1
|
Gao S, Yi X, Gao X, Long Z, Guo J, Xia G, Shen X. Stabilization of β-Carotene Liposomes with Chitosan-Lactoferrin Coating System: Vesicle Properties and Anti-Inflammatory In Vitro Studies. Foods 2025; 14:968. [PMID: 40231987 PMCID: PMC11941038 DOI: 10.3390/foods14060968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Liposomes serve as an effective delivery system capable of encapsulating a variety of bioactive substances. However, their structural integrity is susceptible to damage from various environmental factors, which can result in the leakage of the encapsulated bioactive agents. Consequently, identifying effective strategies to enhance the stability of liposomes has become a central focus of contemporary liposome research. Surface modification, achieved by introducing a protective layer on the liposome surface, effectively reduces liposome aggregation and enhances their stability. To this end, we designed a surface modification and constructed liposomes loaded with β-carotene through co-modification with chitosan and lactoferrin, resulting in enhanced stability. This improvement was evident in terms of storage stability, light stability, and in vitro digestion stability. The study investigated the morphology, structure, and physicochemical properties of liposomes with varying degrees of modification. CS-LF co-modified liposomes exhibited significant structural changes, with particle size increasing from 257.9 ± 6.2 nm to 580.5 ± 21.5 nm, and zeta potential shifting from negative to +48.9 ± 1.3 mV. Chitosan and lactoferrin were modified on the liposome surface through electrostatic interactions and hydrogen bonding, forming a dense protective barrier on the lipid membrane. Physicochemical analysis indicated that chitosan-lactoferrin co-modification led to a more ordered arrangement of the phospholipid bilayer, reduced membrane fluidity, and increased membrane rigidity. The interactions between chitosan, lactoferrin, and phospholipids were enhanced through hydrogen bonding, resulting in a denser surface membrane structure. This structural integrity reduced membrane permeability and improved the stability of liposomes under storage conditions, UV irradiation, and in vitro digestion. Additionally, co-modified chitosan-lactoferrin liposomes effectively alleviated lipopolysaccharide-induced inflammatory damage in mouse microglial cells by increasing cellular uptake capacity, thereby enhancing the bioavailability of β-carotene. The results of this study demonstrate that chitosan-lactoferrin co-modification significantly enhances the stability of liposomes and the bioavailability of β-carotene. These findings may contribute to the development of multi-substance co-modified liposome systems, providing a more stable transport mechanism for various compounds.
Collapse
Affiliation(s)
- Shuxin Gao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.G.); (X.G.); (Z.L.); (J.G.); (G.X.)
| | - Xiangzhou Yi
- School of Food Science and Engineering, Hainan Tropic Ocean University, Sanya 572022, China;
| | - Xia Gao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.G.); (X.G.); (Z.L.); (J.G.); (G.X.)
| | - Zhengsen Long
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.G.); (X.G.); (Z.L.); (J.G.); (G.X.)
| | - Jingfeng Guo
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.G.); (X.G.); (Z.L.); (J.G.); (G.X.)
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.G.); (X.G.); (Z.L.); (J.G.); (G.X.)
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.G.); (X.G.); (Z.L.); (J.G.); (G.X.)
- School of Food Science and Engineering, Hainan Tropic Ocean University, Sanya 572022, China;
| |
Collapse
|
2
|
Soto-Arriaza M, Cena Ahumada E, Bonardd S, Melendez J. Calcein release from DPPC liposomes by phospholipase A2 activity: Effect of cholesterol and amphipathic copolymers. J Liposome Res 2024; 34:617-629. [PMID: 38850012 DOI: 10.1080/08982104.2024.2361610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
In this study, we evaluated the impact of incorporating diblock and triblock amphiphilic copolymers, as well as cholesterol into DPPC liposomes on the release of a model molecule, calcein, mediated by exogenous phospholipase A2 activity. Our findings show that calcein release slows down in the presence of copolymers at low concentration, while at high concentration, the calcein release profile resembles that of the DPPC control. Additionally, calcein release mediated by exogenous PLA2 decreases as the amount of solubilized cholesterol increases, with a maximum between 18 mol% and 20 mol%. At concentrations higher than 24 mol%, no calcein release was observed. Studies conducted on HEK-293 and HeLa cells revealed that DPPC liposomes reduced viability by only 5% and 12%, respectively, after 3 hours of incubation, while DPPC liposome in presence of 33 mol% of Cholesterol reduced viability by approximately 11% and 23%, respectively, during the same incubation period. For formulations containing copolymers at low and high concentrations, cell viability decreased by approximately 20% and 40%, respectively, after 3 hours of incubation. Based on these preliminary results, we can conclude that the presence of amphiphilic copolymers at low concentration can be used in the design of new DPPC liposomes, and together with cholesterol, they can modulate liposome stabilization. The new formulations showed low cytotoxicity in HEK-293 cells, and it was observed that calcein release depended entirely on PLA2 activity and the presence of calcium ions.
Collapse
Affiliation(s)
- Marco Soto-Arriaza
- Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eduardo Cena Ahumada
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Bonardd
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Donostia-San Sebastían, Spain
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
| | | |
Collapse
|
3
|
Tong Z, Jie X, Chen Z, Deng M, Li X, Zhang Z, Pu F, Xie Z, Xu Z, Wang P. Borneol and lactoferrin dual-modified crocetin-loaded nanoliposomes enhance neuroprotection in HT22 cells and brain targeting in mice. Eur J Med Chem 2024; 276:116674. [PMID: 39004017 DOI: 10.1016/j.ejmech.2024.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Crocetin (CCT), a natural bioactive compound extracted and purified from the traditional Chinese medicinal herb saffron, has been shown to play a role in neurodegenerative diseases, particularly depression. However, due to challenges with solubility, targeting, and bioavailability, formulation development and clinical use of CCT are severely limited. In this study, we used the emulsification-reverse volatilization method to prepare CCT-loaded nanoliposomes (CN). We further developed a borneol (Bor) and lactoferrin (Lf) dual-modified CCT-loaded nanoliposome (BLCN) for brain-targeted delivery of CCT. The results of transmission electron microscope (TEM) and particle size analysis indicated that the size of BLCN (∼140 nm) was suitable for transcellular transport across olfactory axons (∼200 nm), potentially paving a direct path to the brain. Studies on lipid solubility, micropolarity, and hydrophobicity showed that BLCN had a relatively high Lf grafting rate (81.11 ± 1.33 %) and CCT entrapment efficiency (83.60 ± 1.04 %) compared to other liposomes, likely due to Bor improving the lipid solubility of Lf, and the combination promoting the orderly arrangement of liposome membrane molecules. Microplate reader and fluorescence microscopy analysis showed that BLCN efficiently promoted the endocytosis of fluorescent coumarin 6 into HT22 cells with a maximal fluorescence intensity of (13.48 ± 0.80 %), which was significantly higher than that of CCT (5.73 ± 1.17 %) and CN (12.13 ± 1.01 %). BLCN also exhibited sustained function, remaining effective for more than 12 h after reaching a peak at 1 h in cells, while CN showed a significant decrease after 4 h. The uptake mechanisms of BLCN in HT22 cells mainly involve energy-dependent, caveolae-mediated, and microtubule-mediated endocytosis, as well as micropinocytosis. Furthermore, BLCN displayed a significant neuroprotective effect on HT22 cells in glutamate-, corticosterone-, and H2O2-induced models. Tissue fluorescence image analysis of mice showed that BLCN exhibited substantial retention of fluorescent DiR in the brain after nasal administration for 12 h. These findings suggest that CCT has the potential for cellular uptake, neuroprotection, and targeted delivery to the brain following intranasal administration when encapsulated in Bor and Lf dual-modified nanoliposomes.
Collapse
Affiliation(s)
- Zheren Tong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaolu Jie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mingtao Deng
- Department of Pharmacy, Jiangxi Medical College, Shangrao, 334000, China
| | - Xin Li
- Department of Pharmacy, Jiangxi Medical College, Shangrao, 334000, China
| | - Zhiwen Zhang
- Department of Pharmacy, Jiangxi Medical College, Shangrao, 334000, China
| | - Faxiang Pu
- Zhejiang Suichang Liming Pharmaceutical Co., LTD, Suichang, 323300, China
| | - Zhangfu Xie
- Zhejiang Suichang Liming Pharmaceutical Co., LTD, Suichang, 323300, China
| | - Zijin Xu
- Department of Pharmacy, Jiangxi Medical College, Shangrao, 334000, China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Wang Q, Ma C, Wang N, Mao H. Effects of quercetin on the DNA methylation pattern in tumor therapy: an updated review. Food Funct 2024; 15:3897-3907. [PMID: 38535893 DOI: 10.1039/d3fo03831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Quercetin is a unique bioactive flavonoid, and is an excellent antioxidant and has anti-tumor effects by regulating different tumor-related processes like proliferation, apoptosis, invasion, and spread. The latest investigations reveal that quercetin may have the capability to influence DNA methylation modification, one of the primary factors in the development of tumors. Despite the fact that quercetin has significant therapeutic properties, its use as an anti-tumor medicine is constrained by its poor solubility, short half-life, and ineffective tumor targeting. Here, we review the structure and properties of quercetin, its capacity for DNA methylation modification in tumors, and the possibility of nanoscale delivery of quercetin for future tumor treatment.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Ma
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Nan Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Huixian Mao
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| |
Collapse
|
5
|
Liu P, Shen J, Cao J, Jiang W. p-Coumaric acid-loaded nanoliposomes: Optimization, characterization, antimicrobial properties and preservation effects on fresh pod pepper fruit. Food Chem 2024; 435:137672. [PMID: 37820399 DOI: 10.1016/j.foodchem.2023.137672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Novel p-coumaric acid (pCA)-loaded nanoliposomes were prepared by the thin-film hydration method, assisted with ultrasonic treatment, and optimized by the response surface methodology. The characterization showed that the fabricated pCA-loaded liposomes were nanosized spherical vesicles (83.55 ± 0.34 nm), exhibiting favorable dispersibility and encapsulation efficiency (55.70 ± 0.10 %). Fourier transform infrared spectroscopy analysis indicated that pCA was encapsulated into phospholipid bilayer through hydrophobic interaction and hydrogen bonding. Tests of temperature stability and centrifugal stability suggested that pCA-loaded nanoliposomes were less sensitive to aggregation and fusion during storage. Incubation experiments revealed that pCA-loaded nanoliposomes had a good inhibitory effect on the expansion of disease area on fresh pod pepper fruit caused by Botrytis cinerea. Additionally, pCA-loaded nanoliposomes effectively extended shelf life of fresh pod peppers by reducing weight loss and naturally-infected decays. The findings presented a viable strategy for designing liposomal encapsulation technology to efficiently enhance antimicrobial activity of pCA in food preservation.
Collapse
Affiliation(s)
- Peiye Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China Household Electric Appliance Research Institute, Beijing 100037, China
| | - Jing Shen
- College of Science, China Agricultural University, Beijing 100083, China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
6
|
Zhang T, Xu X, Pan Y, Yang H, Han J, Liu J, Liu W. Specific surface modification of liposomes for gut targeting of food bioactive agents. Compr Rev Food Sci Food Saf 2023; 22:3685-3706. [PMID: 37548603 DOI: 10.1111/1541-4337.13224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Liposomes have become a research hotspot in recent years as food delivery systems with attractive properties, including the bilayer structure assembled like the cell membrane, reducing the side-effect and improving environmental stability of cargos, controlling release, extending duration of functional ingredients, and high biodegradable and biocompatible abilities in the body. However, the conventional liposomes lack stability during storage and are weak in targeted absorption in the gastrointestinal track. At present, surface modification has been approved to be an effective platform to shield these barricades and help liposomes deliver the agents safely and effectively to the ideal site. In this review, the gastrointestinal stability of conventional liposomes, cargo release models from liposomes, and the biological fate of the core materials after release were emphasized. Then, the strategies in both physical and chemical perspectives to improve the stability and utilization of liposomes in the gastrointestinal tract, and the emerging approaches for improving gut targeting by specifically modified liposomes and the intestinal receptors relative to liposomes/cargos absorption were highlighted. Last but not the least, the safety, challenges, and opportunities for the improvement of liposomal bioavailability were also discussed to inspire new applications of liposomes as oral carriers.
Collapse
Affiliation(s)
- Tingting Zhang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yujie Pan
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hui Yang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
7
|
Aghababaei F, Hadidi M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals (Basel) 2023; 16:1020. [PMID: 37513932 PMCID: PMC10384403 DOI: 10.3390/ph16071020] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin, a flavonoid found in fruits and vegetables, has been a part of human diets for centuries. Its numerous health benefits, including antioxidant, antimicrobial, anti-inflammatory, antiviral, and anticancer properties, have been extensively studied. Its strong antioxidant properties enable it to scavenge free radicals, reduce oxidative stress, and protect against cellular damage. Quercetin's anti-inflammatory properties involve inhibiting the production of inflammatory cytokines and enzymes, making it a potential therapeutic agent for various inflammatory conditions. It also exhibits anticancer effects by inhibiting cancer cell proliferation and inducing apoptosis. Finally, quercetin has cardiovascular benefits such as lowering blood pressure, reducing cholesterol levels, and improving endothelial function, making it a promising candidate for preventing and treating cardiovascular diseases. This review provides an overview of the chemical structure, biological activities, and bioavailability of quercetin, as well as the different delivery systems available for quercetin. Incorporating quercetin-rich foods into the diet or taking quercetin supplements may be beneficial for maintaining good health and preventing chronic diseases. As research progresses, the future perspectives of quercetin appear promising, with potential applications in nutraceuticals, pharmaceuticals, and functional foods to promote overall well-being and disease prevention. However, further studies are needed to elucidate its mechanisms of action, optimize its bioavailability, and assess its long-term safety for widespread utilization.
Collapse
Affiliation(s)
- Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, UAB-Campus, 08193 Bellaterra, Spain
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
8
|
Moholkar DN, Kandimalla R, Gupta RC, Aqil F. Advances in lipid-based carriers for cancer therapeutics: Liposomes, exosomes and hybrid exosomes. Cancer Lett 2023; 565:216220. [PMID: 37209944 PMCID: PMC10325927 DOI: 10.1016/j.canlet.2023.216220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Cancer has recently surpassed heart disease as the leading cause of deaths worldwide for the age group 45-65 and has been the primary focus for biomedical researchers. Presently, the drugs involved in the first-line cancer therapy are raising concerns due to high toxicity and lack of selectivity to cancer cells. There has been a significant increase in research with innovative nano formulations to entrap the therapeutic payload to enhance efficacy and eliminate or minimize toxic effects. Lipid-based carriers stand out due to their unique structural properties and biocompatible nature. The two main leaders of lipid-based drug carriers: long known liposomes and comparatively new exosomes have been well-researched. The similarity between the two lipid-based carriers is the vesicular structure with the core's capability to carry the payload. While liposomes utilize chemically derived and altered phospholipid components, the exosomes are naturally occurring vesicles with inherent lipids, proteins, and nucleic acids. More recently, researchers have focused on developing hybrid exosomes by fusing liposomes and exosomes. Combining these two types of vesicles may offer some advantages such as high drug loading, targeted cellular uptake, biocompatibility, controlled release, stability in harsh conditions and low immunogenicity.
Collapse
Affiliation(s)
- Disha N Moholkar
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Raghuram Kandimalla
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
9
|
Effect of oligosaccharides as lyoprotectants on the stability of curcumin-loaded nanoliposomes during lyophilization. Food Chem 2023; 410:135436. [PMID: 36640657 DOI: 10.1016/j.foodchem.2023.135436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/06/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Nanoliposome is a promising delivery system, whereas its commercial application is limited by the structural instability, cargo leakage and particles aggregation during the processing such as freeze-drying. In this study, the effect of four oligosaccharides, fructo-oligosaccharides, lactose, inulin and sucrose (control), on the physicochemical properties, structural stability, and in vitro semi-dynamic digestion behavior of curcumin-loaded nanoliposomes were investigated before and after lyophilization. The results showed that the addition of the oligosaccharides inhibited the changes in particle size and reduced curcumin leakage from lyophilized nanoliposomes. Oligosaccharides significantly improved the physical stability of lyophilized nanoliposomes and delayed curcumin release during in vitro digestion. In addition, oligosaccharides could decrease the hydrophobicity of liposomal membrane and the tightness of phospholipid molecule arrangement, with the increase in micropolarity and fluidity of the bilayer membranes. These results suggested that fructo-oligosaccharides, lactose and inulin could be effective lyoprotectants for lyophilized nanoliposomes.
Collapse
|
10
|
Dima C, Assadpour E, Nechifor A, Dima S, Li Y, Jafari SM. Oral bioavailability of bioactive compounds; modulating factors, in vitro analysis methods, and enhancing strategies. Crit Rev Food Sci Nutr 2023; 64:8501-8539. [PMID: 37096550 DOI: 10.1080/10408398.2023.2199861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Foods are complex biosystems made up of a wide variety of compounds. Some of them, such as nutrients and bioactive compounds (bioactives), contribute to supporting body functions and bring important health benefits; others, such as food additives, are involved in processing techniques and contribute to improving sensory attributes and ensuring food safety. Also, there are antinutrients in foods that affect food bioefficiency and contaminants that increase the risk of toxicity. The bioefficiency of food is evaluated with bioavailability which represents the amount of nutrients or bioactives from the consumed food reaching the organs and tissues where they exert their biological activity. Oral bioavailability is the result of some physicochemical and biological processes in which food is involved such as liberation, absorption, distribution, metabolism, and elimination (LADME). In this paper, a general presentation of the factors influencing oral bioavailability of nutrients and bioactives as well as the in vitro techniques for evaluating bioaccessibility and is provided. In this context, a critical analysis of the effects of physiological factors related to the characteristics of the gastrointestinal tract (GIT) on oral bioavailability is discussed, such as pH, chemical composition, volumes of gastrointestinal (GI) fluids, transit time, enzymatic activity, mechanical processes, and so on, and the pharmacokinetics factors including BAC and solubility of bioactives, their transport across the cell membrane, their biodistribution and metabolism. The impact of matrix and food processing on the BAC of bioactives is also explained. The researchers' recent concerns for improving oral bioavailability of nutrients and food bioactives using both traditional techniques, for example, thermal treatments, mechanical processes, soaking, germination and fermentation, as well as food nanotechnologies, such as loading of bioactives in different colloidal delivery systems (CDSs), is also highlighted.
Collapse
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alexandru Nechifor
- Faculty of Medicine and Pharmacy - Medical Clinical Department, Dunarea de Jos" University of Galati, Galati, Romania
| | - Stefan Dima
- Faculty of Science and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
11
|
Structural degradation and uptake of resveratrol-encapsulated liposomes using an in vitro digestion combined with Caco-2 cell absorption model. Food Chem 2023; 403:133943. [DOI: 10.1016/j.foodchem.2022.133943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
|
12
|
Zheng Y, Jia R, Li J, Tian X, Qian Y. Curcumin- and resveratrol-co-loaded nanoparticles in synergistic treatment of hepatocellular carcinoma. J Nanobiotechnology 2022; 20:339. [PMID: 35858935 PMCID: PMC9301856 DOI: 10.1186/s12951-022-01554-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/08/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Currently, systemic therapies for patients with advanced-stage hepatocellular carcinoma (HCC) rely mainly on systemic drugs. However, traditional systemic drugs have a high rate of serious adverse events, and the curative effects of some potential anticancer drugs, such as curcumin (CUR) and resveratrol (RSV), are less apparent due to their poor bioavailability. Therefore, it is urgent to develop a highly effective therapy to improve patient prognosis. Herein, an injectable HCC-targeted nanoparticle (NP) was designed to deliver CUR and RSV to hepatoma cells. RESULTS The molecular self-assembled NPs showed higher tumour retention through the enhanced permeability and retention (EPR) effect of the NPs and surface modification with the HCC-specific peptide moiety SP94 to effectively treat HCC. These HCC-targeted NPs led to a significant reduction in the drug dosage, delayed the rate of drug release and improved the bioavailability of the encapsulated drugs. The drug concentrations in the vicinity of the tumour increased, and a good therapeutic effect was observed without obvious side effects. CONCLUSIONS These SP94-mediated NPs allowed large amounts of antitumor drugs to accumulate in tumours, providing a novel strategy for innovative HCC therapy. This nanoplatform also offers an idea for exploring other potential chemotherapeutics.
Collapse
Affiliation(s)
- Yongshun Zheng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Ran Jia
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Jun Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Xiaohe Tian
- Department of Radiology and National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Centre (HMRRC), West China Hospital of Sichuan University, Chengdu, 610000, China.
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, School of Life Science, Anhui University, Hefei, 230000, China.
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
13
|
Yang L, Li F, Cao X, Qiao X, Xue C, Xu J. Stability and bioavailability of protein matrix-encapsulated astaxanthin ester microcapsules. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2144-2152. [PMID: 34614199 DOI: 10.1002/jsfa.11556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/21/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Astaxanthin ester derived from Haematococcus pluvialis is often used as a functional and nutritional ingredient in foods. However, its utilization is currently limited as a result of its chemical instability and low bioavailability. Food matrix microcapsules are becoming increasingly popular because of their safety and high encapsulation efficiency. In the present study, the effect of protein matrixes on the properties of microcapsules was evaluated. RESULTS We investigated the effects of storage on astaxanthin ester microcapsules and the corresponding rehydration solution at 40 °C under a nitrogen atmosphere, as well as in darkness. The results showed that the stability of products prepared based on whey protein (WP) and corn-gluten was superior to that of products prepared based on lactoferrin, soy protein and sodium caseinate. The bioavailability of astaxanthin ester microcapsules encapsulated with different proteins and examined by means of astaxanthin concentrations in the serum and liver after oral administration was compared. All five protein wall materials could significantly improve the bioavailability of astaxanthin ester. The microcapsules prepared based on WP had the highest bioavailability, with a value of 10.69 ± 0.75 μg·h mL-1 , which was 3.15 times higher compared to that of the control group. CONCLUSION The results of the present study showed that protein encapsulation, especially WP encapsulation, could effectively improve the stability, water solubility and bioavailability of astaxanthin esters. Thus, WP can be used as the main wall material in delivery systems. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Fei Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xinyu Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xing Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
14
|
Jara-Quijada E, Pérez-Won M, Tabilo-Munizaga G, González-Cavieres L, Lemus-Mondaca R. An Overview Focusing on Food Liposomes and Their Stability to Electric Fields. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
|
16
|
Engineering of Liposome Structure to Enhance Physicochemical Properties of Spirulina plantensis Protein Hydrolysate: Stability during Spray-Drying. Antioxidants (Basel) 2021; 10:antiox10121953. [PMID: 34943056 PMCID: PMC8749985 DOI: 10.3390/antiox10121953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Encapsulating hydrolysates in liposomes can be an effective way to improve their stability and bioactivity. In this study, Spirulina hydrolysate was successfully encapsulated into nanoliposomes composed of different stabilizers (cholesterol or γ-oryzanol), and the synthesized liposomes were finally coated with chitosan biopolymer. The synthesized formulations were fully characterized and their antioxidant activity evaluated using different methods. Then, stabilization of coated nanoliposomes (chitosomes) by spray-drying within the maltodextrin matrix was investigated. A small mean diameter and homogeneous size distribution with high encapsulation efficiency were found in all the formulations, while liposomes stabilized with γ-oryzanol and coated with chitosan showed the highest physical stability over time and preserved approximately 90% of their initial antioxidant capacity. Spray-dried powder could preserve all characteristics of peptide-loaded chitosomes. Thus, spray-dried hydrolysate-containing chitosomes could be considered as a functional food ingredient for the human diet.
Collapse
|
17
|
Yu S, Wei Z, Xiao H, Mohamed H, Xu S, Yang X, Ren X, Li L, Song Y. Effect of mono- and double-layer polysaccharide surface coating on the physical stability of nanoliposomes under various environments. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Transferrin receptors/magnetic resonance dual-targeted nanoplatform for precise chemo-photodynamic synergistic cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 39:102467. [PMID: 34610478 DOI: 10.1016/j.nano.2021.102467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
Various drug delivery strategies to improve cancer therapeutic efficacy have been actively investigated. One major challenge is to improve the targeting ability. Here elaborately designed nanocarriers (NCs) named as Tf-5-ALA-PTX-NCs are demonstrated to address this problem. In this nanostructure, paclitaxel (PTX) and 5-aminolevulinic acid (5-ALA) were co-encapsulated within magnetic nanocarriers to achieve synergistic chemotherapy and photodynamic therapy, while transferrin (Tf) was conjugated with modified copolymer Pluronic P123 and embedded in the surface of the nanocarriers, which endows nanocarriers with Tf targeting and magnetic targeting to enhance the anti-tumor outcome. Results demonstrated that Tf-5-ALA-PTX-NCs significantly enhanced the targeting drug delivery to MCF-7 cells and synergistically induced apoptosis and death of MCF-7 cells in vitro and highly efficient tumor ablation in vivo. Intriguingly, Tf-5-ALA-PTX-NCs have a controllable "on/off" switch to enhance the drug release. The dual-targeted nanocarriers would be a promising versatile anti-tumor drug delivery and imaging-guided cancer chemo-photodynamic synchronization therapy strategy.
Collapse
|
19
|
Ottonelli I, Duskey JT, Rinaldi A, Grazioli MV, Parmeggiani I, Vandelli MA, Wang LZ, Prud’homme RK, Tosi G, Ruozi B. Microfluidic Technology for the Production of Hybrid Nanomedicines. Pharmaceutics 2021; 13:1495. [PMID: 34575571 PMCID: PMC8465086 DOI: 10.3390/pharmaceutics13091495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Microfluidic technologies have recently been applied as innovative methods for the production of a variety of nanomedicines (NMeds), demonstrating their potential on a global scale. The capacity to precisely control variables, such as the flow rate ratio, temperature, total flow rate, etc., allows for greater tunability of the NMed systems that are more standardized and automated than the ones obtained by well-known benchtop protocols. However, it is a crucial aspect to be able to obtain NMeds with the same characteristics of the previously optimized ones. In this study, we focused on the transfer of a production protocol for hybrid NMeds (H-NMeds) consisting of PLGA, Cholesterol, and Pluronic® F68 from a benchtop nanoprecipitation method to a microfluidic device. For this aim, we modified parameters such as the flow rate ratio, the concentration of core materials in the organic phase, and the ratio between PLGA and Cholesterol in the feeding organic phase. Outputs analysed were the chemico-physical properties, such as size, PDI, and surface charge, the composition in terms of %Cholesterol and residual %Pluronic® F68, their stability to lyophilization, and the morphology via atomic force and electron microscopy. On the basis of the results, even if microfluidic technology is one of the unique procedures to obtain industrial production of NMeds, we demonstrated that the translation from a benchtop method to a microfluidic one is not a simple transfer of already established parameters, with several variables to be taken into account and to be optimized.
Collapse
Affiliation(s)
- Ilaria Ottonelli
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Arianna Rinaldi
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Vittoria Grazioli
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Irene Parmeggiani
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Maria Angela Vandelli
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Leon Z. Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (L.Z.W.); (R.K.P.)
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (L.Z.W.); (R.K.P.)
| | - Giovanni Tosi
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Barbara Ruozi
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| |
Collapse
|
20
|
Xu X, Zhao W, Ye Y, Cui W, Dong L, Yao Y, Li K, Han J, Liu W. Novel Nanoliposome Codelivered DHA and Anthocyanidin: Characterization, In Vitro Infant Digestibility, and Improved Cell Uptake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9395-9406. [PMID: 34344151 DOI: 10.1021/acs.jafc.1c02817] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There are still many challenges in understanding the absorption and transport mechanism of liposomes in the gastrointestinal tract of infants, especially for liposome-coentrapped two or more substances. In this study, novel docosahexaenoic acid (DHA)-anthocyanidin-codelivery liposomes (DA-LPs) were fabricated and characterized, and their digestive and absorptive behaviors were evaluated using the in vitro infant digestive method combined with the Caco-2 cell model. The liposomal bilayer structure remained intact with the particles aggregated in simulated infant gastric fluid, while their phospholipid membrane underwent enzymatic lipolysis under simulated intestinal conditions. Compared to single substance-loaded liposomes (DHA- or anthocyanidin-loaded liposomes), the digested DA-LPs showed better cell viability, higher cellular uptake and membrane fluidity, and lower reactive oxygen species (ROS). It can be concluded that DA-LPs are promising carriers for simultaneously transporting hydrophobic and hydrophilic molecules and may be beneficial for improving nutrient absorption and alleviating intestinal stress oxidation.
Collapse
Affiliation(s)
- Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weixue Zhao
- Meitek Company Limited, Qingdao 266400, China
| | - Yiru Ye
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weining Cui
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lu Dong
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yixin Yao
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kexuan Li
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
21
|
Transformation pathways and metabolic activity of free chlorophyll compounds from chloroplast thylakoid membrane under in vitro gastrointestinal digestion and colonic fermentation in early life. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Zhang P, Bao Z, Jiang P, Zhang S, Zhang X, Lin S, Sun N. Nanoliposomes for encapsulation and calcium delivery of egg white peptide-calcium complex. J Food Sci 2021; 86:1418-1431. [PMID: 33880783 DOI: 10.1111/1750-3841.15677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 11/28/2022]
Abstract
Nanoliposomes and crude liposomes loaded with egg white peptide-calcium complex (EWP-Ca) were fabricated by thin-film dispersion with or without dynamic high-pressure microfluidization. Their physiochemical properties, in vitro stability, and calcium release profiles were investigated in this study. Results showed that the EWP-Ca-loaded nanoliposomes exhibited spherical structures with a lower particle size and polydispersity index as well as a higher thermal stability as compared to the corresponding crude liposomes. Further investigations revealed that EWP-Ca was embedded into the liposomes mainly through hydrogen bonding and present in an amorphous form within the liposomes. Additionally, the EWP-Ca-loaded nanoliposomes effectively slowed the release of calcium in gastric digestion, allowing more soluble calcium to enter the intestinal tract; in the subsequent intestinal digestion, the EWP-Ca-loaded nanoliposomes were more electrically and physically stable than the crude liposomes. Therefore, the EWP-Ca-loaded nanoliposomes could be used as a favorable dietary calcium delivery system to promote calcium bioavailability. PRACTICAL APPLICATION: Nanoliposomes were fabricated in this study to encapsulate the egg white peptide-calcium complex (EWP-Ca) for calcium delivery. The EWP-Ca-loaded nanoliposomes effectively slowed the release of calcium in gastric digestion, allowing more soluble calcium to enter the intestinal tract, and were more electrically and physically stable in the subsequent intestinal digestion. Therefore, the EWP-Ca-loaded nanoliposomes may be incorporated in calcium-fortified food to enhance calcium delivery for maintaining bone health.
Collapse
Affiliation(s)
- Penglin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Pengfei Jiang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiumin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
23
|
Naidu SAG, Wallace TC, Davies KJA, Naidu AS. Lactoferrin for Mental Health: Neuro-Redox Regulation and Neuroprotective Effects across the Blood-Brain Barrier with Special Reference to Neuro-COVID-19. J Diet Suppl 2021; 20:218-253. [PMID: 33977807 DOI: 10.1080/19390211.2021.1922567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Overall mental health depends in part on the blood-brain barrier, which regulates nutrient transfer in-and-out of the brain and its central nervous system. Lactoferrin, an innate metal-transport protein, synthesized in the substantia nigra, particularly in dopaminergic neurons and activated microglia is vital for brain physiology. Lactoferrin rapidly crosses the blood-brain barrier via receptor-mediated transcytosis and accumulates in the brain capillary endothelial cells. Lactoferrin receptors are additionally present on glioma cells, brain micro-vessels, and neurons. As a regulator of neuro-redox, microglial lactoferrin is critical for protection/repair of neurons and healthy brain function. Iron imbalance and oxidative stress are common among patients with neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, dementia, depression, and multiple sclerosis. As an endogenous iron-chelator, lactoferrin prevents iron accumulation and dopamine depletion in Parkinson's disease patients. Oral lactoferrin supplementation could modulate the p-Akt/PTEN pathway, reduce Aβ deposition, and ameliorate cognitive decline in Alzheimer's disease. Novel lactoferrin-based nano-therapeutics have emerged as effective drug-delivery systems for clinical management of neurodegenerative disorders. Recent emergence of the Coronavirus disease-2019 (COVID-19) pandemic, initially considered a respiratory illness, demonstrated a broader virulence spectrum with the ability to cross the blood-brain barrier and inflict a plethora of neuropathological manifestations in the brain - the Neuro-COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are widely reported in Parkinson's disease, Alzheimer's disease, dementia, and multiple sclerosis patients with aggravated clinical outcomes. Lactoferrin, credited with several neuroprotective benefits in the brain could serve as a potential adjuvant in the clinical management of Neuro-COVID-19.
Collapse
Affiliation(s)
- Sreus A G Naidu
- N-terminus Research Laboratory, Yorba Linda, California, USA
| | - Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, Virginia, USA
- Think Healthy Group, Washington, District of Columbia, USA
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, California, USA
- Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California, USA
- Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
24
|
Tan C, Wang J, Sun B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol Adv 2021; 48:107727. [PMID: 33677025 DOI: 10.1016/j.biotechadv.2021.107727] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Conventional liposomes still face many challenges associated with the poor physical and chemical stability, considerable loss of encapsulated cargo, lack of stimulus responsiveness, and rapid elimination from blood circulation. Integration of versatile functional biopolymers has emerged as an attractive strategy to overcome the limitation of usage of liposomes. This review comprehensively summarizes the most recent studies (2015-2020) and their challenges aiming at the exploration of biopolymer-liposome hybrid systems, including surface-modified liposomes, biopolymer-incorporated liposomes, guest-in-cyclodextrin-in-liposome, liposome-in-hydrogel, liposome-in-film, and liposome-in-nanofiber. The physicochemical principles and key technical information underlying the combined strategies for the fabrication of polymeric liposomes, the advantages and limitations of each of the systems, and the stabilization mechanisms are discussed through various case studies. Special emphasis is directed toward the synergistic efficiencies of biopolymers and phospholipid bilayers on encapsulation, protection, and controlled delivery of bioactives (e.g., vitamins, carotenoids, phenolics, peptides, and other health-related compounds) for the biomedical, pharmaceutical, cosmetic, and functional food applications. The major challenges, opportunities, and possible further developments for future studies are also highlighted.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
25
|
Sonju JJ, Dahal A, Singh SS, Jois SD. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J Control Release 2021; 329:624-644. [PMID: 33010333 PMCID: PMC8082750 DOI: 10.1016/j.jconrel.2020.09.055] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
Abstract
Clinically efficacious medication in anticancer therapy has been successfully designed with liposome-based nanomedicine. The liposomal formulation in cancer drug delivery can be facilitated with a functionalized peptide that mediates the specific drug delivery opportunities with increased drug penetrability, specific accumulation in the targeted site, and enhanced therapeutic efficacy. This review aims to focus on recent advances in peptide-functionalized liposomal formulation techniques in cancer diagnosis and treatment regarding recently published literature. It also will highlight different aspects of novel liposomal formulation techniques that incorporate surface functionalization with peptides for better anticancer effect and current challenges in peptide-functionalized liposomal drug formulation.
Collapse
Affiliation(s)
- Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
26
|
Liu W, Hou Y, Jin Y, Wang Y, Xu X, Han J. Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Huang J, Wu M, Yang K, Zhao M, Wu D, Ma J, Ding B, Sun W. Effect of nanoliposomal entrapment on antioxidative hydrolysates from goose blood protein. J Food Sci 2020; 85:3034-3042. [PMID: 32869338 DOI: 10.1111/1750-3841.15409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 11/27/2022]
Abstract
In this study, the encapsulation of goose blood hydrolysate (GBH) was performed within nanoliposomes. We investigated the physicochemical properties, stability, antioxidant indices, the morphology of nanoparticles, the digestion stability in simulated gastrointestinal fluid, differential scanning calorimetry (DSC) analysis, and Fourier transform infrared (FTIR) spectroscopy. GBH was successfully encapsulated into nanoliposomes using reverse-phase evaporation method. The entrapment efficiency of GBH-loaded nanoliposomes was about 70.99 ± 2.85%, the average particle size was 93.3 ± 2.45 nm, the zeta-potential of GBH-loaded nanoliposomes was -30 mV, and the morphology of GBH-loaded nanoliposomes was characterized by transmission electron microscope. Moreover, the results of DSC and FTIR showed that the GBH nanoliposome was more stable than the empty liposomes due to hydrogen bond complexation between liposome and GBH. The release of GBH from nanoliposomes could be significantly controlled, and the release ratios were 48.9 ± 2.96% in simulated gastric fluid and 59.9 ± 5.30% in simulated intestinal fluid, respectively, proving that degradation rate of antioxidant activities of GBH encapsulated in nanoliposomes was decreased. In conclusion, nanoliposomes embedding is a promising and effective way to increase the stability of hydrolysates from GBH and produce various types of functional food.
Collapse
Affiliation(s)
- Jin Huang
- the College of Life Science, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| | - Mengting Wu
- the College of Life Science, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| | - Kun Yang
- the College of Life Science, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| | - Manman Zhao
- the College of Life Science, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| | - Di Wu
- the College of Life Science, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| | - Jing Ma
- College of Life Science, and Jingchu Food Research and Development Center, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| | - Baomiao Ding
- College of Life Science, and Jingchu Food Research and Development Center, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| | - Weiqing Sun
- College of Life Science, and Jingchu Food Research and Development Center, Yangtze University, Jingzhou, Hubei, 434023, P. R. China
| |
Collapse
|
28
|
Liu W, Kong Y, Ye A, Shen P, Dong L, Xu X, Hou Y, Wang Y, Jin Y, Han J. Preparation, formation mechanism and in vitro dynamic digestion behavior of quercetin-loaded liposomes in hydrogels. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Xiao D, Zhou R. Advances in the Application of Liposomal Nanosystems in Anticancer Therapy. Curr Stem Cell Res Ther 2020; 16:14-22. [PMID: 32324519 DOI: 10.2174/1574888x15666200423093906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023]
Abstract
Cancer is the disease with the highest mortality rate, which poses a great threat to people's lives. Cancer caused approximately 3.4 million death worldwide annually. Surgery, chemotherapy and radiotherapy are the main therapeutic methods in clinical practice. However, surgery is only suitable for patients with early-stage cancers, and chemotherapy as well as radiotherapy have various side effects, both of which limit the application of available therapeutic methods. In 1965, liposome was firstly developed to form new drug delivery systems given the unique properties of nanoparticles, such as enhanced permeability and retention effect. During the last 5 decades, liposome has been widely used for the purpose of anticancer drug delivery, and several advances have been made regarding liposomal technology, including long-circulating liposomes, active targeting liposomes and triggered release liposomes, while problems exist all along. This review introduced the advances as well as the problems during the development of liposomal nanosystems for cancer therapy in recent years.
Collapse
Affiliation(s)
- Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
An in vitro digestion study of encapsulated lactoferrin in rapeseed phospholipid-based liposomes. Food Chem 2020; 321:126717. [PMID: 32259734 DOI: 10.1016/j.foodchem.2020.126717] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/23/2022]
Abstract
Effectiveness of liposomes elaborated with rapeseed phospholipid (RP) extracted from a residue of oil processing, stigmasterol (ST) and/or hydrogenated phosphatidylcholine (HPC) for the encapsulation lactoferrin (LF) was studied; lipid membrane of liposomes was characterized (bilayer size, chain conformational order, lateral packing, lipid phase, and morphology) and the protection offered to the encapsulated LF during in vitro digestion was determined. Liposomes composed of RP+STLC(low concentration) showed spherical and irregular vesicles without perforations. Lamellar structure was organized in a liquid-ordered phase with a potential orthorhombic packing. Stability and size of the liposomes were more affected by gastric digestion than intestinal digestion; 67-80% of the initially encapsulated LF remained intact after gastric digestion whereas the percentage was reduced to 16-35% after intestinal digestion. Our results shows that liposomes elaborated with RP, properly combined with other lipids, can be a useful oral delivery system of molecules sensitive to digestive enzymes.
Collapse
|
31
|
Chen Y, Xia G, Zhao Z, Xue F, Gu Y, Chen C, Zhang Y. 7,8-Dihydroxyflavone nano-liposomes decorated by crosslinked and glycosylated lactoferrin: storage stability, antioxidant activity, in vitro release, gastrointestinal digestion and transport in Caco-2 cell monolayers. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103742] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
32
|
Wu Z, Zhou W, Pang C, Deng W, Xu C, Wang X. Multifunctional chitosan-based coating with liposomes containing laurel essential oils and nanosilver for pork preservation. Food Chem 2019; 295:16-25. [DOI: 10.1016/j.foodchem.2019.05.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/08/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
|
33
|
Zhang J, Han J, Ye A, Liu W, Tian M, Lu Y, Wu K, Liu J, Lou MP. Influence of Phospholipids Structure on the Physicochemical Properties and In Vitro Digestibility of Lactoferrin-Loaded Liposomes. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09581-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
|
35
|
Advances and challenges in liposome digestion: Surface interaction, biological fate, and GIT modeling. Adv Colloid Interface Sci 2019; 263:52-67. [PMID: 30508694 DOI: 10.1016/j.cis.2018.11.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/09/2018] [Accepted: 11/25/2018] [Indexed: 11/22/2022]
Abstract
During the past 50 years, there has been increased interest in liposomes as carriers of pharmaceutical, cosmetic, and agricultural products. More recently, much progress has been made in the use of surface-modified formulas in experimental food matrices. However, before the viability and the applications of nutrients in liposomal form in the edible field can be determined, the digestion behavior along the human gastrointestinal tract (GIT) must be clarified. In vitro digestion models, from static models to dynamic mono-/bi-/multi-compartmental models, are increasingly being developed and applied as alternatives to in vivo assays. This review describes the surface interactions of liposomes with their encapsulated ingredients and with external food components and updates the biological fate of liposomes after ingestion. It summarizes current models for the human stomach and intestine that are available and their relevance in nutritional studies. It highlights limitations and challenges in the use of these models for liposomal colloid system digestion and discusses crucial factors, such as enzymes and bile salts, that affect liposomal bilayer degradation.
Collapse
|
36
|
The effect of DSPE-PEG2000, cholesterol and drug incorporated in bilayer on the formation of discoidal micelles. Eur J Pharm Sci 2018; 125:74-85. [DOI: 10.1016/j.ejps.2018.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/06/2018] [Accepted: 09/15/2018] [Indexed: 12/17/2022]
|
37
|
Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules 2018; 23:E907. [PMID: 29662019 PMCID: PMC6017847 DOI: 10.3390/molecules23040907] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022] Open
Abstract
Cancer is a life-threatening disease contributing to ~3.4 million deaths worldwide. There are various causes of cancer, such as smoking, being overweight or obese, intake of processed meat, radiation, family history, stress, environmental factors, and chance. The first-line treatment of cancer is the surgical removal of solid tumours, radiation therapy, and chemotherapy. The systemic administration of the free drug is considered to be the main clinical failure of chemotherapy in cancer treatment, as limited drug concentration reaches the tumour site. Most of the active pharmaceutical ingredients (APIs) used in chemotherapy are highly cytotoxic to both cancer and normal cells. Accordingly, targeting the tumour vasculatures is essential for tumour treatment. In this context, encapsulation of anti-cancer drugs within the liposomal system offers secure platforms for the targeted delivery of anti-cancer drugs for the treatment of cancer. This, in turn, can be helpful for reducing the cytotoxic side effects of anti-cancer drugs on normal cells. This short-review focuses on the use of liposomes in anti-cancer drug delivery.
Collapse
Affiliation(s)
- Temidayo O B Olusanya
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Rita Rushdi Haj Ahmad
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Daniel M Ibegbu
- Department of Medical Biochemistry, College of Medicine, University of Nigeria Enugu Campus, Nigeria.
| | - James R Smith
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| |
Collapse
|
38
|
Zhao J, Pan N, Huang F, Aldarouish M, Wen Z, Gao R, Zhang Y, Hu HM, Shen Y, Wang LX. Vx3-Functionalized Alumina Nanoparticles Assisted Enrichment of Ubiquitinated Proteins from Cancer Cells for Enhanced Cancer Immunotherapy. Bioconjug Chem 2018; 29:786-794. [PMID: 29382195 DOI: 10.1021/acs.bioconjchem.7b00578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A simple and effective strategy was developed to enrich ubiquitinated proteins (UPs) from cancer cell lysate using the α-Al2O3 nanoparticles covalently linked with ubiquitin binding protein (Vx3) (denoted as α-Al2O3-Vx3) via a chemical linker. The functionalized α-Al2O3-Vx3 showed long-term stability and high efficiency for the enrichment of UPs from cancer cell lysates. Flow cytometry analysis results indicated dendritic cells (DCs) could more effectively phagocytize the covalently linked α-Al2O3-Vx3-UPs than the physical mixture of α-Al2O3 and Vx3-UPs (α-Al2O3/Vx3-UPs). Laser confocal microscopy images revealed that α-Al2O3-Vx3-UPs localized within the autophagosome of DCs, which then cross-presented α-Al2O3-Vx3-UPs to CD8+ T cells in an autophagosome-related cross-presentation pathway. Furthermore, α-Al2O3-Vx3-UPs enhanced more potent antitumor immune response and antitumor efficacy than α-Al2O3/cell lysate or α-Al2O3/Vx3-UPs. This work highlights the potential of using the Vx3 covalently linked α-Al2O3 as a simple and effective platform to enrich UPs from cancer cells for the development of highly efficient therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Jinjin Zhao
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Ning Pan
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Fang Huang
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Mohanad Aldarouish
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Zhifa Wen
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Rong Gao
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Yuye Zhang
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Hong-Ming Hu
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China.,Laboratory of Cancer Immunobiology, Earle A. Chiles Research Institute , Providence Portland Medical Center , Portland , Oregon 97213 United States
| | - Yanfei Shen
- Department of Bioengineering , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| | - Li-Xin Wang
- Department of Microbiology and Immunology , Medicine School of Southeast University , Nanjing , Jiangsu 210009 , P.R. China
| |
Collapse
|
39
|
Zhang Q, Ou C, Ye S, Song X, Luo S. Construction of nanoscale liposomes loaded with melatonin via supercritical fluid technology. J Microencapsul 2017; 34:687-698. [PMID: 28866966 DOI: 10.1080/02652048.2017.1376001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melatonin-loaded liposomes (MLL) were successfully prepared using rapid expansion of supercritical solution technology. The effects of supercritical pressure on encapsulation efficiency (EE) and average particle size were then analysed. Meanwhile, temperature, formation time and ethanol concentration in the products were studied and optimised based on the response surface methodology (RSM). An in vitro simulated digestion model was also established to evaluate the release performance of MLL. The results showed that 140 bar was the best pressure for maximising the EE value using RSM optimisation, reaching up to 82.2%. MLL characterisations were performed using analytic techniques including infrared spectroscopy, transmission electron microscopy, a laser scattering particle size analyser and gas chromatograph-mass spectrometer. The size distribution was uniform, with an average diameter of 66 nm. Stability tests proved that MLL maintained good preservation duration, and residual solvent experiments indicated that only 1.03% (mass ratio) of ethanol remained in the products. Simulated release experiments indicated the slow release feature in early digestive stages and more thorough characteristics in later stages of simulated digestion.
Collapse
Affiliation(s)
- Quan Zhang
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| | - Chunfeng Ou
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| | - Shengying Ye
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| | - Xianliang Song
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| | - Shucan Luo
- a College of Food Science , South China Agricultural University , Guangzhou , Guangdong , P. R. China
| |
Collapse
|