1
|
Wang C, Wen HX, Yang S, Ma CY, Wang XM, Tu ZC, Shao YH, Liu J. Effect of dynamic high-pressure microfluidization on the structural, emulsifying properties, in vitro digestion and antioxidant activity of whey protein isolate. Int J Biol Macromol 2024; 283:137720. [PMID: 39551325 DOI: 10.1016/j.ijbiomac.2024.137720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The effects of dynamic high-pressure microfluidization (DHPM) on the structural, emulsifying properties, in vitro digestion and antioxidant activity of whey protein isolate (WPI) were investigated. The results demonstrated that WPI treated with 100 MPa DHPM exhibited superior emulsification performance. This can be attributed to the conformational changes induced by 100 MPa DHPM in WPI, leading to a transformation from disordered structures to ordered structures and an increased exposure of fluorophore such as tryptophan residues and hydrophobic groups, reduced aggregation state and particle size of WPI. These factors facilitated the migration of WPI towards the oil-water interface, resulting in the formation of a robust and compact adsorption layer which reduces interfacial tension and enhances emulsification stability. Furthermore, it was observed that while DHPM did not significantly affect the digestibility of WPI, it did enhance exposure to antioxidant amino acids in the digestive products thereby enhanced their antioxidant properties. In summary, structural modification induced by DHPM treatment enhanced both emulsification and antioxidant properties of WPI. These findings highlight the significant potential of DHPM treatment for enhancing the quality of meat products with an emulsion-type structure.
Collapse
Affiliation(s)
- Chen Wang
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Han-Xing Wen
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Su Yang
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chang-Yue Ma
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xu-Mei Wang
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yan-Hong Shao
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Jun Liu
- School of health & College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
2
|
Xiao Y, Zhao Z, Zhang T, Xu X, Anik K, Qiu Y, Xu Z, Li S, Xu H. A new glycoprotein from pigeon egg: Study on its structure and digestive characteristics. Food Res Int 2024; 194:114875. [PMID: 39232513 DOI: 10.1016/j.foodres.2024.114875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Pigeon egg white (PEW) is widely recognized as a promising source of bioactive proteins, with a high degree of glycosylation. This study focused on the characterization of a novel glycoprotein extracted from PEW, known as ovalbumin-related protein Y (OVAY). Our investigation included an analysis of the N-glycan and protein structures of OVAY, as well as an examination of simulated gastrointestinal digestive products and the transmembrane transport mechanism of OVAY-digested peptides. The results revealed that OVAY contains two glycosylation sites (Asn 62, 215) and consists of 30 N-linked glycoforms, with the top three glycans being N6H3, N6H7S1, and N6H5. Additionally, OVAY is rich in Gal and sialic acid and exhibits a rod-like molecular structure. Furthermore, it was found that OVAY demonstrates resistance to gastric digestion, with its digested peptides primarily transported via PepT1 and endocytosis. This study provides insight into the glycoprotein structure of OVAY and elucidates its physiological activity, providing a theoretical reference for the development of a novel sialate-rich protein.
Collapse
Affiliation(s)
- Yu Xiao
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Zeyun Zhao
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Tao Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| | - Xiaoqi Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China.
| | - Khan Anik
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Yibin Qiu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Zheng Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Sha Li
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Hong Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
3
|
Li X, Wu Y, Guan W, Yang J, Wang Y. Epigallocatechin gallate modification of physicochemical, structural and functional properties of egg yolk granules. Food Chem 2024; 449:139279. [PMID: 38599106 DOI: 10.1016/j.foodchem.2024.139279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The aim of this study was to prepare protein-polyphenol covalent complexes by treating egg yolk granules (EYG) with alkali in the presence of epigallocatechin gallate (EGCG) and characterize the physicochemical, structural, and functional properties of these covalent complexes. Results revealed that the optimal covalent binding occurred when the concentration of EGCG reached 0.15% (w/w), resulting in a grafting rate of 1.51 ± 0.03%. As the amount of EGCG increased, corresponding increases were observed in the particle size and ζ-potential of the complexes, thereby enhancing their stability. Furthermore, our analysis using fluorescence spectroscopy, FTIR, SEM, and SDS-PAGE collectively demonstrated the formation of a covalent complex between EYG and EGCG. Notably, the covalent complexes exhibited improved antioxidant activity and emulsifying properties. Overall, this study establishes a theoretical framework for the future practical application of EYG, emphasizing the potential of EGCG to modify its structural and functional characteristics.
Collapse
Affiliation(s)
- Xin Li
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Yue Wu
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Wenle Guan
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Jianrong Yang
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Yuemeng Wang
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong 264003, China.
| |
Collapse
|
4
|
Xu J, Fan X, Xu X, Deng D, Yang L, Song H, Liu H. Microfluidization improved hempseed yogurt's physicochemical and storage properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2252-2261. [PMID: 37971866 DOI: 10.1002/jsfa.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Plant-based yogurts are suffering from the common problems, such as an unattractive color, stratified texture state and rough taste. Therefore, it is urgent to develop a novel processing method to improve the quality and extend the storage life of hempseed yogurt. In the present study, hempseed yogurt was microfluidized prior to fermentation. The effects of microfluidization on microstructure, particle size, mechanical properties, sensory acceptability, variations in pH and titratable acidity, lactic acid bacteria (LAB) counts, and stability of hempseed yogurt during 20 days of storage were investigated. RESULTS Microfluidization contributed to the production of hempseed yogurt as a result of the better physicochemical properties compared to normal homogenization. Specifically, microfluidization reduced the particle size of hempseed yogurt with a uniform particle distribution, increased water holding capacity, and improved texture and rheological properties. These advancements resulted in higher sensory scores for the yogurt. Furthermore, during storage, microfluidization effectively inhibited the post-acidification process of hempseed yogurt, and increased LAB counts and storage stability. CONCLUSION Microfluidization improved the physicochemical properties and storage stability of hempseed yogurt. Our findings support the application of microfluidization in hempseed yogurt and provide a new approach for enhancing the quality of plant-based alternatives that meet consumers' demands for high-quality food products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xiangrong Fan
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Daozi Deng
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| |
Collapse
|
5
|
Im S, Jones OG, Choi SJ. Fabrication of Whey Protein Isolate-Pectin Nanoparticles by Thermal Treatment: Effect of Dynamic High-Pressure Treatment. Foods 2023; 12:4217. [PMID: 38231650 DOI: 10.3390/foods12234217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
This study investigated the impact of dynamic high-pressure (DHP) treatment on the ability of whey protein isolate (WPI) to form associative complexes with pectin and to form aggregate particles after their subsequent heat treatment. Light scattering showed that DHP treatments disrupted preexisting WPI aggregates and assembled pectin chains. Complexes formed from WPI/pectin mixtures at pH 4.5 were an order of magnitude smaller when formed after DHP treatment, regardless of the degree of esterification. WPI/pectin complexes formed after DHP treatment were more stable against subsequent pH neutralization than complexes formed without DHP treatment, and WPI/high-methoxyl pectin (HMP) complexes had greater stability than WPI/low-methoxyl pectin (LMP) complexes. WPI/pectin particles prepared by thermal treatment of complexes at pH 4.5 were also smaller when prepared after DHP treatment. WPI/HMP particles were stable to subsequent pH neutralization, while WPI/LMP particles became larger after neutralization.
Collapse
Affiliation(s)
- Sohyeon Im
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Owen Griffith Jones
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Seung Jun Choi
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Center for Functional Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
6
|
Xu L, Pan F, Li Y, Liu H, Wang C. Characterization and Molecular Dynamics Simulation of a Lipase Capable of Improving the Functional Characteristics of an Egg-Yolk-Contaminated Liquid Egg White. Foods 2023; 12:4098. [PMID: 38002155 PMCID: PMC10670289 DOI: 10.3390/foods12224098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Lipase has great application potential in hydrolyzing residual yolk lipid in egg white liquid to restore its functional properties. In this study, a lipase gene from Bacillus subtilis was expressed in E. coli BL21 (DE3) and named Lip-IM. Results showed that although Lip-IM has stronger specificity for medium- and short-chain substrates than long-chain substrates (C16, C18), due to its excellent enzyme activity, it also has strong hydrolysis activity for long-chain substrates and maintained over 80% activity at 4-20 °C, but significantly reduced when the temperature exceeds 40 °C. The addition of 0.5% Lip-IM enhanced foaming ability by 26% (from 475 to 501%) and reduced liquid precipitation rate by 9% (from 57 to 48%). Furthermore, molecular dynamics (MD) simulations were run to investigate the conformational stability of Lip-IM at different temperatures. Results showed that Lip-IM maintained a stable conformation within the temperature range of 277-303 K. Fluctuations in the flexible area and backbone movement of proteins were identified as the main reasons for its poor thermal stability.
Collapse
Affiliation(s)
- Linlin Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; (L.X.); (H.L.)
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
| | - Yingnan Li
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| | - Huiqian Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; (L.X.); (H.L.)
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; (L.X.); (H.L.)
| |
Collapse
|
7
|
Hu Y, Chen H, Yang Y, Zhang S, Xie Z, Liu J, Jiang Q, Liu J, Wen P. Comparison of ovalbumin glycation induced by high-temperature steaming and high-temperature baking: A study combining conventional spectroscopy with high-resolution mass spectrometry. Food Res Int 2023; 173:113279. [PMID: 37803592 DOI: 10.1016/j.foodres.2023.113279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 10/08/2023]
Abstract
High-temperature steaming (HTS) and high-temperature baking (HTB)-induced ovalbumin (OVA)-glucose glycation (140 °C, 1-3 min) were compared, and the different mechanisms were evaluated by changes in protein conformation, glycation sites and average degree of substitution per peptide molecule (DSP) values as well as the antioxidant activity of glycated OVA. Conventional spectroscopic results suggested that in comparison with HTB, HTS promoted protein expansion, increased β-sheet content and made OVA structure more orderly. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis showed that 10 glycation sites were found under HTB, while 4 new glycation sites R111, R200, R219 and K323 appeared under HTS, and 2 of them (R219 and K323) were located in internal β-sheet chains. The antioxidant activities of glycated OVA increased with increasing treatment time, and HTS showed stronger enhancement effect than HTB. Furthermore, the DSP values were generally higher under HTS than HTB. Compared with HTB, HTS with high penetrability could enhance the change of OVA primary structure and spatial conformation, making the protein structure more unfolded and stable, leading to more protein-sugar collisions occurred in inner OVA molecular and significantly promoted glycation. In conclusion, HTS is a promising method for high-temperature short-time glycation reaction, with drastically increasing the protein antioxidant activities.
Collapse
Affiliation(s)
- Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Haiqi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yifan Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Siqiong Zhang
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi 331208, China
| | - Zuohua Xie
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi 331208, China.
| | - Jiaojiao Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qiannan Jiang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jun Liu
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
8
|
Jiang P, Kang Z, Zhao S, Meng N, Liu M, Tan B. Effect of Dynamic High-Pressure Microfluidizer on Physicochemical and Microstructural Properties of Whole-Grain Oat Pulp. Foods 2023; 12:2747. [PMID: 37509839 PMCID: PMC10378919 DOI: 10.3390/foods12142747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
By avoiding the filtration step and utilizing the whole components of oats, the highest utilization rate of raw materials, improving the nutritional value of products and reducing environmental pollution, can be achieved in the production of whole-grain oat drinks. This study innovatively introduced a dynamic high-pressure microfluidizer (DHPM) into the processing of whole-grain oat pulp, which aimed to achieve the efficient crushing, homogenizing and emulsification of starch, dietary fiber and other substances. Due to DHPM processing, the instability index and slope value were reduced, whereas the β-glucan content, soluble protein content and soluble dietary fiber content were increased. In the samples treated with a pressure of 120 MPa and 150 MPa, 59% and 67% more β-glucan content was released, respectively. The soluble dietary fiber content in the samples treated with a pressure of 120 MPa and 150 MPa was increased by 44.8% and 43.2%, respectively, compared with the sample treated with a pressure of 0 MPa. From the perspective of the relative stability of the sample and nutrient enhancement, the processing pressure of 120 MPa was a good choice. In addition, DHPM processing effectively reduced the average particle size and the relaxation time of the water molecules of whole-grain oat pulp, whereas it increased the apparent viscosity of whole-grain oat pulp; all of the above changes alleviated the gravitational subsidence of particles to a certain extent, and thus the overall stability of the system was improved. Furthermore, CLSM and AFM showed that the samples OM-120 and OM-150 had a more uniform and stable structural system as a whole. This study could provide theoretical guidance for the development of a whole-grain oat drink with improved quality and consistency.
Collapse
Affiliation(s)
- Ping Jiang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Ziyue Kang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Su Zhao
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Ning Meng
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Ming Liu
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Bin Tan
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
9
|
Ye L, Lü L, Lin X, He K, Yang X, Wan Z, Liu L, Wu H, Xing S, Wu X. Effect of lipid peroxidation on the allergenicity and functional properties of soybean β-conglycinin (7S) and glycinin (11S). FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Wu SS, Han W, Cheng YF, Yun SJ, Chang MC, Cheng FE, Cao JL, Feng CP. Transglutaminase-Catalyzed Glycosylation Improved Physicochemical and Functional Properties of Lentinus edodes Protein Fraction. Foods 2023; 12:foods12091849. [PMID: 37174388 PMCID: PMC10178280 DOI: 10.3390/foods12091849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Lentinula edodes has high nutritional value and abundant protein. In order to develop and utilize edible mushroom protein, this study was designed to investigate the effects of TGase-catalyzed glycosylation and cross-linking on the physicochemical and functional properties of Lentinus edodes protein fraction. The results showed that within a certain time, glycosylation and TGase-catalyzed glycosylation decreased the total sulfydryl, free sulfydryl, disulfide bond, surface hydrophobicity, β-fold and α-helix, but increased the fluorescence intensity, random coil, β-turn, particle size and thermal stability. The apparent viscosity and the shear stress of the protein with an increase in shear rate were increased, indicating that TGase-catalyzed glycosylation promoted the generation of cross-linked polymers. In addition, the TGase-catalyzed glycosylated proteins showed a compact texture structure similar to the glycosylated proteins at the beginning, indicating that they formed a stable three-dimensional network structure. The flaky structure of proteins became more and more obvious with time. Moreover, the solubility, emulsification, stability and oil-holding capacity of enzymatic glycosylated Lentinus edodes protein fraction were significantly improved because of the proper TGase effects of glycosylation grafting and cross-linking. These results showed that glycosylation and TGase-catalyzed glycosylation could improve the processing characteristics of the Lentinula edodes protein fraction to varying degrees.
Collapse
Affiliation(s)
- Shan-Shan Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wei Han
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yan-Fen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shao-Jun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ming-Chang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Fei-Er Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
- Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Jinzhong 030801, China
| | - Jin-Ling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Cui-Ping Feng
- Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Jinzhong 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| |
Collapse
|
11
|
Xu F, Xue L, Ma Y, Niu T, Zhao P, Wu Z, Wang Y. Effects of Ultra-High-Pressure Jet Processing on Casein Structure and Curdling Properties of Skimmed Bovine Milk. Molecules 2023; 28:molecules28052396. [PMID: 36903641 PMCID: PMC10005577 DOI: 10.3390/molecules28052396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Ultra-high-pressure jet processing (UHPJ) is a new non-thermal processing technique that can be employed for the homogenization and the sterilization of dairy products. However, the effects on dairy products are unknown when using UHPJ for homogenization and sterilization. Thus, this study aimed to investigate the effects of UHPJ on the sensory and curdling properties of skimmed milk and the casein structure in skimmed milk. Skimmed bovine milk was treated with UHPJ using different pressures (100, 150, 200, 250, 300 MPa) and casein was extracted by isoelectric precipitation. Subsequently, the average particle size, Zeta potential, contents of free sulfhydryl and disulfide bonds, secondary structure, and surface micromorphology were all used as evaluation indicators to explore the effects of UHPJ on the structure of casein. The results showed that with an increase of pressure, the free sulfhydryl group content changed irregularly, while the disulfide bond content increased from 1.085 to 3.0944 μmol/g. The content of α-helix and random coil in the casein decreased, while the β-sheet content increased at 100, 150, 200 MPa pressure. However, treatment with higher pressures of 250 and 300 MPa had the opposite effect. The average particle size of the casein micelles first decreased to 167.47 nm and then increased up to 174.63 nm; the absolute value of Zeta potential decreased from 28.33 to 23.77 mV. Scanning electron microscopy analysis revealed that the casein micelles had fractured into flat, loose, porous structures under pressure instead of into large clusters. After being ultra-high-pressure jet-processed, the sensory properties of skimmed milk and its fermented curd were analyzed concurrently. The results demonstrated that UHPJ could alter the viscosity and color of skimmed milk, shortening curdling time from 4.5 h to 2.67 h, and that the texture of the curd fermented with this skimmed milk could be improved to varying degrees by changing the structure of casein. Thus, UHPJ has a promising application in the manufacture of fermented milk due to its ability to enhance the curdling efficiency of skimmed milk and improve the texture of fermented milk.
Collapse
Affiliation(s)
- Fei Xu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Mengniu Hi-Tech Dairy (Beijing) Co., Ltd., Beijing 101107, China
| | - Lu Xue
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Correspondence: (L.X.); (Y.W.)
| | - Yanfeng Ma
- Mengniu Hi-Tech Dairy (Beijing) Co., Ltd., Beijing 101107, China
| | - Tianjiao Niu
- Mengniu Hi-Tech Dairy (Beijing) Co., Ltd., Beijing 101107, China
| | - Pei Zhao
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yanfa Wang
- Mengniu Hi-Tech Dairy (Beijing) Co., Ltd., Beijing 101107, China
- Correspondence: (L.X.); (Y.W.)
| |
Collapse
|
12
|
Ovalbumin, an outstanding food hydrocolloid: Applications, technofunctional attributes, and nutritional facts, A systematic review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Han K, Feng X, Yang Y, Tang X, Gao C. Changes in the physicochemical, structural and emulsifying properties of chicken myofibrillar protein via microfluidization. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Effect of dynamic high-pressure microfluidization on physicochemical, structural, and functional properties of oat protein isolate. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Ong KS, Chiang JH, Sim SYJ, Liebl D, Madathummal M, Henry CJ. Functionalising insoluble pea protein aggregates using high-pressure homogenisation: Effects on physicochemical, microstructural and functional properties. FOOD STRUCTURE 2022. [DOI: 10.1016/j.foostr.2022.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Lv L, Ye L, Lin X, Li L, Chen J, Yue W, Wu X. Functional and Allergenic Properties Assessment of Conalbumin (Ovotransferrin) after Oxidation. Foods 2022; 11:foods11152308. [PMID: 35954072 PMCID: PMC9367811 DOI: 10.3390/foods11152308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Conalbumin (CA) is an iron-binding egg protein that has various bioactivities and causes major allergenicity in humans. This study investigated how oxidation affects the multiple functional properties of CA. The lipid peroxidation method was used to prepare treated CA [2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-CA and acrolein-CA] complexes. CA induced structural changes through oxidation. These changes enhanced the digestibility, rate of endocytosis in dendritic cells, and emulsifying and foaming properties of CA. ELISA and immunoblot analysis showed that the complexes reduced the IgE-binding ability of CA through lipid oxidation. KU812 cell assays showed that modification by AAPH and acrolein caused the release of IL-4 and histamine to decline. In conclusion, oxidation treatment modified the functional and structural properties of CA, reducing allergenicity during processing and preservation.
Collapse
|
17
|
Wang D, Zheng X, Fan Q, Wang P, Zeng H, Zhang Y, Zheng B, Lin S. The effect of dynamic high‐pressure microfluidization on the physicochemical and digestive properties of proteins in insoluble fraction of edible bird's nest. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Dehua Wang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Xinyi Zheng
- Engineering Research Centre of Fujian‐Taiwan Special Marine Food Processing and Nutrition Ministry of Education Fuzhou Fujian China
| | - Qunyan Fan
- Engineering Research Centre of Fujian‐Taiwan Special Marine Food Processing and Nutrition Ministry of Education Fuzhou Fujian China
- Xiamen Yanzhiwu Sinong Food Co., Ltd Xiamen Fujian China
| | - Peixin Wang
- Engineering Research Centre of Fujian‐Taiwan Special Marine Food Processing and Nutrition Ministry of Education Fuzhou Fujian China
| | - Hongliang Zeng
- Engineering Research Centre of Fujian‐Taiwan Special Marine Food Processing and Nutrition Ministry of Education Fuzhou Fujian China
| | - Yi Zhang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Centre of Fujian‐Taiwan Special Marine Food Processing and Nutrition Ministry of Education Fuzhou Fujian China
- State Key Laboratory of Food Safety Technology for Meat Products Xiamen Fujian China
| | - Baodong Zheng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Centre of Fujian‐Taiwan Special Marine Food Processing and Nutrition Ministry of Education Fuzhou Fujian China
| | - Shaoling Lin
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Centre of Fujian‐Taiwan Special Marine Food Processing and Nutrition Ministry of Education Fuzhou Fujian China
- Key Laboratory of Marine Biotechnology of Fujian Province Institute of Oceanology Fujian Agriculture and Forestry University Fuzhou Fujian China
| |
Collapse
|
18
|
Sun F, Lv L, Huang C, Lin Q, He K, Ye L, Lin X, Wu X. Development of hypoallergenic ovalbumin with improving functional properties by AAPH and acrolein treatment. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
Modification of insoluble dietary fiber from rice bran with dynamic high pressure microfluidization: Cd(II) adsorption capacity and behavior. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Yang W, Tu Z, Li Q, Kaltashov IA, McClements DJ. Utilization of sonication-glycation to improve the functional properties of ovalbumin: A high-resolution mass spectrometry study. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Ghanghas N, Prabhakar PK, Sharma S, Mukilan M. Microfluidization of fenugreek (Trigonella foenum graecum) seed protein concentrate: Effects on functional, rheological, thermal and microstructural properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Zhang L, Chen X, Wang Y, Guo F, Hu S, Hu J, Xiong H, Zhao Q. Characteristics of rice dreg protein isolate treated by high-pressure microfluidization with and without proteolysis. Food Chem 2021; 358:129861. [PMID: 33932761 DOI: 10.1016/j.foodchem.2021.129861] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
The characteristics of rice dreg protein isolate (RDPI) treated by microfluidization (0, 40, 80, 120, and 160 MPa) with or without proteolysis were investigated. Alcalase, Neutrase, and the combination of the two (Alcalcase:Neutrase = 1:1 [w/w]) were adopted for hydrolysis. The surface hydrophobicity and solubility of RDPI were increased. As pressure increased, different structures of RDPI exhibited disaggregation (<120 MPa) and reaggregation (160 MPa), and the effect on proteolysis was significant. The solubility of Neutrase and combined enzyme hydrolysates was improved after microfluidization. Additionally, the optimum choice of microfluidization (40 MPa) and Neutrase was efficient for improving the DPPH radical scavenging activity. The results indicate that both pressure level and enzyme type synergistically determine the functionality and antioxidant activities of products. This work may provide an alternative methodology for improving the utilization of RDPI in the food industry through desirable modifications.
Collapse
Affiliation(s)
- Liqiong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Xianxin Chen
- Jiangxi Health Vocational College, Nanchang 330052, China
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Fanghua Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Song Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Juwu Hu
- Jiangxi Academy of Sciences, Jiangxi 330029, China.
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
23
|
Ge Z, Zhang Y, Jin X, Wang W, Wang X, Liu M, Zhang L, Zong W. Effects of dynamic high-pressure microfluidization on the physicochemical, structural and functional characteristics of Eucommia ulmoides Oliv. seed meal proteins. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Melfi MT, Kanawati B, Schmitt-Kopplin P, Macchia L, Centonze D, Nardiello D. Investigation of fennel protein extracts by shot-gun Fourier transform ion cyclotron resonance mass spectrometry. Food Res Int 2021; 139:109919. [PMID: 33509486 DOI: 10.1016/j.foodres.2020.109919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
A rapid shot-gun method by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is proposed for the characterization of fennel proteins. After enzymatic digestion with trypsin, few microliters of extract were analyzed by direct infusion in positive ion mode. A custom-made non-redundant fennel-specific proteome database was derived from the well-known NCBI database; additional proteins belonging to recognized allergenic sources (celery, carrot, parsley, birch, and mugwort) were also included in our database, since patients hypersensitive to these plants could also suffer from fennel allergy. The peptide sequence of each protein from that derived list was theoretically sequenced to produce calculated m/z lists of possible m/z ions after tryptic digestions. Then, by using a home-made Matlab algorithm, those lists were matched with the experimental FT-ICR mass spectrum of the fennel peptide mixture. Finally, Peptide Mass Fingerprint searches confirmed the presence of the matched proteins inside the fennel extract with a total of 70 proteins (61 fennel specific and 9 allergenic proteins).
Collapse
Affiliation(s)
- Maria Teresa Melfi
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - Basem Kanawati
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstaedter Landstrasse, 85764 Neuherberg, Germany.
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstaedter Landstrasse, 85764 Neuherberg, Germany; Chair of Analytical Food Chemistry, Technical University of Munich, Alte Akademie 10, D-85354 Freising, Germany
| | - Luigi Macchia
- Dipartimento dell'Emergenza e dei Trapianti di Organi, Sezione di Allergologia ed Immunologia Clinica, Università degli Studi di Bari, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Diego Centonze
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - Donatella Nardiello
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via Napoli, 25, 71122 Foggia, Italy.
| |
Collapse
|
25
|
Ozturk OK, Turasan H. Latest developments in the applications of microfluidization to modify the structure of macromolecules leading to improved physicochemical and functional properties. Crit Rev Food Sci Nutr 2021; 62:4481-4503. [PMID: 33492179 DOI: 10.1080/10408398.2021.1875981] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microfluidization is a unique high-pressure homogenization technique combining various forces such as high-velocity impact, high-frequency vibration, instantaneous pressure drop, intense shear rate, and hydrodynamic cavitation. Even though it is mainly used on emulsion-based systems and known for its effects on particle size and surface area, it also significantly alters physicochemical and functional properties of macromolecules including hydration properties, solubility, viscosity, cation-exchange capacity, rheological properties, and bioavailability. Besides, the transformation of structure and conformation due to the combined effects of microfluidization modifies the material characteristics that can be a base for new innovative food formulations. Therefore, microfluidization is being commonly used in the food industry for various purposes including the formation of micro- and nano-sized emulsions, encapsulation of easily degradable bioactive compounds, and improvement in functional properties of proteins, polysaccharides, and dietary fibers. Although the extent of modification through microfluidization depends on processing conditions (e.g., pressure, number of passes, solvent), the nature of the material to be processed also changes the outcomes significantly. Therefore, it is important to understand the effects of microfluidization on each food component. Overall, this review paper provides an overview of microfluidization treatment, summarizes the applications on macromolecules with specific examples, and presents the existing problems.
Collapse
Affiliation(s)
- Oguz Kaan Ozturk
- Whistler Carbohydrate Research Center, Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| | - Hazal Turasan
- Whistler Carbohydrate Research Center, Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
26
|
Ma Y, Shan A, Wang R, Zhao Y, Chi Y. Characterization of egg white powder gel structure and its relationship with gel properties influenced by pretreatment with dry heat. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106149] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
He X, Chen J, He X, Feng Z, Li C, Liu W, Dai T, Liu C. Industry-scale microfluidization as a potential technique to improve solubility and modify structure of pea protein. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102582] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Ozohanics O, Ambrus A. Hydrogen-Deuterium Exchange Mass Spectrometry: A Novel Structural Biology Approach to Structure, Dynamics and Interactions of Proteins and Their Complexes. Life (Basel) 2020; 10:E286. [PMID: 33203161 PMCID: PMC7696067 DOI: 10.3390/life10110286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022] Open
Abstract
Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) is a rapidly evolving technique for analyzing structural features and dynamic properties of proteins. It may stand alone or serve as a complementary method to cryo-electron-microscopy (EM) or other structural biology approaches. HDX-MS is capable of providing information on individual proteins as well as large protein complexes. Owing to recent methodological advancements and improving availability of instrumentation, HDX-MS is becoming a routine technique for some applications. When dealing with samples of low to medium complexity and sizes of less than 150 kDa, conformation and ligand interaction analyses by HDX-MS are already almost routine applications. This is also well supported by the rapid evolution of the computational (software) background that facilitates the analysis of the obtained experimental data. HDX-MS can cope at times with analytes that are difficult to tackle by any other approach. Large complexes like viral capsids as well as disordered proteins can also be analyzed by this method. HDX-MS has recently become an established tool in the drug discovery process and biopharmaceutical development, as it is now also capable of dissecting post-translational modifications and membrane proteins. This mini review provides the reader with an introduction to the technique and a brief overview of the most common applications. Furthermore, the most challenging likely applications, the analyses of glycosylated and membrane proteins, are also highlighted.
Collapse
Affiliation(s)
- Oliver Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, 37–47 Tuzolto Street, 1094 Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, 37–47 Tuzolto Street, 1094 Budapest, Hungary
| |
Collapse
|
29
|
Mu Y, Sun J, Obadi M, Chen Z, Xu B. Effects of saccharides on the rheological and gelling properties and water mobility of egg white protein. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Effect of dynamic high pressure microfluidization on the solubility properties and structure profiles of proteins in water-insoluble fraction of edible bird's nests. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Liu L, Li Y, Dai X, Zhu Y, Hao W, Yang X. Effects of synergistic modification with enzymatic hydrolysis and phosphorylation on functional and structural properties of ovalbumin. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lili Liu
- College of food and bioengineering Henan University of Science and Technology, National Experimental Teaching Demonstration Center for Food Processing and Security Luoyang China
| | - Yuanyuan Li
- College of food and bioengineering Henan University of Science and Technology, National Experimental Teaching Demonstration Center for Food Processing and Security Luoyang China
| | - Xiaoning Dai
- College of food and bioengineering Henan University of Science and Technology, National Experimental Teaching Demonstration Center for Food Processing and Security Luoyang China
| | - Yang Zhu
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Weiming Hao
- College of food and bioengineering Henan University of Science and Technology, National Experimental Teaching Demonstration Center for Food Processing and Security Luoyang China
| | - Xiaopan Yang
- College of food and bioengineering Henan University of Science and Technology, National Experimental Teaching Demonstration Center for Food Processing and Security Luoyang China
| |
Collapse
|
32
|
Guo X, Chen M, Li Y, Dai T, Shuai X, Chen J, Liu C. Modification of food macromolecules using dynamic high pressure microfluidization: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
He W, Xu H, Lu Y, Zhang T, Li S, Lin X, Xu B, Wu X. Function, digestibility and allergenicity assessment of ovalbumin–EGCG conjugates. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103490] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Liu J, Ye YH, Shao YH, Tu ZC. Observation of the structural changes of α-lactalbumin induced by ultrasonic prior to glycated modification. J Food Biochem 2019; 43:e13017. [PMID: 31495937 DOI: 10.1111/jfbc.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 11/29/2022]
Abstract
Bovine α-lactalbumin (BLA) was treated by ultrasonic at 150 W/cm2 for different times and subsequently glycated with mannose by dry-heating. Molecular weight, intrinsic fluorescence spectra, glycation sites and degree of modified BLA were observed. The proteinaceous high molecular weight components were formed after ultrasonic prior to glycated modification, while the conformational changes were obvious. Prior to ultrasonic pretreatment, K62, K114, and K122 of BLA were identified. After treated by ultrasound at 150 W/cm2 for 5, 10, 15, and 20 min, the sites were increased to four, four, five, and five, respectively. All glycated sites of modified BLA exhibited a higher degree of substitution per peptide (DSP) values compared to native BLA. Ultrasonic at 150 W/cm2 for 20 min revealed the most significant change in the BLA structure. Therefore, conformational changes, the intensified glycation site, and DSP value were responsible for the structural changes of BLA. Practical applications BLA is suitable as an ingredient for infant nutrition in food, and has immune-modulating, antioxidant, antibacterial, and antitumor activity etc. This study revealed that the structural changes of BLA induced by ultrasonic prior to glycated modification. It will be beneficial to understand the mechanism of the functional changes of modified BLA. Ultrasonic prior to glycated modification will be more likely to develop a practical technology to modify protein in the food industry, and improve the functional characteristics of food, such as produce hypo-allergenic cow's milk in future.
Collapse
Affiliation(s)
- Jun Liu
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Nanchang, China
| | - Yun-Hua Ye
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Nanchang, China
| | - Yan-Hong Shao
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Nanchang, China
| | - Zong-Cai Tu
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Nanchang, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
35
|
Gharbi N, Labbafi M. Influence of treatment-induced modification of egg white proteins on foaming properties. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Li S, Huang Y, An F, Huang Q, Geng F, Ma M. Hydroxyl radical-induced early stage oxidation improves the foaming and emulsifying properties of ovalbumin. Poult Sci 2019; 98:1047-1054. [DOI: 10.3382/ps/pey370] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023] Open
|
37
|
Zhang L, Lu Y, Ye YH, Yang SH, Tu ZC, Chen J, Wang H, Wang HH, Yuan T. Insights into the Mechanism of Quercetin against BSA-Fructose Glycation by Spectroscopy and High-Resolution Mass Spectrometry: Effect on Physicochemical Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:236-246. [PMID: 30567433 DOI: 10.1021/acs.jafc.8b06075] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quercetin has been reported to suppress protein glycation or the formation of advanced glycation end-products (AGEs), but the inhibition mechanism related to protein structure and glycation sites and the influence on physicochemical properties remain unclear. The aim of the current research was to investigate the mechanism of quercetin against glycation with BSA-fructose as model by spectroscopic and spectrometric techniques. Changes in physicochemical properties were evaluated by antioxidant activity and emulsifying properties. The results indicated that quercetin dose-dependently inhibited the glycation of BSA by attenuating the alteration of conformational structure and microenvironment induced by glycation. It could also suppress the cross-linking or aggregation of glycated BSA, which reflected in the decreased molecular weight determined by SDS-PAGE and MALDI-TOF. Nanoliquid chromatography coupled to Q-Exactive tandem mass spectrometry analysis revealed the mapping of 20, 23, 19, and 19 glycation sites in glycated BSA with 0, 0.5, 1.5, and 3.0 mM quercetin, respectively. Quercetin changed the glycation sites of BSA, but it could not reduce the number greatly. In addition, quercetin reduced the antioxidant ability and increased the emulsifying properties of BSA, while negligible efficiency was observed on the antioxidant activity and emulsifying activity index of glycated BSA.
Collapse
Affiliation(s)
- Lu Zhang
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Yu Lu
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Yun-Hua Ye
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Si-Hang Yang
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , China
| | - Juan Chen
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Hui Wang
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , China
| | - Hong-Hong Wang
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Tao Yuan
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, and State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Urumqi 830011 , China
| |
Collapse
|
38
|
Wang L, Wu J, Luo X, Li Y, Wang R, Li Y, Li J, Chen Z. Dynamic High-Pressure Microfluidization Treatment of Rice Bran: Effect on Pb(II) Ions Adsorption In Vitro. J Food Sci 2018; 83:1980-1989. [PMID: 29995310 DOI: 10.1111/1750-3841.14201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/06/2018] [Accepted: 04/29/2018] [Indexed: 11/30/2022]
Abstract
Insoluble dietary fiber from rice bran (RBIDF) was treated with dynamic high-pressure microfluidization (DHPM). The influence of pressure on the adsorption of Pb(II) capacity of RBIDF was explored in a simulation of the gastrointestinal environment. RBIDF (pH 7.0) displayed the maximal binding capacity (420.74 ± 13.12 μmol/g), at the level of 150 MPa, which was as 1.36 times as the untreated sample. DHPM-treated RBIDF demonstrated a higher ability to adsorb cholesterol and sodium cholate. Meanwhile, the treatment changed the morphology but did not alter the primary structure. The adsorption capacity is linear to the physicochemical properties of the total negative charges. The adsorption kinetics fit the pseudo-second-order model, Pb(II) adsorption mainly occur on the surface of the fiber particulate, this process includes natural physical adsorption and chemical reaction. This study provides a feasible approach for improving the adsorption capacity of RBIDF, especially the adsorption of Pb(II). PRACTICAL APPLICATION Dynamic high-pressure microfluidization can modify biomass adsorption materials effectively as a physically modification. The pretreatment dietary fiber can be used as a low-cost absorbing heavy metal biosorbent, and can be develop the functional food ingredients in the food industry.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,Natl. Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Jue Wu
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,Natl. Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Xiaohu Luo
- Natl. Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Yongfu Li
- Natl. Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Ren Wang
- Natl. Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Yanan Li
- Natl. Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Juan Li
- Natl. Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Zhengxing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,Natl. Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| |
Collapse
|
39
|
Liao ZW, Ye YH, Wang H, Chen Y, Sha XM, Zhang L, Huang T, Hu YM, Tu ZC. The Mechanism of Decreased IgG/IgE-Binding of Ovalbumin by Preheating Treatment Combined with Glycation Identified by Liquid Chromatography and High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10693-10702. [PMID: 30252462 DOI: 10.1021/acs.jafc.8b04165] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ovalbumin is one of the most important sensitizing ingredients in allergens of egg albumin, which restricts the application of egg in the field of food processing. Previous research has indicated that glycation could cause the protein to partially expand, which may bring about the destruction of the structural IgG and IgE epitopes and induce the decline of the IgG- and IgE-binding ability of ovalbumin. In this research, the effect of a preheating treatment integrated with glycation on the IgG- and IgE-binding capability and the conformation changes of ovalbumin was studied by detecting the glycated sites and the values of degree of substitution per peptide (DSP) by liquid chromatography and high-resolution mass spectrometry (LC-HRMS). Interestingly, we found that a glycation site (K227) attached by two ribose molecules was detected in glycated ovalbumin with preheating treatment. In addition, a new glycation site (K323) appeared in G-60. The results displayed that preheating treament could strengthen the changes in the secondary and tertiary structure of ovalbumin by enhancing glycation and further reduce the IgG/IgE-binding ability by integrating with glycation because of the cover of IgG and IgE epitopes. Therefore, preheating treatment integrated with glycation may offer a way for ovalbumin to reduce sensitization.
Collapse
Affiliation(s)
- Zi-Wei Liao
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , China
| | - Yun-Hua Ye
- Engineering Research Center for Freshwater Fish High-Value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , China
| | - Yang Chen
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , China
| | - Xiao-Mei Sha
- Engineering Research Center for Freshwater Fish High-Value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Lu Zhang
- Engineering Research Center for Freshwater Fish High-Value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Tao Huang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , China
| | - Yue-Ming Hu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , China
| | - Zong-Cai Tu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , China
- Engineering Research Center for Freshwater Fish High-Value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| |
Collapse
|
40
|
Oganesyan I, Lento C, Wilson DJ. Contemporary hydrogen deuterium exchange mass spectrometry. Methods 2018; 144:27-42. [DOI: 10.1016/j.ymeth.2018.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 02/07/2023] Open
|
41
|
Liu L, Li Y, Prakash S, Dai X, Meng Y. Enzymolysis and glycosylation synergistic modified ovalbumin: functional and structural characteristics. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1424198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Lili Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- School of Agriculture and Food Science, University of Queensland, Queensland, Australia
| | - Yu Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Sangeeta Prakash
- School of Agriculture and Food Science, University of Queensland, Queensland, Australia
| | - Xiaoning Dai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yuanyuan Meng
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
42
|
Geng F, Huang Y, Huang Q, He D, Li S, Ma M. Effect of hydroxyl radical-induced oxidation on the structure and heat-induced gel properties of ovalbumin. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13626] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, College of Pharmacy and Biological Engineering; Chengdu University; Chengdu 610106 People's Republic of China
| | - Yang Huang
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou 350002 People's Republic of China
| | - Qun Huang
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou 350002 People's Republic of China
| | - Dan He
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou 350002 People's Republic of China
| | - Shugang Li
- Key Laboratory of Fermentation Engineering, Ministry of Education; Hubei University of Technology; Wuhan Hubei 430068 China
| | - Meihu Ma
- National R&D Center for Egg Processing, College of Food Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| |
Collapse
|