolic acids, tannins and lignans which are known to have antioxidant, UV protection and antimicrobial properties. Among them the most commonly investigated are flavonoids and phenolic acids, which, due to their plant origin, may interact with the plant cell wall (PCW) components, specifically with its polysaccharides. Knowledge concerning the nature of the interactions between these components may be used in the production of functional food or in the development of food packaging materials with additional properties. The content of polyphenols in such products is responsible for their colour and taste, and may also act as a natural preservative. On the other hand, the PCW components may have protective role of polyphenols which has impact on their release in the human digestive system. Therefore, this review is an attempt to summarize the current state of knowledge that emerged after 2017 concerning the interaction of PCW components with polyphenols, with a particular focus on hemicellulose and pectin.
Collapse
Affiliation(s)
- Anna Siemińska-Kuczer
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | | | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
22
|
Ge G, Zhao J, Zheng J, Zhao M, Sun W. Pepsin Diffusivity and In Vitro Gastric Digestion of Soymilk as Affected by Binding of Tea Polyphenols to Soy Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11043-11052. [PMID: 34499500 DOI: 10.1021/acs.jafc.1c04705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the effect of tea polyphenol extract (TPE) on the in vitro gastric digestion of soymilk. Fluorescence recovery after photobleaching was applied to measure pepsin diffusivity in soymilk. The characteristics of soymilk digesta were evaluated by gel electrophoresis, degree of hydrolysis (DH), molecular weight distribution, free amino acid analysis, particle size, antioxidant capacity, and trypsin/chymotrypsin inhibitor activity (TIA/CIA). The binding between soy proteins and tea polyphenols could significantly impair in vitro gastric digestion of soymilk by decreasing pepsin diffusivity from 91.3 to 70.3 μm2/s and DH from 17.13 to 13.93% with 1.2 mg/g TPE addition. Soymilk with 0.6 mg/g TPE addition exhibited low TIA/CIA and a strong antioxidant capacity in gastric digesta, which might be good for the following intestinal digestion. A better understanding of the effect of polyphenol on the digestion of protein-based food may be beneficial to innovation in food manufacturing.
Collapse
Affiliation(s)
- Ge Ge
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jie Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| |
Collapse
|
23
|
Cruz-Tirado JP, Martins JP, Olmos BDF, Condotta R, Kurozawa LE. Impact of glass transition on chemical properties, caking and flowability of soymilk powder during storage. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Yu X, Meenu M, Xu B, Yu H. Impact of processing technologies on isoflavones, phenolic acids, and antioxidant capacities of soymilk prepared from 15 soybean varieties. Food Chem 2021; 345:128612. [PMID: 33352407 DOI: 10.1016/j.foodchem.2020.128612] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/10/2020] [Accepted: 11/07/2020] [Indexed: 01/11/2023]
Abstract
In the present study, soymilk samples were prepared from 15 soybean varieties by employing dry method-raw slurry filtration (D-BAF), dry method-cooked slurry filtration (D-BBF), wet method-raw slurry filtration (W-BAF), and wet method-cooked slurry filtration (W-BBF). Different varieties of soybean and processing techniques were found to impose a significant impact on total phenolics, total flavonoids, phenolic acids, isoflavones and antioxidant capacity of soymilk samples. Overall, the soymilk prepared by W-BAF exhibited a higher level of total phenolic content and antioxidant activity. The soymilk samples prepared by W-BBF presented higher values for total flavonoid content and ferric-reducing antioxidant power assay. The soymilk prepared by W-BBF presented higher subtotal values of phenolic acids. In comparison, the soymilk prepared by D-BAF exhibited high amount of total isoflavones followed by the soymilk processed by W-BAF. Overall, the wet method was found to be responsible for improved phenolic contents and antioxidant activity of soymilk sample.
Collapse
Affiliation(s)
- Xiaoming Yu
- College of Food Science and Technology, Jilin Agricultural University, Changchun 130118, China; Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Maninder Meenu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| | - Hansong Yu
- College of Food Science and Technology, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| |
Collapse
|
25
|
Oxidized titanium carbide MXene-enabled photoelectrochemical sensor for quantifying synergistic interaction of ascorbic acid based antioxidants system. Biosens Bioelectron 2021; 177:112978. [PMID: 33465536 DOI: 10.1016/j.bios.2021.112978] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023]
Abstract
Antioxidants can protect organization from damage by scavenging of free radicals. When two kinds of antioxidants are consumed together, the total antioxidant capacity might be enhanced via synergistic interactions. Herein, we develop a simple, direct, and effective strategy to quantify the synergistic interaction between ascorbic acid (AA) and other different antioxidants by photoelectrochemical (PEC) technology. MXene Ti3C2-TiO2 composites fabricated via hydrogen peroxide oxidation were applied as sensing material for the antioxidants interaction study. Under excitation of 470 nm wavelength, the photogenerated electrons transfer from the conduction band of TiO2 nanoparticles to the Ti3C2 layers, and the holes in TiO2 can oxidize antioxidants, leading to an enhanced photocurrent as the detection signal. This PEC sensor exhibits a good linear range to AA concentrations from 12.48 to 521.33 μM as well as obvious antioxidants capability synergism. In particular, the photocurrents of AA + gallic acid (GA) and AA + chlorogenic acid (CHA) mixtures at 476.19 μM increase 1.95 and 2.35 times respectively comparing with the sum of photocurrents of AA and GA or CHA. It is found that the synergistic effect is mainly depending on the fact that AA with the low redox potential (0.246 V vs NHE) can reduce other antioxidants radical to promote regeneration, improving the overall antioxidant performance. Moreover, it is proved that the greater redox potential of antioxidants, the more obvious the synergistic effect. In addition, the sensor was used to real sample assay, which provides available information towards food nutrition analysis, health products design and quality inspection.
Collapse
|
26
|
Tsai YH, Mengesha NM, Liu PF. Identify the interactions between phytochemicals and proteins in the complicated food matrix. Food Chem 2021; 356:129641. [PMID: 33819786 DOI: 10.1016/j.foodchem.2021.129641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
Phytochemicals usually mix with food proteins in our regular diet. Unexpected interactions may lead to changes in bioaccessibility, bioactivity, and bioavailability of phytochemicals. However, our understanding of these interactions between phytochemical and food proteins is limited because of the experimental restrictions. Here, we used pulse-proteolysis to conduct the unfolding equilibrium and dose-dependent experiments on the food proteins for the first time. The interaction between epigallocatechin gallate (EGCG) and caseins was identified in the complicated food matrix, whole milk. Another food proteome, soymilk, was also optimized for identifying the binding targets of EGCG and caffeine. Among the identified interactions, the mixing of milk with coffee generates the most prominent masking effect of 46.61 ± 3.86% relative to the calculated antioxidant capacity. Our results demonstrated that pulse proteolysis is applicable for identifying the interactions between phytochemicals and proteins in the complicated food matrix.
Collapse
Affiliation(s)
- Ying-Hsuan Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC
| | - Nakachew Minuye Mengesha
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC
| | - Pei-Fen Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC.
| |
Collapse
|
27
|
Han H, Choi JK, Park J, Im HC, Han JH, Huh MH, Lee YB. Recent innovations in processing technologies for improvement of nutritional quality of soymilk. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1893824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hwana Han
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Jae Kwon Choi
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Joheun Park
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Hae Cheon Im
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Jae Heum Han
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Moon Haeng Huh
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Yoon-Bok Lee
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| |
Collapse
|
28
|
Sikora M, Złotek U, Kordowska-Wiater M, Świeca M. Spicy Herb Extracts as a Potential Improver of the Antioxidant Properties and Inhibitor of Enzymatic Browning and Endogenous Microbiota Growth in Stored Mung Bean Sprouts. Antioxidants (Basel) 2021; 10:antiox10030425. [PMID: 33802137 PMCID: PMC7999257 DOI: 10.3390/antiox10030425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
The quality and shelf life of sprouts can be improved by postharvest application of water herb extracts. The effect of water infusions of marjoram, oregano, basil, and thyme on the phenolic content, antioxidant potential, and the microbiological and consumer quality of stored mung bean sprouts was studied. Compared to the control, the treatments increased total phenolic content. The highest amounts were determined in sprouts soaked in the thyme extract (6.8 mg/g d.m.). The infusions also inhibited the activity of enzymes utilizing phenolics, and marjoram and oregano were found to be the most effective. The increase in the level of phenolics was reflected in enhanced antioxidant properties (ability to quench cation radical ABTS•+, reducing and chelating power). Both total phenolics and flavonoids, as well as antioxidant capacities, were highly bioaccessible in vitro. All the natural extracts effectively reduced the growth of total mesophilic bacteria, coliforms, and molds (they were more effective than ascorbic and kojic acids). The treatments did not exert a negative influence on the sensory properties or nutritional value of the sprouts, and even improved starch and protein digestibility. These results are very promising and may suggest a wider used of natural extracts as preservatives of minimally processed food.
Collapse
Affiliation(s)
- Małgorzata Sikora
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (M.S.); (U.Z.)
| | - Urszula Złotek
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (M.S.); (U.Z.)
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (M.S.); (U.Z.)
- Correspondence: ; Tel.: +48-81-46-23-328
| |
Collapse
|
29
|
Ge G, Guo W, Zheng J, Zhao M, Sun W. Effect of interaction between tea polyphenols with soymilk protein on inactivation of soybean trypsin inhibitor. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Sęczyk Ł, Sugier D, Świeca M, Gawlik-Dziki U. The effect of in vitro digestion, food matrix, and hydrothermal treatment on the potential bioaccessibility of selected phenolic compounds. Food Chem 2020; 344:128581. [PMID: 33199124 DOI: 10.1016/j.foodchem.2020.128581] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/03/2020] [Accepted: 11/04/2020] [Indexed: 01/23/2023]
Abstract
The effects of in vitro digestion, hydrothermal treatment, and food matrices (wheat flour, durum wheat flour, wholemeal wheat flour, corn flour, rice flour) on the bioaccessibility of phenolic compounds (gallic acid, p-coumaric acid, ferulic acid, chlorogenic acid, catechin) were investigated. The influence of experimental factors and their combinations was estimated based on the "Dose Correction Index" (DCI) concept. Generally, the applied conditions had a negative effect on the bioaccessibility of polyphenols; however, the effect depended on the type of compound and food matrix, which was reflected in different DCI values. A less unfavorable effect on the bioaccessibility was exerted by the rice flour (the lowest DCI values), but the most negative impact was found in the case of the wholemeal wheat flour. The DCI concept provides basic knowledge of the magnitude of factors affecting the bioaccessibility of polyphenols, which can be useful for designing fortified products with desirable bioactivity.
Collapse
Affiliation(s)
- Łukasz Sęczyk
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland.
| | - Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland.
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland.
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland.
| |
Collapse
|
31
|
|
32
|
Gemechu FG. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Zhang Q, Cheng Z, Wang Y, Fu L. Dietary protein-phenolic interactions: characterization, biochemical-physiological consequences, and potential food applications. Crit Rev Food Sci Nutr 2020; 61:3589-3615. [DOI: 10.1080/10408398.2020.1803199] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Zhouzhou Cheng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
34
|
Świeca M, Herok A, Piwowarczyk K, Sikora M, Ostanek P, Gawlik-Dziki U, Kapusta I, Czyż J. Potentially Bioaccessible Phenolics from Mung Bean and Adzuki Bean Sprouts Enriched with Probiotic-Antioxidant Properties and Effect on the Motility and Survival of AGS Human Gastric Carcinoma Cells. Molecules 2020; 25:molecules25132963. [PMID: 32605155 PMCID: PMC7411954 DOI: 10.3390/molecules25132963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Gastric digests from mung (MBS) and adzuki (ABS) bean sprouts enriched with probiotic Lactobacillus plantarum 299v were tested for their antioxidant potential, as well as antiproliferative and antimotility properties, in human stomach cancer cells (AGS). The digest of ABS contained quercetin and kaempferol derivates, while kaempferol and apigenin derivates were dominant in MBS. Compared to the controls, the probiotic-rich sprouts had a higher antioxidant potential—by 13% and 9%, respectively. Adzuki bean sprouts decreased the viability of AGS already at low concentrations (25% motility inhibitions). MBS and ABS displayed dose-independent cytostatic effects. The ABS extracts decreased the proliferation of AGS more effectively than the MBS extracts—0.2‰ ABS exerted c.a. 70% of inhibitions. Moreover, the phytochemicals from the probiotic-rich sprouts considerably reduced this activity. The increased vinculin level, the apoptotic shape of cell nuclei, and the reduced cell motility and proliferation indicate that the extracts exhibited cytostatic and cytotoxic activity.
Collapse
Affiliation(s)
- Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (M.S.); (P.O.); (U.G.-D.)
- Correspondence: ; Tel.: +48-81-462-33-96; Fax: +48-81-462-33-24
| | - Anna Herok
- Department of Cell Biology, Jagiellonian University, Gronostajowa Str. 7, 30-387 Cracow, Poland; (A.H.); (K.P.); (J.C.)
| | - Katarzyna Piwowarczyk
- Department of Cell Biology, Jagiellonian University, Gronostajowa Str. 7, 30-387 Cracow, Poland; (A.H.); (K.P.); (J.C.)
| | - Małgorzata Sikora
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (M.S.); (P.O.); (U.G.-D.)
| | - Patryk Ostanek
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (M.S.); (P.O.); (U.G.-D.)
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (M.S.); (P.O.); (U.G.-D.)
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Rzeszów University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland;
| | - Jarosław Czyż
- Department of Cell Biology, Jagiellonian University, Gronostajowa Str. 7, 30-387 Cracow, Poland; (A.H.); (K.P.); (J.C.)
| |
Collapse
|
35
|
SILVA K, MACHADO A, CARDOSO C, SILVA F, FREITAS F. Rheological behavior of plant-based beverages. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.09219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Kamilla SILVA
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brasil
| | | | | | | | | |
Collapse
|
36
|
Frühbauerová M, Červenka L, Hájek T, Salek RN, Velichová H, Buňka F. Antioxidant properties of processed cheese spread after freeze-dried and oven-dried grape skin powder addition. POTRAVINARSTVO 2020. [DOI: 10.5219/1310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Processed cheese spread (PCS) is a popular product with high nutritional value and containing protein, fat and minerals. Grape skin is waste from winery processing plants that still has phenolic substances with significant antioxidant activity that could be used for valorisation of processed cheese and increasing the content of nutrients, phenolics and overall antioxidant properties. Both oven-dried (OD) and freeze-dried (FD) grape skin (GS) powder was characterised by the principal ingredients, the content of phenolic compounds and antioxidant capacity. Similarly, the influence of the addition of OD-GS and FD-GS powders on processed cheese spread (PCS) at 1% and 2% (w/w) levels were examined. The OD-GS and FD-GS powders were characterised by protein content, fat content, moisture and dietary fibre, thus showing that drying technique did not affect those parameters. The OD-GS powder exhibited higher content of rutin, (+)-catechin, (-)-epicatechin and total flavonoid content (TFC), while higher total phenolic content (TPC) and ABTS radical cation were observed for freeze-dried GS powder. Fortification of PCS with 1% and 2% (w/w) of GS powder increased protein content. An ANOVA procedure revealed that addition of FD-GS powder to processed cheese spread was superior to TPC values together with rutin, (+)-catechin, and (-)-epicatechin contents. The higher phenolic contents reflected the higher antioxidant capacity of PCS samples fortified with FD-GS powder. Freeze-dried gape skin powder was the better choice for valorisation of processed cheese spread.
Collapse
|
37
|
Jakubczyk A, Ćwiek P, Rybczyńska-Tkaczyk K, Gawlik-Dziki U, Złotek U. The Influence of Millet Flour on Antioxidant, Anti-ACE, and Anti-Microbial Activities of Wheat Wafers. Foods 2020; 9:E220. [PMID: 32093055 PMCID: PMC7074126 DOI: 10.3390/foods9020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/10/2023] Open
Abstract
The aim of the present study was to investigate antioxidant, angiotensin converting enzyme (ACE) inhibitory, and anti-microbial activities of wheat wafers enriched with 1%, 2%, or 3% (w/w) of millet flour (M1, M2, or M3, respectively). All samples were characterized by a richer composition of protein, polyphenols, flavonoids, phenolic acids, and reducing sugar in comparison with the control sample. The highest content of the components, i.e., 1.03 mg mL-1, 0.021 mg mL-1, 2.26 mg mL-1, 0.17 µg mL-1, and 0.63 mg mL-1, respectively, was detected in sample M3. The same sample was characterized by 803.91 and 42.79% of water and oil absorption capacity, respectively. The additive did not change the rheological features of the wafers. The 3% addition of millet flour to the wafer formulation induced the highest antioxidant activity against DPPH, Fe2+ chelation, and ACE inhibitory activity of hydrolysates (IC50 = 191.04, 0.46, and 157.73 µg mL-1, respectively). The highest activities were determined in the M3 fraction <3.0 kDa (IC50 = 3.46, 0.26, and 16.27 µg mL, respectively). In turn, the M2 fraction was characterized by the highest antimicrobial activity against Listeria monocytogenes with a minimum inhibitory concentration (MIC) value of 75 µg mL-1.
Collapse
Affiliation(s)
- Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland; (A.J.); (P.Ć.); (U.G.-D.)
| | - Paula Ćwiek
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland; (A.J.); (P.Ć.); (U.G.-D.)
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, Laboratory of Mycology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069 Lublin, Poland;
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland; (A.J.); (P.Ć.); (U.G.-D.)
| | - Urszula Złotek
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland; (A.J.); (P.Ć.); (U.G.-D.)
| |
Collapse
|
38
|
Świeca M, Gawlik-Dziki U, Złotek U, Kapusta I, Kordowska-Wiater M, Baraniak B. Effect of cold storage on the potentially bioaccessible isoflavones and antioxidant activities of soybean sprouts enriched with Lactobacillus plantarum 299v. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Wongsa P, Khampa N, Horadee S, Chaiwarith J, Rattanapanone N. Quality and bioactive compounds of blends of Arabica and Robusta spray-dried coffee. Food Chem 2019; 283:579-587. [DOI: 10.1016/j.foodchem.2019.01.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 11/30/2022]
|
40
|
Lin L, Jiao M, Zhao M, Sun W. In vitro gastrointestinal digest of catechin-modified β-conglycinin oxidized by lipoxygenase-catalyzed linoleic acid peroxidation. Food Chem 2019; 280:154-163. [PMID: 30642482 DOI: 10.1016/j.foodchem.2018.12.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/06/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
The aim of the present study was to enhance oxidative stability and bioaccessibility of β-conglycinin (7S) prepared from low denatured defatted soybean flours with residual lipids and high lipoxygenase (LOX) activity. The model system consisting of linoleic acid (LA), LOX and unheated 7S (UH-7S)/heated 7S (H-7S) or UH-7S-catechin/H-7S-catechin complex, and in vitro gastrointestinal (GI) digestion model were used to investigate the effect of complexation with catechin on protein oxidation and characterisation of GI digest. The interaction of UH-7S/H-7S with catechin dramatically inhibited LOX-catalyzed LA peroxidation-induced protein oxidation. The interaction also promoted the degree of proteolysis in GI digestion and intestinal absorption for oxidized UH-7S/H-7S, increasing the antioxidant activity of oxidized UH-7S/H-7S, bioaccessibility for catechin and release of di-/tripeptides with dipeptidyl peptidase-IV/angiotensin converting enzyme inhibitory effects or antioxidant activities during GI digestion. The complexation with catechin is a potential strategy to enhance the oxidative stability, GI digestibility and bioaccessibility of 7S.
Collapse
Affiliation(s)
- Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Ming Jiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| |
Collapse
|
41
|
Złotek U, Świeca M, Reguła J, Jakubczyk A, Sikora M, Gawlik‐Dziki U, Kapusta I. Effects of probiotic
L. plantarum
299v on consumer quality, accumulation of phenolics, antioxidant capacity and biochemical changes in legume sprouts. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Urszula Złotek
- Department of Biochemistry and Food Chemistry University of Life Sciences Skromna Str. 8 Lublin Poland
| | - Michal Świeca
- Department of Biochemistry and Food Chemistry University of Life Sciences Skromna Str. 8 Lublin Poland
| | - Julita Reguła
- Department of Human Nutrition and Hygiene Poznań University of Life Sciences Wojska Polskiego Str. 31 60‐624 Poznań Poland
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry University of Life Sciences Skromna Str. 8 Lublin Poland
| | - Małgorzata Sikora
- Department of Biochemistry and Food Chemistry University of Life Sciences Skromna Str. 8 Lublin Poland
| | - Urszula Gawlik‐Dziki
- Department of Biochemistry and Food Chemistry University of Life Sciences Skromna Str. 8 Lublin Poland
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition Rzeszów University 4 Zelwerowicza Street 35‐601 Rzeszów Poland
| |
Collapse
|
42
|
Jakubczyk A. Effect of addition of fermented bean seed flour on the content of bioactive components and nutraceutical potential of wheat wafers. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Protein structure modification and allergenic properties of whey proteins upon interaction with tea and coffee phenolic compounds. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.10.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
44
|
Qiu X, Jacobsen C, Sørensen ADM. The effect of rosemary (Rosmarinus officinalis L.) extract on the oxidative stability of lipids in cow and soy milk enriched with fish oil. Food Chem 2018; 263:119-126. [DOI: 10.1016/j.foodchem.2018.04.106] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/24/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022]
|
45
|
Świeca M, Gawlik-Dziki U, Sęczyk Ł, Dziki D, Sikora M. Interactions of green coffee bean phenolics with wheat bread matrix in a model of simulated in vitro digestion. Food Chem 2018; 258:301-307. [DOI: 10.1016/j.foodchem.2018.03.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023]
|
46
|
Guo Q, Ma Q, Xue Z, Gao X, Chen H. Studies on the binding characteristics of three polysaccharides with different molecular weight and flavonoids from corn silk (Maydis stigma). Carbohydr Polym 2018; 198:581-588. [PMID: 30093037 DOI: 10.1016/j.carbpol.2018.06.120] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/17/2018] [Accepted: 06/28/2018] [Indexed: 01/22/2023]
Abstract
Polysaccharides and flavonoids co-existed in corn silk (Maydis stigma) could interact inevitably during processing and digestion. In this study, the binding interaction between three polysaccharides with different molecular weight and flavonoids from corn silk was characterized using molecular dynamic and thermodynamic simulation. And the corn silk polysaccharides-flavonoids complex (CSP - CSF complex) was characterized using fourier transform infrared (FT-IR) spectra, circular dichroism (CD), scanning electron microscope (SEM) and differential scanning calorimetry (DSC). The three polysaccharides from corn silk showed the molecular weight distributions of 43.3 kDa, 61.3 kDa and 106.6 kDa, respectively, and they had the same monosaccharide types with different ratios. The adsorption of flavonoids to polysaccharides might be mostly driven by van der Waals forces and hydrogen bonding, and it could be described through various isothermal models and thermodynamic equations such as Langmuir, Freundlich equations and Clausius-Clapeyron equation. This type of interactions could improve the biological activities of polysaccharides such as α-amylase and α-glucosidase inhibition.
Collapse
Affiliation(s)
- Qingwen Guo
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Qiqi Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
47
|
Sanlier N, Atik A, Atik I. Consumption of green coffee and the risk of chronic diseases. Crit Rev Food Sci Nutr 2018; 59:2573-2585. [DOI: 10.1080/10408398.2018.1461061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nevin Sanlier
- Lokman Hekim University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Azize Atik
- Afyon Kocatepe University, Sultandağı Vocational School, Food Technology Program, Afyonkarahisar, Turkey
| | - Ilker Atik
- Afyon Kocatepe University, Afyon Vocational School, Food Quality Control and Analysis Program, Afyonkarahisar, Turkey
| |
Collapse
|