1
|
Fu L, Chi H, Wei H, Huang B, Qiang Y, Shi M, Fang L, Fu J. The Preparation, Properties, and Characterization of Octenyl Succinic Anhydride-Modified Turmeric Starches and Their Emulsification for Pickering Emulsions. Foods 2025; 14:1171. [PMID: 40238254 PMCID: PMC11989075 DOI: 10.3390/foods14071171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Turmeric has extensive applications in various fields, including food and medicine. However, research on turmeric starch remains relatively scarce. There is a significant lack of in-depth studies on its processing properties and starch modification abilities. In this context, octenyl succinic anhydride (OSA)-modified turmeric starches (O-MTSs) were synthesized. Subsequently, a comprehensive investigation was carried out, including property analysis, characterization, and evaluation of the emulsifying capacity. The alterations in solubility, swelling degree, syneresis, and transparency of turmeric starches before and after modification were systematically studied. The characterization of O-MTSs was conducted using a scanning electron microscope (SEM), particle size analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis. The possibility of using O-MTS as an emulsifier to prepare Pickering emulsions was explored. The results show that O-MTS had better solubility, swelling degree, syneresis, and transparency compared to turmeric starches (TSs). The O-MTS retained a relatively intact morphology, but its particle size slightly increased, and the characteristic peak at 995 cm-1 shifted to some extent. The relative crystallinity decreased from 32.59% to 18.39%, and the water-binding capacity of O-MTSs improved accordingly. O-MTSs could better stabilize Pickering emulsions as an emulsifier compared to TSs. With the increase in the degree of substitution (DS) and concentration of the O-MTS, its emulsification index (EI) demonstrated an upward trend.
Collapse
Affiliation(s)
- Lijuan Fu
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.F.); (H.C.); (H.W.); (B.H.); (Y.Q.); (M.S.); (L.F.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongfei Chi
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.F.); (H.C.); (H.W.); (B.H.); (Y.Q.); (M.S.); (L.F.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hang Wei
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.F.); (H.C.); (H.W.); (B.H.); (Y.Q.); (M.S.); (L.F.)
| | - Biao Huang
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.F.); (H.C.); (H.W.); (B.H.); (Y.Q.); (M.S.); (L.F.)
| | - Yueyue Qiang
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.F.); (H.C.); (H.W.); (B.H.); (Y.Q.); (M.S.); (L.F.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengzhu Shi
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.F.); (H.C.); (H.W.); (B.H.); (Y.Q.); (M.S.); (L.F.)
| | - Ling Fang
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.F.); (H.C.); (H.W.); (B.H.); (Y.Q.); (M.S.); (L.F.)
| | - Jianwei Fu
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.F.); (H.C.); (H.W.); (B.H.); (Y.Q.); (M.S.); (L.F.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Qi J, Mao Y, Shi YC. Formation and crystalline structure of spherulites from pea and high amylose maize starches. Int J Biol Macromol 2025; 297:139571. [PMID: 39798731 DOI: 10.1016/j.ijbiomac.2025.139571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/04/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Starch spherulite is a unique form of resistant starch characterized by a spherical structure with crystalline lamellae that are radially oriented and may find applications in delivery of nutrients and bioactives to the lower gastrointestinal tract. Formation of starch spherulites generally requires heating to a high temperature followed by quenching and long crystallization time. The objectives of this study were to gain a deeper understanding of the factors influencing spherulite formation from pea starch (PS) and high-amylose maize starch (HAMS) and investigate if spherulites could be formed by a slow cooling rate and determine the crystalline structure and morphology of the spherulites formed. Remarkably, spherulite was observed immediately after PS and HAMS (25 % solids) were heated to 180 °C and cooled to 10 °C at a cooling rate of 10 °C/min in a differential scanning calorimeter (DSC) pan. Increasing heating temperature degraded starches more but improved the morphological quality of spherulites. Spherulite was better formed at 25 % solids content than 40 %. Both PS and HAMS formed spherulites with a predominant B-type crystalline pattern with 13-17 % crystallinity at ca. 10 % moisture content. PS displayed a single exothermic peak on cooling due to spherulite formation (recrystallization), whereas HAMS exhibited an extra peak due to the amylose-lipid complex formation. Spherulite production from HAMS and PS was successfully scaled up using a pressure reactor. This study provides a simplified approach for spherulite production, new potential utilization of PS and HAMS, and valuable insights for optimizing formation of starch spherulites.
Collapse
Affiliation(s)
- Jing Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Ding W, Liu Y, Liu Y, Wang G, Liu X, Peng X, Li H, Li Z. Research Progress in Nutritional Components, Biological Activity, and Processing and Utilization of Chenopodium quinoa Willd. ACS FOOD SCIENCE & TECHNOLOGY 2025; 5:411-427. [DOI: 10.1021/acsfoodscitech.4c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Affiliation(s)
- Wei Ding
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Yue Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Yingqi Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Guizhen Wang
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Xianjun Liu
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Xinli Peng
- College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Hao Li
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| | - Zhandong Li
- College of Biological and Food Engineering
- Jilin Engineering Normal University
- Jilin Collaborative Innovation Center for Grain Resources Development and Industrialization, College of Biological and Food Engineering
- Jilin Engineering Normal University
| |
Collapse
|
4
|
Zhang H, Wu A, Nan X, Yang L, Zhang D, Zhang Z, Liu H. The Application and Pharmaceutical Development of Etomidate: Challenges and Strategies. Mol Pharm 2024; 21:5989-6006. [PMID: 39495089 DOI: 10.1021/acs.molpharmaceut.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Etomidate is a synthetic imidazole anesthetic that exerts hypnotic effects by potentiating the action of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) or directly activating the anionic GABA (GABAA) receptor. It stands out among many anesthetics because of its multiple advantages, such as good hemodynamic stability and minimal inhibition of spontaneous respiration. However, its low water solubility and side effects, such as adrenal cortex inhibition and myoclonus, have limited the clinical application of this drug. To address these issues, extensive research has been conducted on the drug delivery of etomidate in recent decades, which has led to the emergence of different etomidate preparations. Despite so many etomidate preparations, so far some of the toxic side effects have not yet been effectively addressed. Herein we discuss the pharmaceutical design of etomidate that may resolve the above problem. We also propose targeted strategies for future research on etomidate preparations and discuss the feasibility of different administration routes and dosage forms to expand the application of this drug. Through this review, we hope to draw more attention to the potential of etomidate and its application challenges and provide valuable insights into the development of new etomidate preparations.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Pharmacy, Zigong First People's Hospital, Zigong, Sichuan 643000, People's Republic of China
| | - Ailing Wu
- Department of Anesthesiology, Second People's Hospital of Neijiang, Southwest Medical University, Neijiang, Sichuan 641000, People's Republic of China
- Department of Anesthesiology, First People's Hospital of Neijiang, Neijiang, Sichuan 641099, People's Republic of China
| | - Xichen Nan
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Luhan Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
5
|
Yan Q, Wang Y, Zhang W, Ma Y, Chen J. Impact of ultra-high pressure on the microstructure, emulsification, and physicochemical properties of rice starch. Int J Biol Macromol 2024; 283:137919. [PMID: 39577527 DOI: 10.1016/j.ijbiomac.2024.137919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Ultra-high pressure (UHP) treatment is considered a non-thermo physical treatment technology with a "clean label". Starch is an ideal stabilizer for food-grade Pickering emulsions. This study aimed to investigate the effects of ultra-high pressure (UHP) modification of rice starch on its structure, water/oil absorption, and emulsification properties under different pressure treatments (100-500 MPa), the results showed that the morphology of the starch granules and crystalline structure did not change significantly at lower pressures. Conversely, the particle size of starch increased significantly from 4.85 to 110.13 μm, the relative crystallinity (RC) obviously decreased from 18.89 % to 9.18 %, and the starch granules were destroyed and formed more fragments at higher pressure (500 MPa). The results of water/oil absorption indicated that the oil absorption slightly increased under UHP treatment, but water absorption intensively increased under higher pressure (500 MPa). The emulsifying capacity was significantly enhanced at 500 MPa after 8, 16, and 24 min. The UHP treatment induced swelling and disruption of starch granules at higher pressure (500 MPa). The starch fragments and the released starch molecules stabilized the droplets. This study provides a reference for the application of UHP processing in the starchy foods.
Collapse
Affiliation(s)
- Qing Yan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Sriprablom J, Winuprasith T, Suphantharika M, Wongsagonsup R. Physical properties and in-vitro gastrointestinal digestion of oil-in-water emulsions stabilized by single- and dual-modified cassava starches with cross-linking and octenylsuccinylation. Int J Biol Macromol 2024; 262:129965. [PMID: 38325686 DOI: 10.1016/j.ijbiomac.2024.129965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/07/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
The different modified cassava starches (MCS) obtained by either single or dual modifications with cross-linking (CL) and octenylsuccinylation (OS), including 2%CL, 3%OS, 2%CL-3%OS, and 3%OS-2%CL, were used to stabilize soybean oil-in-water emulsions (oil content 10% (w/w)) at a concentration of 4.5% (w/w) compared to native cassava starch (NCS) and their physical properties and in-vitro gastrointestinal digestion were investigated. The emulsions stabilized with NCS and 2%CL-MCS had larger oil droplet sizes, higher viscosity, and lower negative charge than the emulsions stabilized by single- or dual-MCS with 3%OS. All MCS-stabilized emulsions showed a higher emulsion stability against creaming than the NCS-stabilized emulsion. Under a simulated gastrointestinal tract, all 3%OS-MCS promoted droplet flocculation, while the less ionic NCS and the 2%CL-MCS showed a decrease in droplet size after passing through the mouth and stomach stages. The lipid digestion rate of emulsions stabilized with different MCS and NCS followed the following order: 3%OS >2%CL-3%OS > 3%OS-2%CL > 2%CL > NCS. The NCS- and 2%CL-stabilized emulsions had a lower lipid digestion rate, possibly due to the larger droplet sizes and higher viscosity of the initial emulsions, which delays access of lipase enzymes to lipid droplet surfaces, compared to all 3%OS-MCS-stabilized emulsions.
Collapse
Affiliation(s)
- Jiratthitikan Sriprablom
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand; Division of Food Technology, Kanchanaburi Campus, Mahidol University, Kanchanaburi 71150, Thailand
| | | | - Manop Suphantharika
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Rungtiwa Wongsagonsup
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand; Division of Food Technology, Kanchanaburi Campus, Mahidol University, Kanchanaburi 71150, Thailand.
| |
Collapse
|
7
|
Zhang Y, Li S, Kong L, Tan L. Developing biopolymer-stabilized emulsions for improved stability and bioaccessibility of lutein. Int J Biol Macromol 2024; 259:129202. [PMID: 38184046 DOI: 10.1016/j.ijbiomac.2024.129202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/09/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Lutein is essential for infant visual and cognitive development but has low stability and solubility. This study aimed to enhance the stability and bioaccessibility of lutein using oil-in-water emulsions stabilized with biopolymers. Commercially available octenylsuccinylated (OS) starches, including capsule TA® (CTA), HI-CAP®100 (HC), and Purity Gum® 2000 (PG), along with gum Arabic (GA) variants Ticaloid acacia Max® (TAM), TICAmulsion® 3020 (TM), and pre-hydrate gum Arabic (PHGA), were chosen as emulsifiers. By screening the effect of biopolymer concentration and oil volume fraction (Φ), emulsions stabilized with CTA, HC, or TM at 20% and 30% (w/v) concentration and 70% Φ exhibited a gel-like structure and were selected for further assessments. After a week at 25 °C, emulsions stabilized by CTA and HC showed no significant change in droplet size, while TM emulsion exhibited a 1.58-fold increase. At 45 °C, all emulsions exhibited increase in droplet size. Lutein retention is higher in CTA emulsions at both storage temperatures than free lutein. In vitro bioaccessibility of all lutein emulsions was higher than that of free lutein. These findings highlight the superior stability and bioaccessibility of the lutein emulsion stabilized by OS starch, positioning it as a promising carrier to broaden lutein applications in infant foods.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Libo Tan
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
8
|
Chen Y, Han X, Chen DL, Ren YP, Yang SY, Huang YX, Yang J, Zhang L. Dry Ball-Milled Quinoa Starch as a Pickering Emulsifier: Preparation, Microstructures, Hydrophobic Properties and Emulsifying Properties. Foods 2024; 13:431. [PMID: 38338566 PMCID: PMC10855821 DOI: 10.3390/foods13030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This research supplied a "cleaner-production" way to produce "clean-label" quinoa starch-based Pickering emulsifier with excellent emulsifying properties. The effects of dry ball-milling time and speed on the multi-scale structures and emulsifying properties of quinoa starch were studied. With increasing ball-milling time and speed, particle size first decreased and then increased, the crystallinity, lamellar structure and short-range ordered structure gradually decreased, and contact angle gradually increased. The increased contact angle might be related to the increased oil absorption properties and the decreased water content. The emulsification properties of ball-milled quinoa starch (BMQS)-based Pickering emulsions increased with the increase in ball-milling time and speed, and the emulsions of BMQS-4 h, 6 h, 8 h, and 600 r reached the full emulsification state. After 120 days' storage, the oil droplets of BMQS-2 h (BMQS-400 r) deformed, the oil droplets increased, and the emulsification index decreased. The emulsification index and the oil droplets of BMQS-4 h, 6 h, 8 h and 600 r-based emulsions did not show obvious changes after storage, indicating the good emulsifying stability of these BMQS-based emulsions, which might be because that the relatively larger amount of starch particles that dispersed in the voids among the oil droplets could act as stronger network skeletons for the emulsion gel. This Pickering emulsifier was easily and highly efficiently produced and low-cost, having great potential to be used in the food, cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou 225127, China; (Y.C.); (X.H.); (D.-L.C.); (Y.-P.R.); (S.-Y.Y.); (Y.-X.H.); (J.Y.)
| |
Collapse
|
9
|
Bao Y, Pignitter M. Mechanisms of lipid oxidation in water-in-oil emulsions and oxidomics-guided discovery of targeted protective approaches. Compr Rev Food Sci Food Saf 2023; 22:2678-2705. [PMID: 37097053 PMCID: PMC10962568 DOI: 10.1111/1541-4337.13158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Lipid oxidation is an inevitable event during the processing, storage, and even consumption of lipid-containing food, which may cause adverse effects on both food quality and human health. Water-in-oil (W/O) food emulsions contain a high content of lipids and small water droplets, which renders them vulnerable to lipid oxidation. The present review provides comprehensive insights into the lipid oxidation of W/O food emulsions. The key influential factors of lipid oxidation in W/O food emulsions are presented systematically. To better interpret the specific mechanisms of lipid oxidation in W/O food emulsions, a comprehensive detection method, oxidative lipidomics (oxidomics), is proposed to identify novel markers, which not only tracks the chemical molecules but also considers the changes in supramolecular properties, sensory properties, and nutritional value. The microstructure of emulsions, components from both phases, emulsifiers, pH, temperature, and light should be taken into account to identify specific oxidation markers. A correlation of these novel oxidation markers with the shelf life, the organoleptic properties, and the nutritional value of W/O food emulsions should be applied to develop targeted protective approaches for limiting lipid oxidation. Accordingly, the processing parameters, the application of antioxidants and emulsifiers, as well as packing and storage conditions can be optimized to develop W/O emulsions with improved oxidative stability. This review may help in emphasizing the future research priorities of investigating the mechanisms of lipid oxidation in W/O emulsion by oxidomics, leading to practical solutions for the food industry to prevent oxidative rancidity in W/O food emulsions.
Collapse
Affiliation(s)
- Yifan Bao
- Institute of Physiological ChemistryFaculty of Chemistry, University of ViennaViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaViennaAustria
| | - Marc Pignitter
- Institute of Physiological ChemistryFaculty of Chemistry, University of ViennaViennaAustria
| |
Collapse
|
10
|
Ren X, Zhou C, Qayum A, Tang J, Liang Q. Pickering emulsion: A multi-scale stabilization mechanism based on modified lotus root starch/xanthan gum nanoparticles. Int J Biol Macromol 2023; 233:123459. [PMID: 36739046 DOI: 10.1016/j.ijbiomac.2023.123459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
New Pickering emulsion stabilizer LS/XG-NPs (Lotus root starch/xanthan gum nanoparticles) was prepared via autoclaving-cooling method followed by combination with XG. The LS/XG-NPs showed uniform and stable particles with particle size <500 nm, PDI <30, and zeta potential 30-40. The autoclaving-cooling treatment completely changed the crystalline form (from A-type to B-type) and structure of starch; hydrogen bonding and electrostatic interactions were proved to be existed between starch and XG in LS/XG-NPs. The addition of XG increased the contact angle of LS/XG-NPs from 58.79° to 85.42°. In the prepared Pickering emulsion, the LS/XG-NPs adsorbed well on the oil droplets surface, forming a three-dimensional gel network with evenly distributed oil droplets. The Pickering emulsion prepared with LS/XG-NPs showed excellent storage stability and auto-oxidation resistance; the EPA + DHA content in the emulsion remained at 92.46 % after 5 d of storage. The results of this study suggest that LS/XG-NPs have the potential to be food-grade Pickering emulsifiers that not only stabilize emulsions but also prevent emulsion oils from oxidizing.
Collapse
Affiliation(s)
- Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Chengwei Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jialing Tang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
11
|
Wang R, Yao L, Peng S, Liu Z, Zhu X, Li H, Xu D, Zhang J, Mo H, Hu L. An "intelligent -responsive" bactericidal system based on OSA-starch Pickering emulsion. Int J Biol Macromol 2023; 235:123808. [PMID: 36841389 DOI: 10.1016/j.ijbiomac.2023.123808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Pickering emulsion based on OSA-starch was developed in this study as an intelligent delivery system for the application of thymol against foodborne pathogens. Morphology and microstructure characterization showed that the Pickering emulsion was an O/W type emulsion and stayed stable at starch concentration of 200 mg/mL and oil fraction at 30 % with particle size of 10 μm and absolute Zeta potential of -12.5 mV. Low field nuclear magnetic resonance and rheology experiments indicated that a denser network structure was formed in this stable Pickering emulsion. Besides, the Pickering emulsion could endure long-time storage, low pH (3,5) and additional NaCl (50, 100, 200, 400 mM) and it showed enhanced bactericidal effects against Escherichia coli, Staphylococcus aureus (thymol =1.48 μmol/L) and Aspergillus flavus (thymol = 0.624 μmol/L) by inducing ROS eruption, membrane lipid peroxidation and cell shrink. Moreover, the bactericidal assay demonstrated that thymol could be intelligently released and a considerable 75 % timely bactericidal effect was detected after 9 days' intermittently exposing to E. coli, S. aureus and A. flavus in vitro, by comparison thymol alone showed only 20 % bactericidal effect due to its volatility. The results are of great importance to offer an intelligent delivery system of bio-actives defending foodborne pathogens.
Collapse
Affiliation(s)
- Rui Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lishan Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shurui Peng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaolin Zhu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hongbo Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dan Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiayi Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liangbin Hu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
12
|
Comparison of properties and application of starch nanoparticles optimized prepared from different crystalline starches. Int J Biol Macromol 2023; 235:123735. [PMID: 36806775 DOI: 10.1016/j.ijbiomac.2023.123735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Starch nanoparticles (SNPs) were produced by nanoprecipitation combined with ultrasonication with the use of different starches (corn, potato and sago starch) and used to stabilize Pickering emulsions. The orthogonal experiment was used to optimize preparation conditions of gelatinization pretreatment duration of 30 min, ultrasonic power of 600 W, and ultrasonic time of 40 min. Compared with native starch, the SNPs were spherical in shape and displayed a V-type crystalline structure with low relative crystallinity and higher degree of double-helix. Compared with native starch-Pickering emulsion, the SNP-Pickering emulsion had a smaller droplet size, more uniform distribution, clearer oil/water interface, and higher static stability of droplets. The sago SNP-Pickering emulsion had the great gelatinous structure and emulsion stability. In addition, the SNP-Pickering emulsion had the better loading efficiency and controlled release performance of curcumin. Meanwhile, the bioavailability of curcumin in sago SNP-Pickering emulsion was highest.
Collapse
|
13
|
Gao W, Sui J, Yu B, Liu P, Cui B. Effect of shell separation pretreatment on the physicochemical properties of octenyl succinic anhydride-modified starch. Int J Biol Macromol 2022; 221:1-7. [PMID: 36067844 DOI: 10.1016/j.ijbiomac.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
Abstract
The effects of shell separation pretreatment (SSP) on the physicochemical properties of octenyl succinic anhydride (OSA)-modified starch were investigated in this study. SSP at different temperatures promoted esterification between starch molecules and OSA and thereby achieved a higher degree of substitution (DS). OSA-modified granule shells (OSCs) exhibited a rough surface and irregular shape, which were attributed to swelling caused by SSP during modification processes. The paste viscosity and viscoelastic properties of OSCs were enhanced after SSP. Both the swelling power and transparency of OSA esterified starch increased with DS values after SSP. The content of resistant starch (RS) among OSA esterified starch increased from 33.18 % to 45.33 %, which mainly occurred when SSP was introduced into the OS starch synthesis process. In summary, SSP at different temperatures promoted the unique physicochemical properties of OSCs specimens by increasing their DS values.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Jie Sui
- Shandong Academy of Agricultural Science, Jinan, Shandong 250131, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
14
|
Li Z, Anankanbil S, Li L, Lyu J, Nadzieja M, Guo Z. Alkylsuccinylated oxidized cellulose-based amphiphiles as a novel multi-purpose ingredient for stabilizing O/W emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
Zhang L, Chen DL, Wang XF, Xu L, Qian JY, He XD. Enzymatically modified quinoa starch based pickering emulsion as carrier for curcumin: Rheological properties, protection effect and in vitro digestion study. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Xiao W, Li J, Shen M, Yu Q, Chen Y, Xie J. Mesona chinensis polysaccharide accelerates the short-term retrogradation of debranched waxy corn starch. Curr Res Food Sci 2022; 5:1649-1659. [PMID: 36177335 PMCID: PMC9513214 DOI: 10.1016/j.crfs.2022.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
The effect of non-starch polysaccharides on the structural and functional properties of native starch have been extensively studied. However, the effect of non-starch polysaccharides on the structural characteristics of debranched starch, a kind of enzymatic modified starch, remains unclear. The aim of this study is to investigate the effects of Mesona chinensis polysaccharide (MP) on starch retrogradation and structural properties of debranched waxy corn starch (DWS). The results showed that only appropriate addition of MP (0.5 or 1%) can effectively promote the short-term retrogradation of DWS, while excessive MP (3 or 5%) had a negative effect. Gel hardness results revealed that the short-term retrogradation (24 h) of DWS could be divided into two phases. The retrogradation of DWS-MP gels mainly occurred at first stage (0–4 h), which was demonstrated by the rapid increase of gel hardness and relative crystallinity in this stage. In the second stage (4–24 h), DWS-MP gels were more likely to undergo the aggregation of starch granules as proved by SEM and particle size results. The degree of short-range ordered decreased during the total retrogradation stage. Overall, this work aims to provide an insight into the effect of non-starch polysaccharides on the short-term retrogradation of DWS. Only the appropriate addition of MP could accelerate the retrogradation of DWS. The short-term retrogradation of DWS could be divided into two stages. Gel hardness and relative crystallinity increased significantly in the first stage. The degree of short-range ordered reduced monotonically with retrogradation time. Starch particles mainly underwent aggregation in the second stage.
Collapse
Affiliation(s)
- Wenhao Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
- China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China
| | - Jinwang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
- China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
- China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
- China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
- China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
- China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China
- Corresponding author. State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
17
|
Hossain KMZ, Deeming L, Edler KJ. Recent progress in Pickering emulsions stabilised by bioderived particles. RSC Adv 2021; 11:39027-39044. [PMID: 35492448 PMCID: PMC9044626 DOI: 10.1039/d1ra08086e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/25/2021] [Indexed: 01/06/2023] Open
Abstract
In recent years, the demand for non-surfactant based Pickering emulsions in many industrial applications has grown significantly because of the option to select biodegradable and sustainable materials with low toxicity as emulsion stabilisers. Usually, emulsions are a dispersion system, where synthetic surfactants or macromolecules stabilise two immiscible phases (typically water and oil phases) to prevent coalescence. However, synthetic surfactants are not always a suitable choice in some applications, especially in pharmaceuticals, food and cosmetics, due to toxicity and lack of compatibility and biodegradability. Therefore, this review reports recent literature (2018-2021) on the use of comparatively safer biodegradable polysaccharide particles, proteins, lipids and combinations of these species in various Pickering emulsion formulations. Also, an overview of the various tuneable factors associated with the functionalisation or surface modification of these solid particles, that govern the stability of the Pickering emulsions is provided.
Collapse
Affiliation(s)
- Kazi M Zakir Hossain
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
- Centre for Sustainable Chemical Technologies, University of Bath Claverton Down Bath BA2 7AY UK
| | - Laura Deeming
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
- Centre for Sustainable Chemical Technologies, University of Bath Claverton Down Bath BA2 7AY UK
| | - Karen J Edler
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
- Centre for Sustainable Chemical Technologies, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
18
|
Impact of octenyl succinic anhydride (OSA) esterification on microstructure and physicochemical properties of sorghum starch. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Ghavidel N, Fatehi P. Recent Developments in the Formulation and Use of Polymers and Particles of Plant-based Origin for Emulsion Stabilizations. CHEMSUSCHEM 2021; 14:4850-4877. [PMID: 34424605 DOI: 10.1002/cssc.202101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The main scope of this Review was the recent progress in the use of plant-based polymers and particles for the stabilization of Pickering and non-Pickering emulsion systems. Due to their availability and promising performance, it was discussed how the source, modification, and formulation of cellulose, starch, protein, and lignin-based polymers and particles would impact their emulsion stabilization. Special attention was given toward the material synthesis in two forms of polymeric surfactants and particles and the corresponding formulated emulsions. Also, the effects of particle size, degree of aggregation, wettability, degree of substitution, and electrical charge in stabilizing oil/water systems and micro- and macro-structures of oil droplets were discussed. The wide range of applications using such plant-based stabilizers in different technologies as well as their challenge and future perspectives were described.
Collapse
Affiliation(s)
- Nasim Ghavidel
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| | - Pedram Fatehi
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| |
Collapse
|
20
|
Molecular structures of octenyl succinic anhydride modified starches in relation to their ability to stabilize high internal phase emulsions and oleogels. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Zhang L, Xiong T, Wang XF, Chen DL, He XD, Zhang C, Wu C, Li Q, Ding X, Qian JY. Pickering emulsifiers based on enzymatically modified quinoa starches: Preparation, microstructures, hydrophilic property and emulsifying property. Int J Biol Macromol 2021; 190:130-140. [PMID: 34481848 DOI: 10.1016/j.ijbiomac.2021.08.212] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022]
Abstract
Quinoa starch was developed as a new kind of Pickering emulsifier by enzymatic modification. The morphological structure, crystalline structure, lamellar structure, fractal structure, particle size distribution, contact angle, emulsion index (EI), and emulsion micromorphology were studied to explore the relationship between structure characteristics, hydrophilic property, and emulsifying properties of enzymatically modified (EM) quinoa starches. With the increasing enzymatic hydrolysis time in the test range of 0-9 h, particle size of EM quinoa starch decreased, and the broken starch and contact angle of EM quinoa starch increased; the EI value of emulsions with EM quinoa starch increased, and the oil droplet size of emulsions with EM quinoa starch decreased. It suggested that both the smallest particle size and the closest extent of the contact angle to 90° derived the best emulsifying property of EM-9. The EM quinoa starch had higher emulsifying capacity at higher oil volume fraction (Φ) (50%) than at lower Φ (20%), proving that the EM starch has potential to be used as Pickering emulsifiers in higher oil products, such as salad dressing.
Collapse
Affiliation(s)
- Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Ting Xiong
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Xian-Fen Wang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Dong-Ling Chen
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Xu-Dong He
- Yangzhou Center for Food and Drug Control, Building No. 2, Food Sci-Tech Park, Linjianglu 205, Yangzhou, Jiangsu 225004, People's Republic of China
| | - Chen Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Chunsen Wu
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Qian Li
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Xiangli Ding
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China.
| |
Collapse
|
22
|
Ribeiro E, Morell P, Nicoletti V, Quiles A, Hernando I. Protein- and polysaccharide-based particles used for Pickering emulsion stabilisation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106839] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Ji S, Xu T, Huang W, Gao S, Zhong Y, Yang X, Ahmed Hassan M, Lu B. Atmospheric pressure plasma jet pretreatment to facilitate cassava starch modification with octenyl succinic anhydride. Food Chem 2021; 370:130922. [PMID: 34537429 DOI: 10.1016/j.foodchem.2021.130922] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
Cassava starch (CS) was pretreated with atmospheric pressure plasma jet (APPJ), followed by esterification with octenyl succinic anhydride (OSA). This study was the first report investigating the effect of APPJ on CS modification with OSA. Results showed that APPJ pretreatment could change the morphological characteristics and crystallinity of CS. Consequently, the degree of substitution and reaction efficiency significantly improved compared with the unpretreated CS (P < 0.05). In Confocal laser scanning microscopy, the fluorescence intensity of OSA-modified CS pretreated with APPJ for 10 min and 15 min was higher than those pretreated with APPJ for 1, 3, and 5 min. The onset temperature and enthalpy (ΔH) of native starch decreased after APPJ pretreatment and further decreased by OSA modification. APPJ-OSA-CS also showed better emulsion stability and emulsion activity. This study demonstrated that APPJ could be used as a novel approach to facilitate starch modification with OSA.
Collapse
Affiliation(s)
- Shengyang Ji
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Tao Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Weisu Huang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Zhejiang Economic & Trade Polytechnic, Department of Applied Technology, Hangzhou 310018, China
| | - Sunan Gao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yongheng Zhong
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Mohamed Ahmed Hassan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
24
|
Emulsification and stabilization of diacylglycerol-in-water pickering emulsions stabilized by ultrafine grinding oat bran insoluble fiber-gelatinized starch hybrid granules. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Adilbekova A, Yertayeva A. Pickering emulsions stabilized by some inorganic materials. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2021. [DOI: 10.15328/cb1135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The paper presents studies of various solid stabilizers of emulsions based on inorganic materials. Inorganic colloidal particles have an advantage for obtaining of stable emulsions due to their safety for use in food, cosmetics, pharmaceutical industry and medicine. Pickering emulsions have a higher biodegradability compared to classical emulsions stabilized with surfactants. An overview of inorganic substances such as silicon dioxide, clay materials, metal and metal oxide nanoparticles, calcium compounds and carbon particles used for stabilizing of Pickering emulsions is considered. A variety of solid inorganic particles as well as modification of their surfaces by surfactants allows to obtain the stable Pickering emulsions of different types for a wide range of applications. It should be noted that despite a large number of studies, this class of disperse systems is still not studied fully; various methods of their preparation and influence of solid particle size on stability and size of emulsions droplets are shown.
Collapse
|
26
|
Effect of drying treatment on the structural characterizations and physicochemical properties of starch from canistel (Lucuma nervosa A.DC). Int J Biol Macromol 2020; 167:539-546. [PMID: 33279566 DOI: 10.1016/j.ijbiomac.2020.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 11/20/2022]
Abstract
This work investigated the effects of hot air drying pretreatment (HAD), freeze drying pretreatment (FD) and vacuum drying pretreatment (VD) on the physicochemical properties and structural characterizations of starch isolated from canistels. X-ray diffraction displayed that the starches separated from canistel by different drying pretreatments showed a typical A-type crystal structure. The SEM image showed that cracks and debris appeared on the surface of HVD and VD particles. The molecular structure of starches obtained by different drying pretreatments was studied using Fourier infrared and solid state 13C CP/MAS NMR analysis. The results indicated that vacuum drying pretreatment could promote the formation of the double helix of starch granules, and hot air drying and freeze drying destroyed the ordered structure of starch granules. These structural changed to affect the physicochemical properties of starch granules. The study of different drying pretreatments to separate starches provided practical value for drying pretreatments. Furthermore, the current study affords information for canistel starches cultivated in China that would be convenient for commercial applications.
Collapse
|
27
|
Characterization of Pickering emulsions stabilized by OSA-modified sweet potato residue cellulose: Effect of degree of substitute and concentration. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Characteristics of starch-based Pickering emulsions from the interface perspective. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Starch nanoparticles produced via acidic dry heat treatment as a stabilizer for a Pickering emulsion: Influence of the physical properties of particles. Carbohydr Polym 2020; 239:116241. [DOI: 10.1016/j.carbpol.2020.116241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/02/2020] [Accepted: 03/30/2020] [Indexed: 11/23/2022]
|
30
|
Chang S, Chen X, Liu S, Wang C. Novel gel-like Pickering emulsions stabilized solely by hydrophobic starch nanocrystals. Int J Biol Macromol 2020; 152:703-708. [PMID: 32087225 DOI: 10.1016/j.ijbiomac.2020.02.175] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/09/2020] [Accepted: 02/15/2020] [Indexed: 10/25/2022]
Abstract
The development of gel-like Pickering emulsions stabilized by edible particles has attracted significant interest in the food colloid field. This work reported that starch nanocrystals (SNCs), modified by octenyl succinic anhydride (OSA), could introduced as a natural stabilizer for gel-like Pickering emulsions. The formation, microstructure and stability of Pickering emulsions were characterized by visual observations and optical microscopy. The results indicated that surface modification improved the hydrophobicity and aqueous re-dispersibility of SNCs, as well as the emulsification performance of them. The stable gel-like Pickering emulsions were formed at different oil volume fractions (range from 40% to 74%), increasing the degree of substitution (DS: from 0.010 to 0.018) led to gel-like emulsion stronger stiffness. These findings offer a promising opportunity to develop a kind of novel edible gel-like Pickering emulsions stabilized by OS-SNCs for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Siqiao Chang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Xu Chen
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China.
| | - Chan Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China.
| |
Collapse
|
31
|
Marefati A, Rayner M. Starch granule stabilized Pickering emulsions: an 8-year stability study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2807-2811. [PMID: 31975414 DOI: 10.1002/jsfa.10289] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/07/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pickering emulsions are known to have advantages over conventional emulsions, in particular, improved and long-term stability against coalescence. This research is an eight-year stability investigation of oil-in-water Pickering emulsions stabilized by quinoa starch granules modified by octenyl succinic anhydride (OSA). Two different concentrations of starch (i.e. 200 and 600 mg mL-1 based on oil) were used at oil fraction (ϕ) of 0.1. The emulsions were prepared using a high-pressure homogenizer. The emulsions were stored in a refrigerator (at 6 °C) and evaluated using particle size analyzer over the storage period and light microscopy at the end of the storage period. RESULTS Starch granule stabilized Pickering emulsions produced by a high-pressure homogenizer displayed remarkable storage stability over the eight years with no indication of coalescence. In addition, the results showed that increasing the concentration of starch granules resulted in a decrease in droplet sizes. The sizes measured by the particle size analyzer showed a decline over the storage period which was due to dissociation of some networks of aggregated droplets that, in addition to representing smaller droplet sizes, resulted in the release of free and unbound starch entrapped in these networks. CONCLUSIONS This study showed that Pickering emulsions produced by OSA modified starch granules from quinoa can be used in practical applications for the development of highly stable formulations when prolonged storage is required. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ali Marefati
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Marilyn Rayner
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Wang C, Chen X, Liu S. Encapsulation of tangeretin into debranched-starch inclusion complexes: Structure, properties and stability. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Li S, Zhang B, Li C, Fu X, Huang Q. Pickering emulsion gel stabilized by octenylsuccinate quinoa starch granule as lutein carrier: Role of the gel network. Food Chem 2020; 305:125476. [DOI: 10.1016/j.foodchem.2019.125476] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
|
34
|
Song X, Zheng F, Ma F, Kang H, Ren H. The physical and oxidative stabilities of Pickering emulsion stabilized by starch particle and small molecular surfactant. Food Chem 2020; 303:125391. [DOI: 10.1016/j.foodchem.2019.125391] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 10/26/2022]
|
35
|
Liu Y, Zhang W, Wang K, Bao Y, Regenstein JM, Zhou P. Fabrication of Gel-Like Emulsions with Whey Protein Isolate Using Microfluidization: Rheological Properties and 3D Printing Performance. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02344-5 10.1007/s11947-019-02356-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Liu Y, Zhang W, Wang K, Bao Y, Regenstein JM, Zhou P. Fabrication of Gel-Like Emulsions with Whey Protein Isolate Using Microfluidization: Rheological Properties and 3D Printing Performance. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02344-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Albert C, Beladjine M, Tsapis N, Fattal E, Agnely F, Huang N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. J Control Release 2019; 309:302-332. [DOI: 10.1016/j.jconrel.2019.07.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/18/2022]
|
38
|
Li S, Zhang B, Tan CP, Li C, Fu X, Huang Q. Octenylsuccinate quinoa starch granule-stabilized Pickering emulsion gels: Preparation, microstructure and gelling mechanism. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Li S, Li C, Yang Y, He X, Zhang B, Fu X, Tan CP, Huang Q. Starch granules as Pickering emulsifiers: Role of octenylsuccinylation and particle size. Food Chem 2019; 283:437-444. [DOI: 10.1016/j.foodchem.2019.01.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/05/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023]
|
40
|
Jain S, Winuprasith T, Suphantharika M. Design and synthesis of modified and resistant starch-based oil-in-water emulsions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
|
42
|
Zhong L, Ding Y, Zhang B, Wang Z, Li C, Fu X, Huang Q. Effect of Octenylsuccinylation of Oxidized Cassava Starch on Grease Resistance and Waterproofing of Food Wrapping Paper. STARCH-STARKE 2019. [DOI: 10.1002/star.201800284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Li Zhong
- School of Food Science and EngineeringGuangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhou510640China
| | - Yajie Ding
- School of Food Science and EngineeringGuangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhou510640China
| | - Bin Zhang
- School of Food Science and EngineeringGuangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhou510640China
- SCUT‐Zhuhai Institute of Modern Industrial InnovationZhuhaiGuangdong519175China
| | - Zhigang Wang
- Guangzhou Lonkey Industrial Co. Ltd.GuangzhouGuangdong510660China
| | - Chao Li
- School of Food Science and EngineeringGuangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhou510640China
- SCUT‐Zhuhai Institute of Modern Industrial InnovationZhuhaiGuangdong519175China
| | - Xiong Fu
- School of Food Science and EngineeringGuangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhou510640China
- SCUT‐Zhuhai Institute of Modern Industrial InnovationZhuhaiGuangdong519175China
| | - Qiang Huang
- School of Food Science and EngineeringGuangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhou510640China
- SCUT‐Zhuhai Institute of Modern Industrial InnovationZhuhaiGuangdong519175China
| |
Collapse
|
43
|
Emulsifying stability properties of octenyl succinic anhydride (OSA) modified waxy starches with different molecular structures. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.07.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Shao P, Zhang H, Niu B, Jin W. Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols. Int J Biol Macromol 2018; 118:2032-2039. [DOI: 10.1016/j.ijbiomac.2018.07.076] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/26/2018] [Accepted: 07/12/2018] [Indexed: 02/01/2023]
|
45
|
Altuna L, Herrera ML, Foresti ML. Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.01.032] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Li J, Ye F, Lei L, Zhou Y, Zhao G. Joint Effects of Granule Size and Degree of Substitution on Octenylsuccinated Sweet Potato Starch Granules As Pickering Emulsion Stabilizers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4541-4550. [PMID: 29664628 DOI: 10.1021/acs.jafc.7b05507] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The granules of sweet potato starch were size fractionated into three portions with significantly different median diameters ( D50) of 6.67 (small-sized), 11.54 (medium-sized), and 16.96 μm (large-sized), respectively. Each portion was hydrophobized at the mass-based degrees of substitution (DSm) of approximately 0.0095 (low), 0.0160 (medium), and 0.0230 (high). The Pickering emulsion-stabilizing capacities of modified granules were tested, and the resultant emulsions were characterized. The joint effects of granule size and DSm on emulsifying capacity (EC) were investigated by response surface methodology. For small-, medium-, and large-sized fractions, their highest emulsifying capacities are comparable but, respectively, encountered at high (0.0225), medium (0.0158), and low (0.0095) DSm levels. The emulsion droplet size increased with granule size, and the number of freely scattered granules in emulsions decreased with DSm. In addition, the term of surface density of the octenyl succinic group (SD-OSG) was first proposed for modified starch granules, and it was proved better than DSm in interpreting the emulsifying capacities of starch granules with varying sizes. The present results implied that, as the particulate stabilizers, the optimal DSm of modified starch granules is size specific.
Collapse
Affiliation(s)
- Jinfeng Li
- College of Food Science , Southwest University , Chongqing 400715 , People's Republic of China
| | - Fayin Ye
- College of Food Science , Southwest University , Chongqing 400715 , People's Republic of China
| | - Lin Lei
- College of Food Science , Southwest University , Chongqing 400715 , People's Republic of China
| | - Yun Zhou
- College of Food Science , Southwest University , Chongqing 400715 , People's Republic of China
| | - Guohua Zhao
- College of Food Science , Southwest University , Chongqing 400715 , People's Republic of China
- Chongqing Sweet Potato Research Centre , Chongqing 400715 , People's Republic of China
| |
Collapse
|
47
|
Yan S, Li Y, Li P, Jia T, Wang S, Wang X. Fabrication of mesoporous POMs/SiO2nanofibers through electrospinning for oxidative conversion of biomass by H2O2and oxygen. RSC Adv 2018; 8:3499-3511. [PMID: 35542953 PMCID: PMC9077668 DOI: 10.1039/c7ra12842h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/02/2018] [Indexed: 11/21/2022] Open
Abstract
The oxidation process for mesoporous H5PMo10V2O40/SiO2nanofiber catalyst.
Collapse
Affiliation(s)
- Siqi Yan
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Yue Li
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Peili Li
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Ting Jia
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Shengtian Wang
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Xiaohong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|