1
|
Chiodetti M, Monica S, Bancalari E, Bottari B, Fuso A, Prandi B, Tedeschi T, Carini E. Effect of fermentation with selected lactic acid bacteria strains on the molecular and technological properties of sorghum batters. Food Chem 2025; 484:144350. [PMID: 40253729 DOI: 10.1016/j.foodchem.2025.144350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/31/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
This study provides an in-depth investigation of the relationship between fermentation-induced molecular changes and techno-functional properties of sorghum flour, using three lactic acid bacteria (LAB) strains - Lactobacillus delbrueckii subsp. bulgaricus 1932, Leuconostoc spp. 4454, and Lacticaseibacillus casei 4339. Fermentation at 25 °C for 15 h induced significant molecular changes, including the reduction of low molecular weight fractions (∼0.7 kDa), and depolymerization of starch and fiber (HPSEC analysis). Proton mobility and relaxation analyses (1H LR-NMR) revealed matrix breakdown and stronger water-biopolymer interactions. These molecular changes were closely associated with improved technological properties, including enhanced starch gelatinization (higher enthalpy changes, DSC) and better pasting properties. Changes in structure and molecular interactions likely contributed to the increased viscosity of sorghum, even in the absence of exopolysaccharide production. This study bridges the gap between molecular-level transformations with functional outcomes, providing insights into tailoring fermentation processes for the development of sustainable and innovative sorghum-based foods.
Collapse
Affiliation(s)
- Miriam Chiodetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Saverio Monica
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Elena Bancalari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Benedetta Bottari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Andrea Fuso
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Barbara Prandi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Tullia Tedeschi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Eleonora Carini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| |
Collapse
|
2
|
Zhang J, Li J, Fan L. Effect of starch granule size on the properties of dough and the oil absorption of fried potato crisps. Int J Biol Macromol 2024; 268:131844. [PMID: 38663708 DOI: 10.1016/j.ijbiomac.2024.131844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Starch is a key element in fried potato crisps, however, the effect of starch granule size on oil absorption of the product have yet to be fully investigated. The study explored the impact of starch granule size on both the dough characteristics and oil absorption in potato crisps. The dough composed of small-sized potato granules showed more compact and uniform network system. Additionally, X-ray Microscope analysis showed that potato crisps prepared with small-sized potato granules had limited matrix expansion and fewer pores, cracks, and voids. The small-sized potato and small-sized wheat starches granule addition crisps displayed a significantly greater average cell thickness (52.05 and 53.44 μm) than other samples, while exhibiting notably lower average porosity (61.37 % and 60.28 %) compared to other samples. Results revealed that potato crisps with medium and small potato granules had 12.91 % and 21.92 % lower oil content than those containing large potato starch. Potato crisps with B-type wheat starch showed 16.36 % less oil absorption than those with A-type wheat starch. Small-sized starches significantly influence the dough structure and contribute to the reduction of oil absorption in fried products. The generated insights may provide monitoring indexes for cultivating potato varieties with low oil absorption.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Food Science & Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science & Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, 542899, China; Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Mas Garcia S, Roger JM, Ferbus R, Lourdin D, Rondeau-Mouro C. Monitoring of water sorption and swelling of potato starch-glycerol extruded blend by magnetic resonance imaging and multivariate curve resolution. Talanta 2023; 259:124464. [PMID: 36996661 DOI: 10.1016/j.talanta.2023.124464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Magnetic resonance microimaging (MRμI) is an outstanding technique for studying water transfers in millimetric bio-based materials in a non-destructive and non-invasive manner. However, depending on the composition of the material, monitoring and quantification of these transfers can be very complex, and hence reliable image processing and analysis tools are necessary. In this study, a combination of MRμI and multivariate curve resolution-alternating least squares (MCR-ALS) is proposed to monitor the water ingress into a potato starch extruded blend containing 20% glycerol that was shown to have interesting properties for biomedical, textile, and food applications. In this work, the main purpose of MCR is to provide spectral signatures and distribution maps of the components involved in the water uptake process that occurs over time with various kinetics. This approach allowed the description of the system evolution at a global (image) and a local (pixel) level, hence, permitted the resolution of two waterfronts, at two different times into the blend that could not be resolved by any other mathematical processing method usually used in magnetic resonance imaging (MRI). The results were supplemented by scanning electron microscopy (SEM) observations in order to interpret these two waterfronts in a biological and physico-chemical point of view.
Collapse
|
4
|
Pocan P, Grunin L, Oztop MH. Effect of Different Syrup Types on Turkish Delights ( Lokum): A TD-NMR Relaxometry Study. ACS FOOD SCIENCE & TECHNOLOGY 2022; 2:1819-1831. [PMID: 36570038 PMCID: PMC9775206 DOI: 10.1021/acsfoodscitech.2c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Turkish delights were formulated by using sucrose (control) and different types of corn syrups (having varying glucose/fructose ratios) and allulose syrup. 30% allulose syrup and 30% sucrose-containing Turkish delights were found to exhibit an amorphous structure. Time-domain NMR relaxometry experiments were also conducted on delights by measuring T 2 relaxation times, and two distinct proton populations were observed in all formulations. The use of different syrup types at different substitution levels led to significant changes in the relaxation times (T 2a and T 2b) of the samples, indicating that the relaxation spectrum might be used as a fingerprint for Turkish delights containing different types and amounts of syrup types. Second moment (M 2) values which were measured from the signal acquired using a magic sandwich echo pulse sequence were also found to be an effective and promising indicator to detect the crystallinity of Turkish delights.
Collapse
Affiliation(s)
- Pelin Pocan
- Department
of Food Engineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080 Konya, Turkey,Department
of Food Engineering, Middle East Technical
University, 06800 Ankara, Turkey
| | - Leonid Grunin
- Resonance
Systems GmbH, D-73230 Kirchheim unter Teck, Germany
| | - Mecit Halil Oztop
- Department
of Food Engineering, Middle East Technical
University, 06800 Ankara, Turkey,. Phone: +90 312 210 5634. Fax: +90 312 210 27
| |
Collapse
|
5
|
Barison A, Biswas RG, Ning P, Kock FVC, Soong R, Di Medeiros MCB, Simpson A, Lião LM. Introducing comprehensive multiphase NMR for the analysis of food: Understanding the hydrothermal treatment of starch-based foods. Food Chem 2022; 397:133800. [PMID: 35914461 DOI: 10.1016/j.foodchem.2022.133800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Cooking is essential for preparing starch-based food, however thermal treatment promotes the complexation of biopolymers, impacting their final properties. Comprehensive Multiphase (CMP) NMR allows all phases (liquids, gels, and solids) to be differentiated and monitored within intact samples. This study acts as a proof-of-principle to introduce CMP-NMR to food research and demonstrate its application to monitor the various phases in spaghetti, black turtle beans, and white long-grain rice, and how they change during the cooking process. When uncooked, only a small fraction of lipids and structurally bound water show any molecular mobility. Once cooked, little "crystalline solid" material is left, and all components exhibit increased molecular dynamics. Upon cooking, the solid-like components in spaghetti contains signals consistent with cellulose that were buried beneath the starches in the uncooked product. Thus, CMP-NMR holds potential for the study of food and related processes involving phase changes such as growth, manufacturing, and composting.
Collapse
Affiliation(s)
- Andersson Barison
- NMR Centre, Department of Chemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Rajshree Ghosh Biswas
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Ontario, Canada
| | - Paris Ning
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Ontario, Canada
| | - Flávio Vinícius Crizóstomo Kock
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Ontario, Canada; Nuclear Magnetic Resonance Laboratory, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Ronald Soong
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Ontario, Canada
| | - Maria Carolina Bezerra Di Medeiros
- Nuclear Magnetic Resonance Laboratory, Federal University of São Carlos, São Carlos, São Paulo, Brazil; Nuclear Magnetic Resonance Laboratory, Institute of Chemistry, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Andre Simpson
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Ontario, Canada.
| | - Luciano Morais Lião
- Nuclear Magnetic Resonance Laboratory, Institute of Chemistry, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
6
|
Riley IM, Nivelle MA, Ooms N, Delcour JA. The use of time domain 1 H NMR to study proton dynamics in starch-rich foods: A review. Compr Rev Food Sci Food Saf 2022; 21:4738-4775. [PMID: 36124883 DOI: 10.1111/1541-4337.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/30/2022] [Accepted: 07/31/2022] [Indexed: 01/28/2023]
Abstract
Starch is a major contributor to the carbohydrate portion of our diet. When it is present with water, it undergoes several transformations during heating and/or cooling making it an essential structure-forming component in starch-rich food systems (e.g., bread and cake). Time domain proton nuclear magnetic resonance (TD 1 H NMR) is a useful technique to study starch-water interactions by evaluation of molecular mobility and water distribution. The data obtained correspond to changes in starch structure and the state of water during or resulting from processing. When this technique was first applied to starch(-rich) foods, significant challenges were encountered during data interpretation of complex food systems (e.g., cake or biscuit) due to the presence of multiple constituents (proteins, carbohydrates, lipids, etc.). This article discusses the principles of TD 1 H NMR and the tools applied that improved characterization and interpretation of TD NMR data. More in particular, the major differences in proton distribution of various dough and cooked/baked food systems are examined. The application of variable-temperature TD 1 H NMR is also discussed as it demonstrates exceptional ability to elucidate the molecular dynamics of starch transitions (e.g., gelatinization, gelation) in dough/batter systems during heating/cooling. In conclusion, TD NMR is considered a valuable tool to understand the behavior of starch and water that relate to the characteristics and/or quality of starchy food products. Such insights are crucial for food product optimization and development in response to the needs of the food industry.
Collapse
Affiliation(s)
- Isabella M Riley
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Mieke A Nivelle
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Nand Ooms
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
- Biscuiterie Thijs, Herentals, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Wang S, Ding L, Chen S, Zhang Y, He J, Li B. Effects of Konjac Glucomannan on Retrogradation of Amylose. Foods 2022; 11:2666. [PMID: 36076851 PMCID: PMC9455274 DOI: 10.3390/foods11172666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of konjac glucomannan (KGM) on the retrogradation of amylose was explored during storage. The color, rheological properties, texture, water-holding capacity (WHC), low-field nuclear magnetic resonance (LF-NMR), and X-ray diffraction (XRD) were investigated. Results of color and rheological measurements showed that with the increasing amount of KGM, the L value of the system decreased, but the elastic modulus, viscous modulus, and tangent value of loss angle increased. The textural result presented that KGM obviously inhibited the growth rate of gel strength of amylose. Results from WHC and XRD suggested after 14 days of storage, when the concentration of KGM increased from zero to 0.3% in the mixture, the WHC grew from 80% to 95% and the crystallinity degree declined from 35.3% to 25.6%. The LF-NMR result revealed that KGM limited the conversion of free water to bound water in the system. In general, a small amount of KGM in a mixed system could inhibit the short-term and long-term retrogradation of amylose. This research could provide a theoretical reference for the influence of hydrophilic colloids on the retrogradation of starch, and it could also provide support for the processing and production of starch-based food.
Collapse
Affiliation(s)
- Shishuai Wang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Lidong Ding
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Shuo Chen
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Ying Zhang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Jiaxin He
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Rakhshi E, Cambert M, Diascorn Y, Lucas T, Rondeau-Mouro C. An insight into tapioca and wheat starch gelatinization mechanisms using TD-NMR and complementary techniques. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:702-718. [PMID: 35178770 DOI: 10.1002/mrc.5258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
To provide evidence for previously proposed assumptions concerning starch gelatinization sub-mechanisms, a more detailed investigation was carried out using multiscale analysis of a starch type selected for its marked difference. Tapioca starch was chosen due to its cohesive/springy properties and its growing use in the food industry. Time-domain nuclear magnetic resonance (TD-NMR) was used to investigate the leaching of material, water absorption and crystallite melting in hydrated tapioca starch (45%). The interpretation of T2 mass intensity evolutions, especially those of the (intra- and extra-granular) aqueous phases, was discussed drawing on complementary techniques such as microscopy, Rapid Visco Analyser (RVA), differential scanning calorimetry (DSC) and swelling factor (SF) and solubility index (SI) measurements. Results show that the T2 assignments usually proposed in the literature are dependent on starch origin. The differences in T2 evolutions (value and mass intensity) observed between wheat and tapioca starches at intermediate hydration levels could be linked to the different gelatinization behaviour of tapioca starch involving the latter's higher granule rupture level, higher gelatinization temperature and greater swelling power above its gelatinization temperature.
Collapse
|
9
|
NMR characterization of structure and moisture sorption dynamics of damaged starch granules. Carbohydr Polym 2022; 285:119220. [DOI: 10.1016/j.carbpol.2022.119220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
|
10
|
|
11
|
Lin Y, Liu L, Li L, Xu Y, Zhang Y, Zeng H. Properties and digestibility of a novel porous starch from lotus seed prepared via synergistic enzymatic treatment. Int J Biol Macromol 2022; 194:144-152. [PMID: 34863826 DOI: 10.1016/j.ijbiomac.2021.11.196] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 01/13/2023]
Abstract
The objective was to investigate the effect of synergistic enzymatic treatment on the properties and digestibility of a novel C-type lotus seed porous starch (LPS). Scanning electron microscopy showed that the densest and most complete pores were formed on the surface of LPS when the concentration of enzymes added was 1.5% (LS-1.5E). With increases in enzyme addition, the oil and water absorption of the porous starch increased and reached maxima at 1.5% of enzyme. Increased in the specific surface area, total pore volume and average pore diameter of LPS were determined by low-temperature nitrogen adsorption, while when the enzymes exceeded 1.5%, there were no significant changes. Compared to lotus seed starch (LS), the particle size of LPS also decreased. With the increases in enzyme addition, LPS exhibited higher relative crystallinity and ordering structure by XRD and FTIR. The results by SAXS confirmed that LPS had higher ordered semi-crystalline lamellar and denser lamellar structure compared to LS. Low-field 1H NMR spectroscopy indicated that the proportion of bound water in LPS increased, while the proportion of bulk water decreased. Moreover, the degree of hydrolysis of LPS was lower than that of LS, and the content of rapidly digestible starch decreased, while the content of slowly digestible starch and resistant starch increased with the enzyme addition, which was consistent with the structural properties.
Collapse
Affiliation(s)
- Yongjie Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanxin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingru Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Yang Y, Xu H, Tang S, Gu Z. Study on the Thermal and Water Migration of Chinese steamed buns during cooling process after steam cooking. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Colnago LA, Wiesman Z, Pages G, Musse M, Monaretto T, Windt CW, Rondeau-Mouro C. Low field, time domain NMR in the agriculture and agrifood sectors: An overview of applications in plants, foods and biofuels. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106899. [PMID: 33518175 DOI: 10.1016/j.jmr.2020.106899] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 05/28/2023]
Abstract
In this contribution, a selective overview of low field, time-domain NMR (TD-NMR) applications in the agriculture and agrifood sectors is presented. The first applications of commercial TD-NMR instruments were in food and agriculture domains. Many of these earlier methods have now been recognized as standard methods by several international agencies. Since 2000, several new applications have been developed, using state of the art instruments, new pulse sequences and new signal processing methods. TD-NMR is expected, in the coming years, to become even more important in quality control of fresh food and agricultural products, as well as for a wide range of food-processed products. TD-NMR systems provide excellent means to collect data relevant for use in the agricultural environment and the bioenergy industry. Data and information collected by TD-NMR systems thus may support decision makers in business and public organizations.
Collapse
Affiliation(s)
- Luiz Alberto Colnago
- Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, SP 13560-970, Brazil.
| | - Zeev Wiesman
- Phyto-lipid Biotechnology Laboratory (PLBL), Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben Gurion University of the Negev, Ber Sheva 84105, Israel
| | - Guilhem Pages
- INRAE, UR QUAPA, F-63122 St Genès Champanelle, France; AgroResonance, INRAE, 2018. Nuclear Magnetic Resonance Facility for Agronomy, Food and Health, France
| | - Maja Musse
- INRAE, UR OPAALE, 17 Avenue de Cucillé, CS 64427, 35044, Rennes Cedex, France
| | - Tatiana Monaretto
- Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, SP 13560-970, Brazil; Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Carel W Windt
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str. 1, 52425 Jülich, Germany
| | | |
Collapse
|
14
|
Liu Z, Wang C, Liao X, Shen Q. Measurement and comparison of multi-scale structure in heat and pressure treated corn starch granule under the same degree of gelatinization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
TD-NMR studies of starches from different botanical origins: Hydrothermal and storage effects. Food Chem 2020; 308:125675. [DOI: 10.1016/j.foodchem.2019.125675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/09/2019] [Accepted: 10/07/2019] [Indexed: 11/19/2022]
|
16
|
Liu X, Yu Q, Song A, Dong S, Hao J. Progress in nuclear magnetic resonance studies of surfactant systems. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Grunin L, Oztop MH, Guner S, Baltaci SF. Exploring the crystallinity of different powder sugars through solid echo and magic sandwich echo sequences. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:607-615. [PMID: 30868656 DOI: 10.1002/mrc.4866] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Time-domain nuclear magnetic resonance techniques are frequently used in polymer, pharmaceutical, and food industries as they offer rapid experimentation and generally do not require any considerable preliminary sample preparation. Detection of solid and liquid fractions in a sample is possible with the free induction decay (FID). However, for the classical FID sequence that consists of a single pulse followed by relaxation decay acquisition, the dead time of the probe (ring out of resonance circuitry) occurs and varies between 5 and 15 μs for standard 10-mm tubes. In such a case, there arises a risk that the signal from the solid fraction cannot be detected correctly. To obtain quantitative measurement on crystalline and more mobile amorphous fractions, alternative sequences to the classical FID in the solid-state nuclear magnetic resonance were developed. Solid echo and magic sandwich echo sequences perform the relaxation decay refocusing somehow excluding the dead time problem and allow detection of the signal from the solid fraction. In this study, knowledge of amorphous/crystal fraction, which is obtained through solid echo and magic sandwich echo, has been explored on powder sugar samples for the purpose of developing a groundwork for a reliable quality control method. Different sugars were examined for the utilization of the sequences. What is important to add and make this study unique is that the method proposed did not involve multiparameter fitting of the "bead" pattern FID signal that normally suffers from ambiguity; just the integration of the fast Fourier transform of the solid echo was needed to calculate the second moment, (M2 ).
Collapse
Affiliation(s)
- Leonid Grunin
- Department of Physics, Volga State University of Technology, Yoshkar-Ola, Russian Federation
| | - Mecit Halil Oztop
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - Selen Guner
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - Saadet Fatma Baltaci
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
18
|
Jin G, Zhu Y, Rinzema A, Wijffels RH, Ge X, Xu Y. Water dynamics during solid-state fermentation by Aspergillus oryzae YH6. BIORESOURCE TECHNOLOGY 2019; 277:68-76. [PMID: 30658338 DOI: 10.1016/j.biortech.2019.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Water is crucial for microbial growth, heat transfer and substrate hydrolysis, and dynamically changes with time in solid-state fermentation. However, water dynamics in the solid substrate is difficult to define and measure. Here, nuclear magnetic resonance was used to monitor water dynamics during the pure culture of Aspergillus oryzae YH6 on wheat in a model system to mimic solid starter (Qu or Koji) preparation. During fermentation, overall water content gradually decreased from 0.84 to 0.36 g/g, and water activity decreased from 0.99 to 0.93. Water content in different state (bound, immobilized and free) changed differently and all moved to more "bound" direction. The internal water distribution over the substrate matrix also showed a faster reduction inward both in the radical and axial direction. Our findings provide the prerequisites for optimal processes where water dynamics in solid-state fermentation can be monitored and controlled.
Collapse
Affiliation(s)
- Guangyuan Jin
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Centre of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Bioprocess Engineering, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Yang Zhu
- Bioprocess Engineering, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Arjen Rinzema
- Bioprocess Engineering, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - René H Wijffels
- Bioprocess Engineering, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; Nord University, Faculty of Biosciences and Aquaculture, N-8049 Bodø, Norway
| | - Xiangyang Ge
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Centre of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Centre of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
19
|
Wang C, Su G, Wang X, Nie S. Rapid Assessment of Deep Frying Oil Quality as Well as Water and Fat Contents in French Fries by Low-Field Nuclear Magnetic Resonance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2361-2368. [PMID: 30742426 DOI: 10.1021/acs.jafc.8b05639] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Most of the health hazards in fried foods are related to unqualified frying oil and excessive oil content. In this study, the feasibility of using low-field nuclear magnetic resonance techniques (LF-NMR) for analysis of the water and oil contents in French fries, as well as simultaneous evaluation of frying oil quality during deep frying, was investigated. Three proton populations were identified and successfully assigned to water and oil relaxation signals. Significant correlation between the T2 relaxation parameters ( Awater and RCoil) and the water and oil content was acquired. MRI could visualize the changes of signal intensity and spatial distribution, as well as the internal structural changes during frying. Using the correlation model built by multiple regression analysis, the total polar compounds content of the frying oil could be successfully predicted by LF-NMR relaxation characteristics, which indicates that LF-NMR was an effective method to monitor the quality of frying oil.
Collapse
Affiliation(s)
- Chen Wang
- School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , China
| | - Guanqun Su
- School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , China
| | - Xin Wang
- School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , China
| | - Shengdong Nie
- School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , China
| |
Collapse
|
20
|
Xiang Z, Ye F, Zhou Y, Wang L, Zhao G. Performance and mechanism of an innovative humidity-controlled hot-air drying method for concentrated starch gels: A case of sweet potato starch noodles. Food Chem 2018; 269:193-201. [PMID: 30100424 DOI: 10.1016/j.foodchem.2018.06.153] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/27/2018] [Accepted: 06/30/2018] [Indexed: 01/02/2023]
Abstract
The effects of humidity control on dried starch gels were investigated using starch noodles as a model. A two-stage innovative hot-air-drying regime was developed with the first stage humidity-controlled (70 °C, 60% RH) and the second at high temperature (100 °C). The proposed drying method is comparable to natural-air-drying in product quality and to conventional hot-air-drying (70 °C) in production efficiency. The operating humidity of the first stage predominated the swelling index and rehydration ratio of dry noodles as well as the hardness and chewiness of cooked noodles. The results from XRD, DSC, SEM, digital microscopy and low field TD 1H NMR evidenced that these outcomes were largely ascribed to the higher shrinkage, lower porosity, smoother surface, lesser shape deformation and higher starch retrogradation resulting from increased humidity. The results reported herein are valuable for regulating the physicochemical properties of dried starch gels and glimpsing the underlying mechanisms of related operations.
Collapse
Affiliation(s)
- Zhuoya Xiang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Lei Wang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Sweet Potato Research Centre, Chongqing 400715, People's Republic of China.
| |
Collapse
|
21
|
Fan K, Zhang M. Recent developments in the food quality detected by non-invasive nuclear magnetic resonance technology. Crit Rev Food Sci Nutr 2018; 59:2202-2213. [PMID: 29451810 DOI: 10.1080/10408398.2018.1441124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nuclear magnetic resonance (NMR) is a rapid, accurate and non-invasive technology and widely used to detect the quality of food, particularly to fruits and vegetables, meat and aquatic products. This review is a survey of recent developments in experimental results for the quality of food on various NMR technologies in processing and storage over the past decade. Following a discussion of the quality discrimination and classification of food, analysis of food compositions and detection of physical, chemical, structural and microbiological properties of food are outlined. Owing to high cost, low detection limit and sensitivity, the professional knowledge involved and the safety issues related to the maintenance of the magnetic field, so far the practical applications are limited to detect small range of food. In order to promote applications for a broader range of foods further research and development efforts are needed to overcome the limitations of NMR in the detection process. The needs and opportunities for future research and developments are outlined.
Collapse
Affiliation(s)
- Kai Fan
- a State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , Jiangsu , China.,b International Joint Laboratory on Food Safety, Jiangnan University , Wuxi , Jiangsu , China
| | - Min Zhang
- a State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , Jiangsu , China.,c Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University , Wuxi , Jiangsu , China
| |
Collapse
|
22
|
Jia W, Yang M, Wang SH. Three-Category Classification of Magnetic Resonance Hearing Loss Images Based on Deep Autoencoder. J Med Syst 2017; 41:165. [PMID: 28895033 DOI: 10.1007/s10916-017-0814-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022]
Abstract
Hearing loss, a partial or total inability to hear, is known as hearing impairment. Untreated hearing loss can have a bad effect on normal social communication, and it can cause psychological problems in patients. Therefore, we design a three-category classification system to detect the specific category of hearing loss, which is beneficial to be treated in time for patients. Before the training and test stages, we use the technology of data augmentation to produce a balanced dataset. Then we use deep autoencoder neural network to classify the magnetic resonance brain images. In the stage of deep autoencoder, we use stacked sparse autoencoder to generate visual features, and softmax layer to classify the different brain images into three categories of hearing loss. Our method can obtain good experimental results. The overall accuracy of our method is 99.5%, and the time consuming is 0.078 s per brain image. Our proposed method based on stacked sparse autoencoder works well in classification of hearing loss images. The overall accuracy of our method is 4% higher than the best of state-of-the-art approaches.
Collapse
Affiliation(s)
- Wenjuan Jia
- School of Computer Science and Engineering, Nanjing Normal University, Wenyuan, Nanjing, 210023, People's Republic of China
| | - Ming Yang
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, People's Republic of China.
| | - Shui-Hua Wang
- School of Computer Science and Engineering, Nanjing Normal University, Wenyuan, Nanjing, 210023, People's Republic of China. .,Department of Electrical Engineering, The City College of New York, CUNY, New York, NY, 10031, USA.
| |
Collapse
|
23
|
Abstract
This review deals with the use of Nuclear Magnetic Resonance techniques to monitor the behavior of starch as well as the migration and distribution of water during the processing or storage of starchy matrices. The aim is to emphasize the potentials of NMR techniques for the quantitative characterization of water transfers in starch-water systems on different length scales. Relaxation and self-diffusion experiments using low-field NMR spectrometry provided important information on the relationship between water dynamics and the microscopic organization of starch granules at various temperatures and water contents. Some works dealt with the botanical origin of starch but also the impact of possible additives. Indeed, the investigation on model starch-based systems was recently expanded to more complex real systems, including dough, bread, cakes, spaghetti and lasagna. Two-dimensional (2D) cross correlation methods have also been developed to elucidate chemical and diffusional proton exchange phenomena, and to improve the interpretation of results obtained in 1D. Finally, magnetic resonance micro-imaging methods were developed to study or to quantify water intake into starch-based matrices.
Collapse
Affiliation(s)
- R Kovrlija
- IRSTEA, UR OPAALE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes, France
| | - C Rondeau-Mouro
- IRSTEA, UR OPAALE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes, France.
| |
Collapse
|