1
|
Liang Z, Yu Y, Zou B, Fu M, Hu T, Yin X, Wang J, Xu Y, Cheng L. The effect of structural changes on the activity of peroxidase with different initial state under high-pressure freezing. Food Chem 2024; 459:140314. [PMID: 39024881 DOI: 10.1016/j.foodchem.2024.140314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The combined impact of initial state, pressure, and freezing on peroxidase denaturation during high-pressure freezing (HPF) processing of enzyme-containing foods remains unclear. This study investigated solid-liquid (initial low/high concentration) biphasic peroxidase using spectroscopic and computer simulation techniques to analyze structural changes affecting peroxidase (POD) activity under HPF. The results indicate that the primary factors determining POD activity during HPF treatment can be ranked as follows: concentration > physical state > pressure > freezing. Higher initial concentrations strengthen protein interactions, leading to a 1% increase in the molecular diameter and a 34% increase in molecular height of HL-POD, thereby increasing aggregation likelihood during crystallization and facilitating structural changes that activate enzymes by 6-17%. The amide I peak proves to be a reliable indicator for monitoring both POD activity and structural alterations. This study offers valuable insights for optimizing HPF technology in food processing.
Collapse
Affiliation(s)
- Zhanhong Liang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China; School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528400, China
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Bo Zou
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Manqin Fu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Tenggen Hu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Xiaomeng Yin
- Guangzhou Conghua District Agriculture and rural Bureau, Guangzhou 510610, China
| | - Jin Wang
- Guangzhou Conghua District Agriculture and rural Bureau, Guangzhou 510610, China
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China.
| | - Lina Cheng
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street, Dongguanzhuang road, Tianhe District, Guangzhou 510610, China.
| |
Collapse
|
2
|
Huang X, Chen L, Wang Y, Ma L, Huang M, Chen L, Hu W, Ai C, Zhao Y, Wang H, Teng H. Effect of ultrasonic treatment on the structure and emulsification properties of soybean isolate protein-hyaluronic acid complexes and the stability of their loaded astaxanthin emulsions. Int J Biol Macromol 2024; 282:137284. [PMID: 39510470 DOI: 10.1016/j.ijbiomac.2024.137284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The purpose of this work was to prepare an astaxanthin emulsion stabilized by a soybean isolate protein (SPI)-hyaluronic acid (HA) complex and to investigate its protective effect on astaxanthin. In order to examine the impact of various ultrasonic energies (0 W-300 W) on the structural characteristics of the complex and the stability of the emulsion, the SPI-HA complex was created via ultrasonography. The findings demonstrated that ultrasonication may had an impact on the hydrophobic, electrostatic, and hydrogen bonding interactions between SPI and HA, which caused the protein structure to unfold and reveal the interior hydrophobic amino acid residues. Moreover, ultrasonication enhanced the emulsification qualities of SPI-HA complexes by lowering their average particle size. The rheological findings demonstrated that the emulsion's viscosity and energy storage modulus (G') were considerably decreased by the ultrasonic treatment. The appearance of the emulsions and optical microscopy results further indicated that the emulsions prepared from SPI-HA had superior storage stability, pH stability, and light stability compared to pure SPI. SPI-HA exhibited superior emulsion stability and lower particle size at 150 W ultrasonic power. The AST incorporated in the emulsion was also well protected. The emulsion effectively slows down the degradation of AST. The findings of this study may help create more robust and natural emulsion delivery systems that guarantee the continuous or regulated release of lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Xuanxiang Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Ye Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Linyin Ma
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Minxi Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lele Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Wenlu Hu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yanan Zhao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| |
Collapse
|
3
|
Yang X, Bian C, Dong Y, Xie J, Mei J. Effects of different power multi-frequency ultrasound-assisted thawing on the quality characteristics and protein stability of large yellow croaker ( Larimichthys crocea). Food Chem X 2024; 23:101559. [PMID: 39036484 PMCID: PMC11260327 DOI: 10.1016/j.fochx.2024.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
This study investigated the impact of multi-frequency ultrasound-assisted (20/28/40 kHz) thawing (MUAT) at different power levels (195, 220, 245, and 270 W, respectively) on the flesh quality and protein stability of large yellow croakers. Compared with flowing water thawing (FWT) and the other MUAT sample, flesh quality results indicated that the MUAT-220 W significantly reduced (p < 0.05) thawing loss, total volatile base nitrogen (TVB-N), total free amino acids (FAAs) and thiobarbituric acid reactive substances (TBARS). Low-field nuclear magnetic resonance (LF-NMR) spectroscopy indicated that MUAT-220 W samples had higher immobilized water content and lower free water content. In addition, the MUAT-220 W sample contained higher sulfhydryl and lower carbonyl contents compared to the FWT sample. Secondary and tertiary structural results of myofibrillar proteins (MPs) showed that MUAT-220 W significantly reduced thawing damage to MPs. Therefore, MUAT-220 W improved the quality and protein stability of the large yellow croaker during the defrosting process.
Collapse
Affiliation(s)
- Xinrui Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Chuhan Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yixuan Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
| |
Collapse
|
4
|
Zhu X, He D, Chen Y, Duan X, Li Y, Yuan Y, Zhan F, Li B, Teng Y. Adenosine monophosphate boosts the cryoprotection of ultrasound-assisted freezing to frozen surimi: Insights into protein structures and gelling behaviors. Food Chem 2024; 450:139343. [PMID: 38631212 DOI: 10.1016/j.foodchem.2024.139343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Ultrasound-assisted freezing (UAF) is a clean technique for meat cryoprotections; however, its effectiveness is still limited compared to conventional cryoprotectants, e.g., sugars, polyols, especially at high dosages. To resolve this problem, a synergistic cryoprotection strategy was developed in this study. Adenosine monophosphate (AMP), an adenosine-type food additive, was introduced into frozen surimi at a considerably reduced content (0.08%), yet substantially enhanced the efficiency of UAF to comparable levels of commercial cryoprotectant (4% sucrose with 4% sorbitol). Specifically, UAF/AMP treatment retarded denaturation of surimi myofibrillar protein (MP) during 60-day frozen storage, as evidenced by its increased solubility, Ca2+-ATPase activity, sulfhydryl content, declined surface hydrophobicity, particle size, and stabilized protein conformation. Gels of UAF/AMP-treated surimi also demonstrated more stabilized microstructures, uniform water distributions, enhanced mechanical properties and water-holding capacities. This study provided a feasible approach to boost the cryoprotective performance of UAF, thus expanding its potential applications in frozen food industry.
Collapse
Affiliation(s)
- Xiangwei Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Diheng He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Yingying Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Xinyu Duan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States
| | - Yue Yuan
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongxin Teng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
5
|
Zhang X, Ni N, Fei Z, Li X, Yang W, Siqin Q, Wang Z, Zhang Z. Effect of L-cysteine on the physicochemical properties of heat-induced sheep plasma protein gels. Food Chem 2024; 444:138508. [PMID: 38340502 DOI: 10.1016/j.foodchem.2024.138508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The effects of different l-Cysteine additions (0-2 %) on the gel properties, microstructure and physicochemical stability of sheep plasma protein gels were studied. The introduction of l-Cys significantly improved the water retention capacity and whiteness of the plasma protein gel (p < 0.05). The addition of 0.2 %-0.4 % l-Cys increased gel strength, but l-Cys had no significant effect on gel elasticity (p < 0.05). Scanning electron microscopy confirmed that the addition of l-Cys also promoted the formation of a porous three-dimensional network structure in the gel. Raman spectroscopy and SDS-PAGE revealed that the addition of l-Cys generally reduced α-helix structures in protein gels and promoted the formation of β-folds. Addition of 0.2 % l-Cys treatment leading to the greatest increase in disulfide bonds, and its surface hydrophobicity and endogenous fluorescence intensity were the largest. At this time, the comprehensive performance of sheep plasma protein gel is the best performance.
Collapse
Affiliation(s)
- Xudong Zhang
- School of Life Sciences and Food, Inner Mongolia Minzu University, Tongliao 028000, China; Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Na Ni
- School of Life Sciences and Food, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Zixuan Fei
- School of Life Sciences and Food, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xiaoxue Li
- School of Life Sciences and Food, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Wanpeng Yang
- School of Life Sciences and Food, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Qimuge Siqin
- School of Life Sciences and Food, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhenyu Wang
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Zhiyong Zhang
- Tongliao Academy of Agricultural Sciences, Tongliao, Inner Mongolia 028015, China
| |
Collapse
|
6
|
Yu P, Yan J, Kong L, Yu J, Zhao X, Peng X. Whey Protein Hydrolysate Improved the Structure and Function of Myofibrillar Protein in Ground Pork during Repeated Freeze-Thaw Cycles. Foods 2023; 12:3135. [PMID: 37628134 PMCID: PMC10453259 DOI: 10.3390/foods12163135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
Whey protein hydrolysate (WPH) has made a breakthrough in inhibiting oxidative deterioration and improving the quality of meat products during storage. Based on our previous study of extracting the most antioxidant active fraction I (FI, the molecular weight < 1 kDa) from whey protein hydrolysates of different molecular weights, the present study continued to delve into the effects of WPH with fraction I on the structure and function of myofibrillar proteins (MP) in ground pork during the freeze-thaw (F-T) cycles. With the number of F-T cycles raised, the total sulfhydryl content, the relative contents of α-helix, Ca2+-ATPase activity, K+-ATPase activity, solubility, emulsion activity index (EAI), and emulsion stability index (ESI) of MP gradually decreased. Conversely, the carbonyl content and the relative content of random curl showed an increasing trend. In particular, the damage to the structure and the function of MP became more pronounced after three F-T cycles. But, during F-T cycles, FI stabilized the structure of MP. Compared to the control group, the 10% FI group showed a remarkable improvement (p < 0.05) in the total sulfhydryl content, Ca2+-ATPase activity, K+-ATPase activity, solubility, EAI and ESI after multiple F-T cycles, suggesting that 10% FI could effectively inhibit protein oxidation and had the influence of preserving MP function properties. In conclusion, WPH with fraction I can be used as a potential natural antioxidant peptide for maintaining the quality of frozen processed meat products.
Collapse
Affiliation(s)
- Pengjuan Yu
- College of Life Sciences, Yantai University, Yantai 264005, China; (P.Y.); (J.Y.); (L.K.); (J.Y.)
| | - Jiayan Yan
- College of Life Sciences, Yantai University, Yantai 264005, China; (P.Y.); (J.Y.); (L.K.); (J.Y.)
| | - Lingru Kong
- College of Life Sciences, Yantai University, Yantai 264005, China; (P.Y.); (J.Y.); (L.K.); (J.Y.)
| | - Juan Yu
- College of Life Sciences, Yantai University, Yantai 264005, China; (P.Y.); (J.Y.); (L.K.); (J.Y.)
| | - Xinxin Zhao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Xinyan Peng
- College of Life Sciences, Yantai University, Yantai 264005, China; (P.Y.); (J.Y.); (L.K.); (J.Y.)
| |
Collapse
|
7
|
Wang W, Li W, Bu Y, Li X, Zhu W. Nano Freezing-Thawing of Atlantic Salmon Fillets: Impact on Thermodynamic and Quality Characteristics. Foods 2023; 12:2887. [PMID: 37569156 PMCID: PMC10417646 DOI: 10.3390/foods12152887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The presence of magnetic nanoparticles (MNPs) suppresses ice nucleation and growth during freezing and thawing. In this study, the effects of MNPs-assisted cryogenic freezing integrated with MNP-combined microwave thawing (NNMT) on the thermodynamic and quality changes of salmon fillets were investigated. Results have shown that NNMT raises Tg (glass transition temperature) and Tmax (transition temperature), thus improving the storage stability of salmon fillets. MNPs-assisted freezing and thawing treatment, especially NNMT treatment, significantly improved the water holding capacity, texture, color, and other quality characteristics of salmon fillets. In addition, the lipid and protein oxidation degrees of the NNMT treatment were the lowest, while the myofibrillar protein solubility of NNMT was the highest (87.28%). This study demonstrated that NNMT has minimal impact on the freezing-thawing quality of salmon fillets, making it a more suitable option for the preservation of aquatic foods.
Collapse
Affiliation(s)
| | | | | | | | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, No. 19, Keji Road, Jinzhou 121013, China; (W.W.); (W.L.); (Y.B.); (X.L.)
| |
Collapse
|
8
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. Physicochemical and structural changes of myofibrillar proteins in muscle foods during thawing: Occurrence, consequences, evidence, and implications. Compr Rev Food Sci Food Saf 2023; 22:3444-3477. [PMID: 37306543 DOI: 10.1111/1541-4337.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Myofibrillar protein (MP) endows muscle foods with texture and important functional properties, such as water-holding capacity (WHC) and emulsifying and gel-forming abilities. However, thawing deteriorates the physicochemical and structural properties of MPs, significantly affecting the WHC, texture, flavor, and nutritional value of muscle foods. Thawing-induced physicochemical and structural changes in MPs need further investigation and consideration in the scientific development of muscle foods. In this study, we reviewed the literature for the thawing effects on the physicochemical and structural characters of MPs to identify potential associations between MPs and the quality of muscle-based foods. Physicochemical and structural changes of MPs in muscle foods occur because of physical changes during thawing and microenvironmental changes, including heat transfer and phase transformation, moisture activation and migration, microbial activation, and alterations in pH and ionic strength. These changes are not only essential inducements for changes in spatial conformation, surface hydrophobicity, solubility, Ca2+ -ATPase activity, intermolecular interaction, gel properties, and emulsifying properties of MPs but also factors causing MP oxidation, characterized by thiols, carbonyl compounds, free amino groups, dityrosine content, cross-linking, and MP aggregates. Additionally, the WHC, texture, flavor, and nutritional value of muscle foods are closely related to MPs. This review encourages additional work to explore the potential of tempering techniques, as well as the synergistic effects of traditional and innovative thawing technologies, in reducing the oxidation and denaturation of MPs and maintaining the quality of muscle foods.
Collapse
Affiliation(s)
- Yuanlv Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
9
|
Wang K, Wang H, Wu Y, Yi C, Lv Y, Luo H, Yang T. The antibacterial mechanism of compound preservatives combined with low voltage electric fields on the preservation of steamed mussels (Mytilus edulis) stored at ice-temperature. Front Nutr 2023; 10:1126456. [PMID: 37006930 PMCID: PMC10063890 DOI: 10.3389/fnut.2023.1126456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Mussels are a kind of economically valuable ocean bivalve shellfish. It has a short harvest period and is susceptible to contamination during storage and processing. Having proper preservation methods is critical to prevent quality deterioration. However, the effect of low voltage variable frequency electric field and compound preservative on the freshness of steamed mussels in ice-temperature storage are still unknown. We utilized the method of coefficient variation weighting to calculate the overall scores of steamed mussels stored under different preservation conditions. The protein physicochemical properties of samples, the growth curves of two dominant spoilage bacteria; Bacillus subtilis and Pseudomonas in the mussels as well as the Structural changes of the cell membranes were mensurated. The results show that compared with the preservative group and the low voltage variable frequency electric field group, the compound preservatives combined with the electric field group had the highest overall score and thus the best preservation effect. Compared with the blank group, the total sulfhydryl content and myogenic fibrin content of the combined group decreased at the slowest rate, 19.46%, and 44.92%, respectively. The hydrophobicity of the protein surface increased by only 5.67%, with the best water retention, indicating that the samples of the combined group had the least protein deterioration in the combined group. The inhibition mechanism of the combined group inhibited the growth of two dominant spoilage bacteria: Bacillus subtilis and Pseudomonas, in the mussels, destroying the integrity of the cell membrane structure and changing the cell morphology. Overall, we found that the combination of the composite preservatives and the low voltage variable frequency electric field can maintain the best quality of steamed mussels during ice-temperature storage and slow down the rate of protein deterioration during storage. This study proposed a new method of mussel preservation, which provides a new idea for the application of low voltage variable frequency electric field and compound preservative in the preservation of aquatic products.
Collapse
Affiliation(s)
- Kunmei Wang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Han Wang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yue Wu
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Chong Yi
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yanxia Lv
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Hongyu Luo
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Hongyu Luo, ; Tao Yang,
| | - Tao Yang
- Yantai Marine Economic Research Institute, Yantai, China
- *Correspondence: Hongyu Luo, ; Tao Yang,
| |
Collapse
|
10
|
Kong D, Han R, Yuan M, Xi Q, Du Q, Li P, Yang Y, Applegate B, Wang J. Ultrasound combined with slightly acidic electrolyzed water thawing of mutton: Effects on physicochemical properties, oxidation and structure of myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2023; 93:106309. [PMID: 36706669 PMCID: PMC9938326 DOI: 10.1016/j.ultsonch.2023.106309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/08/2023] [Accepted: 01/21/2023] [Indexed: 05/24/2023]
Abstract
The effects of air thawing (AT), water immersion thawing (WT), microwave thawing (MT) and ultrasound combined with slightly acidic electrolyzed water thawing (UST) on the myofibrillar protein (MP) properties (surface hydrophobicity, solubility, turbidity, particle size and zeta potential), protein oxidation (carbonyl content and sulfhydryl content) and structure (primary, secondary and tertiary) of frozen mutton were investigated in comparison with fresh mutton (FM). The solubility and turbidity results showed that the MP properties were significantly improved in the UST treatment. UST treatment could effectively reduce the MP aggregation and enhance the stability, which was similar to the FM. In addition, UST treatment could effectively inhibit protein oxidation during thawing as well. The primary structure of MP was not damaged by the thawing methods. UST treatment could reduce the damage to MP secondary and tertiary structure during the thawing process compared to other thawing methods. Overall, the UST treatment had a positive influence in maintaining the MP properties by inhibiting protein oxidation and protecting protein structure.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengdi Yuan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Xi
- College of Food Science and Engineering, Tarim University, Alar 843300, China
| | - Qijing Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Bruce Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
11
|
Wang FQ, Cheng JH, Keener KM. Changing the IgE Binding Capacity of Tropomyosin in Shrimp through Structural Modification Induced by Cold Plasma and Glycation Treatment. Foods 2023; 12:foods12010206. [PMID: 36613421 PMCID: PMC9819036 DOI: 10.3390/foods12010206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Tropomyosin (TM) is the major allergen of shrimp (Penaeus chinensis). Previous studies showed that separate cold plasma or glycation have their drawback in reducing allergenicity of TM, including effectiveness and reliability. In the current study, a new processing combining cold plasma (CP) and glycation was proposed and its effect on changing IgE binding capacity of TM from shrimp was investigated. Obtained results showed the IgE binding capacity of TM was reduced by up to 40% after CP (dielectric barrier discharge, 60 kV, 1.0 A) combined with glycation treatment (4 h, 80 °C), compared with the less than 5% reduction after single CP or glycation treatment. Notably, in contrast to the general way of CP prompting glycation, this study devised a new mode of glycation with ribose after CP pretreatment. The structural changes of TM were explored to explain the decreased IgE binding reactivity. The results of multi-spectroscopies showed that the secondary and tertiary structures of TM were further destroyed after combined treatment, including the transformation of 50% α-helix to β-sheet and random coils, the modification and exposure of aromatic amino acids, and the increase of surface hydrophobicity. The morphology analysis using atomic force microscope revealed that the combined processing made the distribution of TM particles tend to disperse circularly, while it would aggregate after either processing treatment alone. These findings confirmed the unfolding and reaggregation of TM during combined processing treatment, which may result in the remarkable reduction of IgE binding ability. Therefore, the processing of CP pretreatment combined with glycation has the potential to reduce or even eliminate the allergenicity of seafood.
Collapse
Affiliation(s)
- Feng-Qi Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Correspondence:
| | - Kevin M. Keener
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON NIG 2W1, Canada
| |
Collapse
|
12
|
Hassoun A, Anusha Siddiqui S, Smaoui S, Ucak İ, Arshad RN, Bhat ZF, Bhat HF, Carpena M, Prieto MA, Aït-Kaddour A, Pereira JA, Zacometti C, Tata A, Ibrahim SA, Ozogul F, Camara JS. Emerging Technological Advances in Improving the Safety of Muscle Foods: Framing in the Context of the Food Revolution 4.0. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2149776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdo Hassoun
- Univ. Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - İ̇lknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUASTof Jammu, Jammu, Kashmir, India
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUASTof Kashmir, Kashmir, India
| | - María Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, Bragança, Portugal
| | | | - Jorge A.M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Carmela Zacometti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Alessandra Tata
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - José S. Camara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
13
|
Modification of functional properties of mussel actomyosin by ultrasound treatment and the appplication at O/W emulsion. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Effects of extremely low frequency electromagnetic field at 50 Hz on myofibrillar protein from grass carp (Ctenopharyngodon idellus) during chilled storage at 4 °C. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Du X, Wang B, Li H, Liu H, Shi S, Feng J, Pan N, Xia X. Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Compr Rev Food Sci Food Saf 2022; 21:4812-4846. [PMID: 36201389 DOI: 10.1111/1541-4337.13040] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/28/2023]
Abstract
Freezing can prolong the shelf life of muscle foods and is widely used in their preservation. However, inevitable quality deterioration can occur during freezing, frozen storage, and thawing. This review explores the eating quality deterioration characteristics (color, water holding capacity, tenderness, and flavor) and mechanisms (irregular ice crystals, oxidation, and hydrolysis of lipids and proteins) of frozen muscle foods. It also summarizes and classifies the novel physical-field-assisted-freezing technologies (high-pressure, ultrasound, and electromagnetic) and bioactive antifreeze (ice nucleation proteins, antifreeze proteins, natural deep eutectic solvents, carbohydrate, polyphenol, phosphate, and protein hydrolysates), regulating the dynamic process from water to ice. Moreover, some novel thermal and nonthermal thawing technologies to resolve the loss of water and nutrients caused by traditional thawing methods were also reviewed. We concluded that the physical damage caused by ice crystals was the primary reason for the deterioration in eating quality, and these novel techniques promoted the eating quality of frozen muscle foods under proper conditions, including appropriate parameters (power, time, and intermittent mode mentioned in ultrasound-assisted techniques; pressure involved in high-pressure-assisted techniques; and field strength involved in electromagnetic-assisted techniques) and the amounts of bioactive antifreeze. To obtain better quality frozen muscle foods, more efficient technologies and substances must be developed. The synergy of novel freezing/thawing technology may be more effective than individual applications. This knowledge may help improve the eating quality of frozen muscle foods.
Collapse
Affiliation(s)
- Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
16
|
Tian Y, Sun DW, Xu L, Fan TH, Zhu Z. Bio-inspired eutectogels enabled by binary natural deep eutectic solvents (NADESs): Interfacial anti-frosting, freezing-tolerance, and mechanisms. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Lu N, Ma J, Sun DW. Enhancing physical and chemical quality attributes of frozen meat and meat products: Mechanisms, techniques and applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Shi Y, Tu L, Yuan C, Wu J, Li X, Wang S, Chen H, Chen X. Regulatory mechanisms governing collagen peptides and their 3D printing application for frozen surimi. J Food Sci 2022; 87:2692-2706. [PMID: 35590483 DOI: 10.1111/1750-3841.16183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022]
Abstract
Myofibrillar proteins (MPs) are important to the gel formation that occurs in frozen surimi. Importantly, their unique gel-forming ability indicates that surimi may be a promising material for use in 3D printing. The objective of the present study was to investigate the effects of collagen peptides on the cryoprotection of MPs during freeze-thaw (FT) cycles and the subsequent printability of surimi. The results showed that the collagen peptide had both protective and destructive actions during the tested FT cycles. The addition of 1.0% collagen peptide provided significant cryoprotection to the MPs. This addition effectively maintained the structural stability of MPs while also weakening FT effects on bound water and its mobility. We also assessed the rheological and 3D-printing characteristics of surimi with 1.0% collagen peptide. The rheological results indicated that the surimi with collagen peptides had better characteristics, including shear-thinning behavior, better recovery, and improved mechanical properties. Combined with the actual printing effect, materials with good shear-thinning behavior, high apparent viscosity, and high recovery might be more suitable for 3D printing. Moreover, the high G' contributed to good structural maintenance after printing. Collectively, these results indicated that collagen peptide may serve as a new, low-sugar cryoprotectant for use in surimi. Moreover, that its use would result in a healthier system that has increased stability, precision, and formability with applications in extrusion-based 3D printing. The results of this study provide theoretical reference for the development of new surimi materials with freezing stability and good 3D printing performance. PRACTICAL APPLICATION: This study confirmed the protective action of 1.0% collagen peptides for surimi and the contribution of it to well printing precision and structure maintenance for 3D printing, providing a firm foundation for the use of collagen peptide as a low-sugar cryoprotectant and developed a new type of surimi as a food material for 3D printing.
Collapse
Affiliation(s)
- Yi Shi
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lanlan Tu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengzhi Yuan
- College of Chemical and Biological Engineering, Changsha University of Science and Technology, Changsha, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianghong Li
- College of Chemical and Biological Engineering, Changsha University of Science and Technology, Changsha, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, China
| | - Huiyun Chen
- Institute of Agricultural Product Processing Research, Ningbo Academy of Agricultural Science, Zhejiang, China
| | - Xu Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou, China
| |
Collapse
|
19
|
Jia G, Chen Y, Sun A, Orlien V. Control of ice crystal nucleation and growth during the food freezing process. Compr Rev Food Sci Food Saf 2022; 21:2433-2454. [DOI: 10.1111/1541-4337.12950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Guoliang Jia
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yimeng Chen
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - AiDong Sun
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Vibeke Orlien
- Department of Food Science Faculty of Science University of Copenhagen Frederiksberg C Denmark
| |
Collapse
|
20
|
Qian S, Hu F, Mehmood W, Li X, Zhang C, Blecker C. The rise of thawing drip: Freezing rate effects on ice crystallization and myowater dynamics changes. Food Chem 2022; 373:131461. [PMID: 34717267 DOI: 10.1016/j.foodchem.2021.131461] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/24/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023]
Abstract
To better reveal the formation of thawing drip, this study investigated the ice crystallization and myowater dynamics changes in frozen bovine Longissimus dorsi muscle. In ultra-fast freezing a narrow distribution of ice crystals size was observed together with higher solubility, lower surface hydrophobicity and stable second structure of myofibrillar protein. Accordingly, ultra-fast freezing samples exhibited significantly lower thaw loss (4.35 %) than slow freezing (8.22 %) after 48 h of freezing. Upon thawing, 2D T1-T2 relaxation spectra indicated a myowater redistribution, in which slow freezing led to major migration of water from immobile water to free water. Besides, T1 and T2 relaxation times showed an increasing trend with freezing process. The proton density images displayed major free water seep from myofibrils to the surface of muscle. Consequently, the water from the "reservoir" (free water) flowed into the "channel" (the widened spaces between muscle fibres), and formed into the thawing drip.
Collapse
Affiliation(s)
- Shuyi Qian
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Unit of Food Science and Formulation, University of Liège, Gembloux Agro-Bio Tech, Passage Des Déportés 2, Gembloux B-5030, Belgium
| | - Feifei Hu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Waris Mehmood
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xia Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Christophe Blecker
- Unit of Food Science and Formulation, University of Liège, Gembloux Agro-Bio Tech, Passage Des Déportés 2, Gembloux B-5030, Belgium
| |
Collapse
|
21
|
Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fish and other seafood products are essential dietary components that are highly appreciated and consumed worldwide. However, the high perishability of these products has driven the development of a wide range of processing, preservation, and analytical techniques. This development has been accelerated in recent years with the advent of the fourth industrial revolution (Industry 4.0) technologies, digitally transforming almost every industry, including the food and seafood industry. The purpose of this review paper is to provide an updated overview of recent thermal and nonthermal processing and preservation technologies, as well as advanced analytical techniques used in the seafood industry. A special focus will be given to the role of different Industry 4.0 technologies to achieve smart seafood manufacturing, with high automation and digitalization. The literature discussed in this work showed that emerging technologies (e.g., ohmic heating, pulsed electric field, high pressure processing, nanotechnology, advanced mass spectrometry and spectroscopic techniques, and hyperspectral imaging sensors) are key elements in industrial revolutions not only in the seafood industry but also in all food industry sectors. More research is still needed to explore how to harness the Industry 4.0 innovations in order to achieve a green transition toward more profitable and sustainable food production systems.
Collapse
|
22
|
Jia H, Roy K, Pan J, Mraz J. Icy affairs: Understanding recent advancements in the freezing and frozen storage of fish. Compr Rev Food Sci Food Saf 2022; 21:1383-1408. [DOI: 10.1111/1541-4337.12883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Hui Jia
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters University of South Bohemia in Ceske Budejovice České Budějovice Czech Republic
| | - Koushik Roy
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters University of South Bohemia in Ceske Budejovice České Budějovice Czech Republic
| | - Jinfeng Pan
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters University of South Bohemia in Ceske Budejovice České Budějovice Czech Republic
| | - Jan Mraz
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters University of South Bohemia in Ceske Budejovice České Budějovice Czech Republic
| |
Collapse
|
23
|
Zhang G, Zhu C, Walayat N, Nawaz A, Ding Y, Liu J. Recent development in evaluation methods, influencing factors and control measures for freeze denaturation of food protein. Crit Rev Food Sci Nutr 2022; 63:5874-5889. [PMID: 34996325 DOI: 10.1080/10408398.2022.2025534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Frozen storage is most widely adopted preservation method to maintain food freshness and nutritional attributes. However, at low temperature, food is prone to chemical changes such as protein denaturation and lipid oxidation. In this review, we discussed the reasons and influencing factors that cause protein denaturation during freezing, such as freezing rate, freezing temperature, freezing method, etc. From the previous literatures, it was found that frozen storage is commonly used to prevent freeze induced protein denaturation by adding cryoprotectants to food. Some widely used cryoprotectants (for example, sucrose and sorbitol) have been reported with higher sweetness and weaker cryoprotective abilities. Therefore, this article comprehensively discusses the new cryopreservation methods and providing comparative study to the conventional frozen storage. Meanwhile, this article sheds light on the freeze induced alterations, such as change in functional and gelling properties. In addition, this article could be helpful for the prolonged frozen storage of food with minimum quality related changes. Meanwhile, it could also improve the commercial values and consumer satisfaction of frozen food as well.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Chunyan Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, P.R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| |
Collapse
|
24
|
Ma X, Yang D, Qiu W, Mei J, Xie J. Influence of Multifrequency Ultrasound-Assisted Freezing on the Flavour Attributes and Myofibrillar Protein Characteristics of Cultured Large Yellow Croaker ( Larimichthys crocea). Front Nutr 2022; 8:779546. [PMID: 34977123 PMCID: PMC8714677 DOI: 10.3389/fnut.2021.779546] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/15/2021] [Indexed: 01/16/2023] Open
Abstract
The influence of multifrequency ultrasound-assisted freezing (UAF) as compared with single- and dual-UAF on the flavour, microstructure, and myofibrillar proteins (MPs) of cultured large yellow croaker was investigated to improve food quality in a sustainable way and address the major global challenges concerning food and nutrition security in the (near) future. Multifrequency UAF-treated samples had lower total volatile basic nitrogen values during freezing than single- and dual-UAF-treated samples. Thirty-six volatile compounds were identified by solid-phase microextraction (SPME) coupled to gas chromatography–mass spectrometry (GC-MS) during freezing, and the multifrequency UAF-treated samples showed significant decreases in the relative contents of fishy flavoured compounds, including 1-penten-3-ol and 1-octen-3-ol. In addition, multifrequency UAF treatment better maintained a well-organised protein secondary structure by maintaining higher α-helical and β-sheet contents and stabilising the tertiary structure. Scanning electron microscopy images indicated that the ice crystals developed by the multifrequency UAF were fine and uniformly distributed, resulting in less damage to the frozen large yellow croaker samples. Therefore, multifrequency UAF improved the flavour attributes and MP characteristics of the large yellow croaker samples. Overall, multifrequency UAF can serve as an efficient way for improving food quality and nutritional profile in a sustainable way.
Collapse
Affiliation(s)
- Xuan Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Dazhang Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| |
Collapse
|
25
|
Fadiji T, Ashtiani SHM, Onwude DI, Li Z, Opara UL. Finite Element Method for Freezing and Thawing Industrial Food Processes. Foods 2021; 10:869. [PMID: 33923375 PMCID: PMC8071487 DOI: 10.3390/foods10040869] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022] Open
Abstract
Freezing is a well-established preservation method used to maintain the freshness of perishable food products during storage, transportation and retail distribution; however, food freezing is a complex process involving simultaneous heat and mass transfer and a progression of physical and chemical changes. This could affect the quality of the frozen product and increase the percentage of drip loss (loss in flavor and sensory properties) during thawing. Numerical modeling can be used to monitor and control quality changes during the freezing and thawing processes. This technique provides accurate predictions and visual information that could greatly improve quality control and be used to develop advanced cold storage and transport technologies. Finite element modeling (FEM) has become a widely applied numerical tool in industrial food applications, particularly in freezing and thawing processes. We review the recent studies on applying FEM in the food industry, emphasizing the freezing and thawing processes. Challenges and problems in these two main parts of the food industry are also discussed. To control ice crystallization and avoid cellular structure damage during freezing, including physicochemical and microbiological changes occurring during thawing, both traditional and novel technologies applied to freezing and thawing need to be optimized. Mere experimental designs cannot elucidate the optimum freezing, frozen storage, and thawing conditions. Moreover, these experimental procedures can be expensive and time-consuming. This review demonstrates that the FEM technique helps solve mass and heat transfer equations for any geometry and boundary conditions. This study offers promising insight into the use of FEM for the accurate prediction of key information pertaining to food processes.
Collapse
Affiliation(s)
- Tobi Fadiji
- Africa Institute for Postharvest Technology, South African Research Chair in Postharvest Technology, Postharvest Technology Research Laboratory, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Seyed-Hassan Miraei Ashtiani
- Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Daniel I. Onwude
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland;
- Department of Agricultural and Food Engineering, Faculty of Engineering, University of Uyo, Uyo 52021, Nigeria
| | - Zhiguo Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China;
| | - Umezuruike Linus Opara
- Africa Institute for Postharvest Technology, South African Research Chair in Postharvest Technology, Postharvest Technology Research Laboratory, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa
| |
Collapse
|
26
|
The Formation and Control of Ice Crystal and Its Impact on the Quality of Frozen Aquatic Products: A Review. CRYSTALS 2021. [DOI: 10.3390/cryst11010068] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although freezing has been used to delay the deterioration of product quality and extend its shelf life, the formation of ice crystals inevitably destroys product quality. This comprehensive review describes detailed information on the effects of ice crystals on aquatic products during freezing storage. The affecting factors (including nucleation temperature, freezing point, freezing rate, and temperature fluctuation) on the size, number, distribution, and shape of ice crystals are also elaborated in detail. Meanwhile, the corresponding technologies to control ice crystals have been developed based on these affecting factors to control the formation of ice crystals by inhibiting or inducing ice crystallization. In addition, the effects of ice crystals on the water, texture, and protein of aquatic products are comprehensively discussed, and the paper tries to describe their underlying mechanisms. This review can provide an understanding of ice crystallization in the aquatic products during freezing and contribute more clues for maintaining frozen food quality.
Collapse
|
27
|
Li X, Llave Y, Fukuoka M, Sakai N. Physicochemical changes in cooked prawn muscle with or without shell during water bath treatment: Effect of thermal protein denaturation. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Xiaolong Li
- Department of Food Science and Technology Tokyo University of Marine Science and Technology Tokyo Japan
| | - Yvan Llave
- Department of Agro–Food Science Niigata Agro–Food University Tainai Japan
| | - Mika Fukuoka
- Department of Food Science and Technology Tokyo University of Marine Science and Technology Tokyo Japan
| | - Noboru Sakai
- Department of Food Science and Technology Tokyo University of Marine Science and Technology Tokyo Japan
| |
Collapse
|
28
|
Li D, Zhao H, Muhammad AI, Song L, Guo M, Liu D. The comparison of ultrasound-assisted thawing, air thawing and water immersion thawing on the quality of slow/fast freezing bighead carp (Aristichthys nobilis) fillets. Food Chem 2020; 320:126614. [DOI: 10.1016/j.foodchem.2020.126614] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/16/2020] [Accepted: 03/13/2020] [Indexed: 01/01/2023]
|
29
|
Cheng L, Zhu Z, Sun DW. Impacts of high pressure assisted freezing on the denaturation of polyphenol oxidase. Food Chem 2020; 335:127485. [PMID: 32763785 DOI: 10.1016/j.foodchem.2020.127485] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
Abstract
The mechanism of enzyme protein denaturation induced by high pressure freezing is complicated and unclear as this process involves Pressure-Factors (pressure and time) and Freezing-Factors (temperature, phase transition, recrystallization, and ice crystal types). In this study, the thermodynamics and conformation changes of mushroom polyphenol oxidase (PPO) under high pressure freezing treatments (HPF, 100,150,200,300,400,500MPaP-20°C/30min) and high pressure processes (HPP) followed with normal pressure immersion freezing (HPP-IF, 100-500MPaP25°C/30min - 0.1MPaP-20°C/30min) are investigated as compared with that processed under high pressure processes (HPP, 100-500MPaP25°C/30min) and normal pressure immersion freezing process (IF, 0.1MPaP-20°C/30min). The results suggested that the treated PPO with the same enzyme activity may have various thermodynamic characteristics and conformations; Pressure-Factors play the main roles in the denaturation of the PPO during the HPF treatment, and Freezing-Factors can weak the effect of Pressure-Factors on PPO denaturation; The treated PPO may be transferred into a partially fold intermediate state.
Collapse
Affiliation(s)
- Lina Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Sericulture & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
30
|
Feng CH, Otani C. Terahertz spectroscopy technology as an innovative technique for food: Current state-of-the-Art research advances. Crit Rev Food Sci Nutr 2020; 61:2523-2543. [PMID: 32584169 DOI: 10.1080/10408398.2020.1779649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
With the dramatic development of source and detector components, terahertz (THz) spectroscopy technology has recently shown a renaissance in various fields such as medical, material, biosensing and pharmaceutical industry. As a rapid and noninvasive technology, it has been extensively exploited to evaluate food quality and ensure food safety. In this review, the principles and processes of THz spectroscopy are first discussed. The current state-of-the-art applications of THz and imaging technologies focused on foodstuffs are then discussed. The advantages and challenges are also covered. This review offers detailed information for recent efforts dedicated to THz for monitoring the quality and safety of various food commodities and the feasibility of its widespread application. THz technology, as an emerging and unique method, is potentially applied for detecting food processing and maintaining quality and safety.
Collapse
Affiliation(s)
- Chao-Hui Feng
- RIKEN Centre for Advanced Photonics, RIKEN, Sendai, Japan
| | - Chiko Otani
- RIKEN Centre for Advanced Photonics, RIKEN, Sendai, Japan.,Department of Physics, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
31
|
Huang Z, Wang Y, Sun L, Wang X, Lu P, Liang G, Pang H, Wu Q, Gooneratne R, Zhao J. Effects of T-2 toxin on the muscle proteins of shrimp (Litopenaeus vannamei) - a proteomics study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:119-128. [PMID: 31441054 DOI: 10.1002/jsfa.10001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND T-2 toxin (T-2) is a potent mycotoxin and a common contaminant of aquatic animal feed, posing a serious risk to health and aquatic animals. We investigated the effect of T-2 on shrimp muscle proteins using proteomics and conventional biochemical methods. Shrimp were fed a diet containing T-2 at 0-12.2 mg kg-1 for 20 days, and changes to the muscle protein composition, ATPase activities, and the sulfhydryl (SH) content and hydrophobicity of actomyosin (AM) were determined. A proteomics study of the proteins was conducted with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional (2D) electrophoresis, and matrix-assisted laser desorption/ionization - time of flight mass spectrometry (MALDI-TOF/TOF MS). RESULTS Exposure to T-2 markedly affected the muscle protein composition of shrimp in a concentration-responsive manner that displayed a diphasic effect. At a low T-2 concentration (1.2 mg kg-1 ), the levels of three major muscle proteins (myofibrillar, sarcoplasmic, and stroma) increased but at higher concentrations they declined progressively. T-2 exposure also led to a breakdown of muscle proteins as evidenced by increases in alkali-soluble protein and the surface hydrophobicity (SoANS) of AM. Thirty differentially expressed proteins were detected, 12 of which showed a concentration-response relationship with T-2 exposure. Among them, 11 homologous proteins were identified by mass spectrometry (MS), with several being key enzymes in energy metabolism. CONCLUSION This study demonstrated that T-2 exposure at medium to high concentrations could significantly affect the protein composition and quality of shrimp muscle, and potentially some of its key metabolisms. One of the arginine kinases (spot 27) was particularly responsive to T-2 and could potentially be used as a biomarker protein for T-2 intoxication by shrimp. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhanrui Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Xiaobo Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Pengli Lu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Guangming Liang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Huanying Pang
- Fisheries College, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Jian Zhao
- School of Chemical Engineering, The University of New South Wales, Sydney, Australia
| |
Collapse
|
32
|
Ekezie FGC, Sun DW, Cheng JH. Altering the IgE binding capacity of king prawn (Litopenaeus Vannamei) tropomyosin through conformational changes induced by cold argon-plasma jet. Food Chem 2019; 300:125143. [DOI: 10.1016/j.foodchem.2019.125143] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/10/2019] [Accepted: 07/06/2019] [Indexed: 10/26/2022]
|
33
|
Effects of low voltage electrostatic field thawing on the changes in physicochemical properties of myofibrillar proteins of bovine Longissimus dorsi muscle. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.06.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Wang Q, Li Y, Sun DW, Zhu Z. Effects of high-voltage electric field produced by an improved electrode system on freezing behaviors and selected properties of agarose gel. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Cui Y, Xuan X, Ling J, Liao X, Zhang H, Shang H, Lin X. Effects of high hydrostatic pressure-assisted thawing on the physicohemical characteristics of silver pomfret ( Pampus argenteus). Food Sci Nutr 2019; 7:1573-1583. [PMID: 31139370 PMCID: PMC6526670 DOI: 10.1002/fsn3.966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/08/2019] [Accepted: 01/25/2019] [Indexed: 12/25/2022] Open
Abstract
Effects of high hydrostatic pressure-assisted thawing (HPAT, 100, 150, and 200 MPa) on the physicochemical characteristics of silver pomfret were evaluated in comparison with conventional (water immersion thawing, WIT) thawed samples. HPAT significantly decreased the thawing time, as well as the cooking and total losses. The maximum water holding capacity was observed at 100 MPa. Color changed obviously at ≥150 MPa, resulting in a cooked appearance. Samples thawed with HPAT showed better texture quality and lower lipid oxidation. The levels of myofibrillar protein oxidation and surface hydrophobicity increased, while Ca2+-ATPase activities decreased as the pressure increased. The oxidation of myofibrillar protein was significantly decreased at 100 MPa; total sulfhydryl content was 30.85% higher than that of WIT. Overall, 100 MPa is the optimum treatment condition for silver pomfret thawing without negative effects on quality of the product. HPAT can be a potential alternative to produce high-quality thawed fish.
Collapse
Affiliation(s)
- Yan Cui
- Key Laboratory of Preservation Engineering of Agricultural ProductsInstitute of Agricultural Products ProcessingNingbo Academy of Agricultural SciencesNingboChina
| | - Xiaoting Xuan
- Key Laboratory of Preservation Engineering of Agricultural ProductsInstitute of Agricultural Products ProcessingNingbo Academy of Agricultural SciencesNingboChina
| | - Jiangang Ling
- Key Laboratory of Preservation Engineering of Agricultural ProductsInstitute of Agricultural Products ProcessingNingbo Academy of Agricultural SciencesNingboChina
| | - Xiaojun Liao
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Huimin Zhang
- College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Haitao Shang
- Key Laboratory of Preservation Engineering of Agricultural ProductsInstitute of Agricultural Products ProcessingNingbo Academy of Agricultural SciencesNingboChina
| | - Xudong Lin
- Key Laboratory of Preservation Engineering of Agricultural ProductsInstitute of Agricultural Products ProcessingNingbo Academy of Agricultural SciencesNingboChina
| |
Collapse
|
36
|
Zhan X, Zhu Z, Sun DW. Effects of extremely low frequency electromagnetic field on the freezing processes of two liquid systems. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.079] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Chizoba Ekezie FG, Cheng JH, Sun DW. Effects of Mild Oxidative and Structural Modifications Induced by Argon Plasma on Physicochemical Properties of Actomyosin from King Prawn ( Litopenaeus vannamei). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13285-13294. [PMID: 30452258 DOI: 10.1021/acs.jafc.8b05178] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the present work, the structure and physicochemical properties of natural actomyosin (NAM) extracted from king prawn ( Litopenaeus vannamei) and subjected to atmospheric pressure plasma jet (APPJ) generated in argon gas as a function of the treatment time were examined. The results revealed that prawn NAM exhibited a correlating decrease in pH from 7.06 ± 0.03 to 6.92 ± 0.02 and a slight increase ( p > 0.05) in solubility from 91.89 ± 1.57 to 96.86 ± 1.19 within the first few minutes of plasma exposure as a result of the formation of soluble aggregates. A rise in turbidity was also noted, confirming the occurrence of protein aggregation. These changes were also accompanied by a rise in emulsifying activity from 48.96 ± 1.66 to 67.31 ± 1.39 m2/g ( p < 0.05) and a nearly 50% increase in foaming capacity after 5 min of APPJ exposure. The modulation of these properties occurred as a result of conformational changes in NAM evident by various complementary structural analyses conducted. Overall, these findings show that mild oxidation from argon plasma can be used for modification of protein functionality and emphasize the need for optimal selection of plasma processing conditions.
Collapse
Affiliation(s)
- Flora-Glad Chizoba Ekezie
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510641 , People's Republic of China
| | - Jun-Hu Cheng
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510641 , People's Republic of China
| | - Da-Wen Sun
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510641 , People's Republic of China
- Food Refrigeration and Computerized Food Technology , University College Dublin, National University of Ireland , Agriculture and Food Science Centre, Belfield, Dublin 4 , Ireland
| |
Collapse
|
38
|
Liao X, Su Y, Liu D, Chen S, Hu Y, Ye X, Wang J, Ding T. Application of atmospheric cold plasma-activated water (PAW) ice for preservation of shrimps (Metapenaeus ensis). Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Zou Y, Xu P, Wu H, Zhang M, Sun Z, Sun C, Wang D, Cao J, Xu W. Effects of different ultrasound power on physicochemical property and functional performance of chicken actomyosin. Int J Biol Macromol 2018; 113:640-647. [DOI: 10.1016/j.ijbiomac.2018.02.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022]
|
40
|
|
41
|
Zou Y, Zhang K, Bian H, Zhang M, Sun C, Xu W, Wang D. Rapid tenderizing of goose breast muscle based on actomyosin dissociation by low-frequency ultrasonication. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
42
|
Development of a mathematical protocol to graphically analyze irreversible changes induced by high pressure treatment in fish muscle proteins. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|