1
|
Zhang Y, Lu J, Cui K, Wang H, Su J, Zhang W, Jiang W. The encapsulation strategies of clove essential oil enhance its delivery effect in food preservation applications. Food Chem 2025; 484:144465. [PMID: 40300405 DOI: 10.1016/j.foodchem.2025.144465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 05/01/2025]
Abstract
Food supply chain faces challenges from quality degradation, microbial contamination, and chemical synthetic fungicides. Recently, the remarkable food preserving ability and biological activity of natural clove essential oil (CEO) has gained significant attention. However, its application is limited by volatility, photothermal sensitivity, and inherent odor. To this end, encapsulation strategies have been attempted on CEO to enhance its bioavailability, as well as their efficacy in food preservation scenarios. This study outlines CEO's chemistry and delves into its antimicrobial/antioxidant mechanisms. Subsequently, latest advances in encapsulation strategies for CEO in food preservation are comprehensively reviewed, including film blending, emulsification techniques, polyelectrolyte complexation, ion gelation, etc. The encapsulation enhances CEO's benefits, augmenting its long-term bioavailability in diverse food preservation systems. Finally, CEO's security and limitations are also discussed in-depth. This work aims to compile recent trends in encapsulation strategies for active substances and guide judicious utilize for natural CEO preservative.
Collapse
Affiliation(s)
- Yiqin Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jingxuan Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kuanbo Cui
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiaqi Su
- Department of Health Sciences and Technology, ETH, Zurich, Zurich, Switzerland.
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Wang S, Wang P, Wang Z, Chen S, Fan G, Zhang J, Liu L, Yang Y. Essential oil-encapsulated SiO 2 nanocapsules for the treatment of bacterial biofilms formed on food-contact surfaces. J Food Sci 2025; 90:e70115. [PMID: 40091691 DOI: 10.1111/1750-3841.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/05/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Litsea cubeba essential oil (EO)-encapsulated SiO2 (SiO2-EO) nanocapsules were fabricated by in situ biosilicification for the treatment of biofilms on food-contact surfaces. By optimizing the synthesis conditions (0.5 mg/mL EO and 50 mM silicic acid), SiO2-EO nanocapsules exhibited a uniform size distribution (150-200 nm) with a distinct core-shell structure. The characterization of nanocapsules was elucidated using a scanning electron microscope (SEM), transmission electron microscope, Fourier transform infrared, and x-ray diffraction analyses. The minimal inhibitory concentrations of SiO2-EO nanocapsules were 5 and 1.25 mg/mL for Escherichia coli and Staphylococcus aureus, respectively. Compared to free EO, the SiO2-EO nanocapsules showed more significant inhibition activity against both Gram-negative and Gram-positive bacterial biofilms. Confocal experiments and SEM demonstrated that the nanocapsules efficiently penetrate biofilms within 30 min and deliver EO to destroy the membrane structure of bacteria. Eventually, SiO2-EO nanocapsules were also applied to four kinds of food-contact surfaces. The populations in biofilms exposed to 2.5 mg/mL of nanocapsules decreased 1.51-1.56 log CFU/cm2 and 2.15-2.22 log CFU/cm2 for E. coli and S. aureus, respectively. This study provides an innovative strategy to treat bacterial biofilms with EO-based nanocomposites.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Peiling Wang
- Shaanxi Forestry Survey and Planning Institute (Shaanxi Forest Resources Monitoring Center), Xi'an, Shaanxi Province, China
| | - Zongde Wang
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Shangxing Chen
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Guorong Fan
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Ji Zhang
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Liheng Liu
- Xinyu University, Xinyu, Jiangxi Province, China
| | - Yuling Yang
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| |
Collapse
|
3
|
Yu L, Peng J, Han Q, Huang W, Jiang Y, Ruan Y, Liu X, Milcovich G, Weng X. Encapsulation of thyme essential oil in dendritic mesoporous silica nanoparticles: Enhanced antimycotic properties and ROS-mediated inhibition mechanism. Int J Pharm 2025; 669:125057. [PMID: 39653292 DOI: 10.1016/j.ijpharm.2024.125057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Dendritic mesoporous silica nanoparticles (DMSNs) have emerged as promising nanocarriers due to their unique three-dimensional structure and tunable pore characteristics. This study investigates the potential of DMSNs to deliver thyme essential oil (TEO) for enhanced antifungal activity against Fusarium oxysporum (F. oxysporum), a major plant pathogen. DMSNs were successfully synthesized and characterized, followed by the encapsulation of TEO within their porous structure. The resulting TEO@DMSNs composites exhibited significant antifungal activity against F. oxysporum, with inhibition rates reaching 70%, indicating an effective crop protection with a dose-dependent effect. The enhanced antifungal efficacy of TEO@DMSNs compared to free TEO is attributed to the sustained release of TEO and the synergistic effect of the nanocarrier itself. In-depth mechanism investigations revealed that TEO@DMSNs likely disrupted the fungal cell membrane, leading to leakage of cellular contents and ultimately cell death. Moreover, DMSNs and TEO@DMSNs were found to be safe for plant growth, demonstrating their potential as environmentally friendly antifungal agents. This study provides valuable insights into the design and development of advanced nanocarriers for targeted drug delivery and disease management in agriculture.
Collapse
Affiliation(s)
- Liyuan Yu
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jianqin Peng
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Qun Han
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Wanxin Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Yijie Jiang
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Yongming Ruan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xia Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Gesmi Milcovich
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy.
| | - Xuexiang Weng
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|
4
|
Medaglia S, Morellá-Aucejo Á, Ruiz-Rico M, Sancenón F, Villaescusa LA, Martínez-Máñez R, Marcos MD, Bernardos A. Antimicrobial Surfaces: Stainless Steel Functionalized with the Essential Oil Component Vanillin. Int J Mol Sci 2024; 25:12146. [PMID: 39596213 PMCID: PMC11595243 DOI: 10.3390/ijms252212146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Pathogenic microorganisms can adhere to solid surfaces, leading to the formation of biofilms, thus building a physical barrier hindering the penetration and diffusion of antimicrobial compounds. In this context, the use of natural antimicrobial compounds, such as essential oil components, as substitutes for common synthetic antimicrobials in the fight to prevent antimicrobial resistance is explored. As stainless steel is one of the most widely used surfaces in different industries, we have developed an innovative antimicrobial treatment for stainless steel surfaces based on a multi-step functionalization process, in which the stainless steel surface is coated with a silica layer to which a vanillin derivative is covalently attached. The surface was analyzed by microscopy studies, indicating the correct immobilization on the surfaces. Antimicrobial studies (viability and bacterial adhesion assays) were performed against the bacteria Staphylococcus epidermidis, which is one of the most frequent causes of nosocomial infections. The results of the microbiological studies showed that vanillin-functionalized stainless steel surfaces reduce the bacteria viability by 100% and the biofilm formation on the stainless steel surface by 75% compared with non-functionalized surfaces, highlighting the contact-killing and adhesion resistance properties of the developed surface. Additional cycles using the functionalized surfaces showed good maintenance of the antimicrobial coating efficacy. Moreover, the surfaces coated with an intermediate silica layer demonstrated much greater antimicrobial activity than surfaces in which the active molecule was directly functionalized on the stainless steel surface.
Collapse
Affiliation(s)
- Serena Medaglia
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.M.); (Á.M.-A.); (F.S.); (L.A.V.); (R.M.-M.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángela Morellá-Aucejo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.M.); (Á.M.-A.); (F.S.); (L.A.V.); (R.M.-M.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46100 Valencia, Spain
| | - María Ruiz-Rico
- Instituto Universitario de Ingeniería de Alimentos (FoodUPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.M.); (Á.M.-A.); (F.S.); (L.A.V.); (R.M.-M.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46100 Valencia, Spain
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Luis A. Villaescusa
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.M.); (Á.M.-A.); (F.S.); (L.A.V.); (R.M.-M.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.M.); (Á.M.-A.); (F.S.); (L.A.V.); (R.M.-M.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46100 Valencia, Spain
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - M. Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.M.); (Á.M.-A.); (F.S.); (L.A.V.); (R.M.-M.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46100 Valencia, Spain
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.M.); (Á.M.-A.); (F.S.); (L.A.V.); (R.M.-M.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46100 Valencia, Spain
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
5
|
Medaglia S, Otri I, Bernardos A, Marcos MD, Aznar E, Sancenón F, Martínez-Máñez R. Synergistic antimicrobial photodynamic therapy using gated mesoporous silica nanoparticles containing curcumin and polymyxin B. Int J Pharm 2024; 654:123947. [PMID: 38408553 DOI: 10.1016/j.ijpharm.2024.123947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Photodynamic Therapy is a therapy based on combining a non-toxic compound, known as photosensitizer (PS), and irradiation with light of the appropriate wavelength to excite the PS molecule. The photon absorption by the PS leads to reactive oxygen species generation and a subsequent oxidative burst that causes cell damage and death. In this work, we report an antimicrobial nanodevice that uses the activity of curcumin (Cur) as a PS for antimicrobial Photodynamic Therapy (aPDT), based on mesoporous silica nanoparticles in which the action of the classical antibiotic PMB is synergistically combined with the aPDT properties of curcumin to combat bacteria. The synergistic effect of the designed gated device in combination with irradiation with blue LED light (470 nm) is evaluated against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis. The results show that the nanodevice exhibits a noteworthy antibacterial activity against these microorganisms, a much more significant effect than free Cur and PMB at equivalent concentrations. Thus, 0.1 µg/mL of MSNs-Cur-PMB eliminates a bacterial concentration of about 105 CFU/mL of E. coli, while 1 µg/mL of MSNs-Cur-PMB is required for P. aeruginosa and S. epidermidis. In addition, antibiofilm activity against the selected bacteria was also tested. We found that 0.1 mg/mL of MSNs-Cur-PMB inhibited 99 % biofilm formation for E. coli, and 1 mg/mL of MSNs-Cur-PMB achieved 90 % and 100 % inhibition of biofilm formation for S. epidermidis and P. aeruginosa, respectively.
Collapse
Affiliation(s)
- Serena Medaglia
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ismael Otri
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
6
|
Su X, Li B, Chen S, Wang X, Song H, Shen B, Zheng Q, Yang M, Yue P. Pore engineering of micro/mesoporous nanomaterials for encapsulation, controlled release and variegated applications of essential oils. J Control Release 2024; 367:107-134. [PMID: 38199524 DOI: 10.1016/j.jconrel.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Essential oils have become increasingly popular in fields of medical, food and agriculture, owing to their strongly antimicrobial, anti-inflammation and antioxidant effects, greatly meeting demand from consumers for healthy and safe natural products. However, the easy volatility and/or chemical instability of active ingredients of essential oils (EAIs) can result in the loss of activity before realizing their functions, which have greatly hindered the widely applications of EAIs. As an emerging trend, micro/mesoporous nanomaterials (MNs) have drawn great attention for encapsulation and controlled release of EAIs, owing to their tunable pore structural characteristics. In this review, we briefly discuss the recent advances of MNs that widely used in the controlled release of EAIs, including zeolites, metal-organic frameworks (MOFs), mesoporous silica nanomaterials (MSNs), and provide a comprehensive summary focusing on the pore engineering strategies of MNs that affect their controlled-release or triggered-release for EAIs, including tailorable pore structure properties (e.g., pore size, pore surface area, pore volume, pore geometry, and framework compositions) and surface properties (surface modification and surface functionalization). Finally, the variegated applications and potential challenges are also given for MNs based delivery strategies for EAIs in the fields of healthcare, food and agriculture. These will provide considerable instructions for the rational design of MNs for controlled release of EAIs.
Collapse
Affiliation(s)
- Xiaoyu Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shuiyan Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xinmin Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane 4072, Australia
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
7
|
Du C, Li S, Fan Y, Lu Y, Sheng J, Song Y. Preparation of gelatin-chitosan bilayer film loaded citral nanoemulsion as pH and enzyme stimuli-responsive antibacterial material for food packaging. Int J Biol Macromol 2024; 254:127620. [PMID: 37898253 DOI: 10.1016/j.ijbiomac.2023.127620] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
The responsive release of enzymes, pH, temperature, light and other stimuli is an effective means to reduce the loss of volatile active substances and control the release of active ingredients. The purpose of this study is to design a simple and rapid method to synthesize a multifunctional bilayer membrane, which has good mechanical properties, long-lasting pH and enzyme dual sensitive sustained release properties, and excellent antibacterial activity. The citral nanoemulsion was prepared by ultrasonic method, then the chitosan solution loaded with nanoemulsion was assembled on the gelatin film, and the uniform and smooth gelatin-chitosan bilayer film was successfully prepared. Compared with the control group, the bilayer film loaded with nanoemulsion showed better barrier performance, mechanical properties and antibacterial activity.
Collapse
Affiliation(s)
- Chenglin Du
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Sixuan Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yanan Fan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yuyang Lu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Sheng
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Yishan Song
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
8
|
Iravani S. Silica-based nanosystems against antibiotic-resistant bacteria and pathogenic viruses. Crit Rev Microbiol 2023; 49:598-610. [PMID: 35930235 DOI: 10.1080/1040841x.2022.2108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/19/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
Today, with the intensity of antibiotic abuse and self-medication, the need for the use of novel systems with high efficiency and biosafety for targeted drug delivery against antibiotic-resistant bacteria and their infections should be highly considered by researchers. Silica-based nanosystems with unique physicochemical properties such as large surface area, tuneable pore diameter, drug loading capacity, controlled particle size/morphology, and good biocompatibility are attractive candidates against antibiotic-resistant bacteria and pathogenic viruses. They can be loaded with antiviral and antimicrobial drugs or molecules through their exclusive internal porous structures or different surface linkers. In this context, smart nanosystems can be produced via suitable surface functionalization/modification with a variety of functional groups to act against different clinical pathogenic microbes or viruses, offering great opportunities for controlling and treating various infections. However, important criteria such as the ability to degrade, biocompatibility, biodegradability, cytotoxicity, stability, clearance from targeted organs should be systematically analysed to develop nanosystems or nanocarriers with high efficiency and multifunctionality. Herein, recent advancements pertaining to the application of silica-based nanosystems against antibiotic-resistant bacteria and pathogenic viruses are deliberated, focussing on important challenges and future perspectives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Jafarzadeh S, Forough M, Kouzegaran VJ, Zargar M, Garavand F, Azizi-Lalabadi M, Abdollahi M, Jafari SM. Improving the functionality of biodegradable food packaging materials via porous nanomaterials. Compr Rev Food Sci Food Saf 2023; 22:2850-2886. [PMID: 37115945 DOI: 10.1111/1541-4337.13164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023]
Abstract
Non-biodegradability and disposal problems are the major challenges associated with synthetic plastic packaging. This review article discusses a new generation of biodegradable active and smart packaging based on porous nanomaterials (PNMs), which maintains the quality and freshness of food products while meeting biodegradability requirements. PNMs have recently gained significant attention in the field of food packaging due to their large surface area, peculiar structures, functional flexibility, and thermal stability. We present for the first time the recently published literature on the incorporation of various PNMs into renewable materials to develop advanced, environmentally friendly, and high-quality packaging technology. Various emerging packaging technologies are discussed in this review, along with their advantages and disadvantages. Moreover, it provides general information about PNMs, their characterization, and fabrication methods. It also briefly describes the effects of different PNMs on the functionality of biopolymeric films. Furthermore, we examined how smart packaging loaded with PNMs can improve food shelf life and reduce food waste. The results indicate that PNMs play a critical role in improving the antimicrobial, thermal, physicochemical, and mechanical properties of natural packaging materials. These tailor-made materials can simultaneously extend the shelf life of food while reducing plastic usage and food waste.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Civil and Mechanical Engineering, Curtin University, Bentley, Western Australia, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Çankaya, Turkey
| | | | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Fermoy, Ireland
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
10
|
Gómez-Llorente H, Fernández-Segovia I, Pérez-Esteve É, Ribes S, Rivas A, Ruiz-Rico M, Barat JM. Immobilization of Natural Antimicrobial Compounds on Food-Grade Supports as a New Strategy to Preserve Fruit-Derived Foods. Foods 2023; 12:foods12102060. [PMID: 37238878 DOI: 10.3390/foods12102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The use of natural antimicrobials in the food industry is being proposed as an eco-friendly postharvest technology to preserve fruit-derived foods. In this context, this systematic review aims to describe and discuss the application of naturally occurring antimicrobial compounds in the processing of fruit-derived foods by the PRISMA methodology. In a first step, the use of free natural antimicrobials was investigated as an approach to identify the main families of bioactive compounds employed as food preservatives and the current limitations of this dosage form. Then, the use of immobilized antimicrobials, in an innovative dosage form, was studied by distinguishing two main applications: addition to the food matrix as preservatives or use during processing as technological aids. Having identified the different examples of the immobilization of natural antimicrobial compounds on food-grade supports, the mechanisms of immobilization were studied in detail to provide synthesis and characterization guidelines for future developments. Finally, the contribution of this new technology to decarbonization and energy efficiency of the fruit-derived processing sector and circular economy is discussed in this review.
Collapse
Affiliation(s)
- Héctor Gómez-Llorente
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Isabel Fernández-Segovia
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Édgar Pérez-Esteve
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Susana Ribes
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alejandro Rivas
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - María Ruiz-Rico
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - José M Barat
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
11
|
Lu Y, Li X, Xu J, Sun H, Sheng J, Song Y, Chen Y. Utilizing Imine Bonds to Create a Self-Gated Mesoporous Silica Material with Controlled Release and Antimicrobial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1384. [PMID: 37110969 PMCID: PMC10143618 DOI: 10.3390/nano13081384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
In recent years, silica nanomaterials have been widely studied as carriers in the field of antibacterial activity in food. Therefore, it is a promising but challenging proposition to construct responsive antibacterial materials with food safety and controllable release capabilities using silica nanomaterials. In this paper, a pH-responsive self-gated antibacterial material is reported, which uses mesoporous silica nanomaterials as a carrier and achieves self-gating of the antibacterial agent through pH-sensitive imine bonds. This is the first study in the field of food antibacterial materials to achieve self-gating through the chemical bond of the antibacterial material itself. The prepared antibacterial material can effectively sense changes in pH values caused by the growth of foodborne pathogens and choose whether to release antibacterial substances and at what rate. The development of this antibacterial material does not introduce other components, ensuring food safety. In addition, carrying mesoporous silica nanomaterials can also effectively enhance the inhibitory ability of the active substance.
Collapse
Affiliation(s)
- Yuyang Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xutao Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiaqi Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huimin Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Sheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yishan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yang Chen
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Shanghai Yaolu Instrument & Equipment Co., Ltd., Shanghai 200444, China
| |
Collapse
|
12
|
Hirao R, Shigetoh K, Inagaki S, Ishida N. Virus Inactivation Based on Optimal Surfactant Reservoir of Mesoporous Silica. ACS APPLIED BIO MATERIALS 2023; 6:1032-1040. [PMID: 36780326 PMCID: PMC10031556 DOI: 10.1021/acsabm.2c00901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) caused a pandemic in 2019 and reaffirmed the importance of environmental sanitation. To prevent the spread of viral infections, we propose the application of a mesoporous silica (MS)-based virus-inactivating material. MS is typically synthesized using a micellar surfactant template; hence, the intermediate before removal of the surfactant template is expected to have a virus-inactivating activity. MS-CTAC particles filled with cetyltrimethylammonium chloride (CTAC), a cationic surfactant with an alkyl chain length of 16, were used to test this hypothesis. Plaque assays revealed that the MS-CTAC particles inactivated the enveloped bacteriophage φ6 by approximately 4 orders of magnitude after a contact time of 10 min. The particles also indicated a similar inactivation effect on the nonenveloped bacteriophage Qβ. In aqueous solution, CTAC loaded on MS-CTAC was released until the equilibrium concentration of loading and release on MS was reached. The released CTAC acted on viruses. Thus, MS is likely a good reservoir for the micellar surfactant. Surfactant readsorption also occurred in the MS particles, and the highest retention rate was observed when micellar surfactants with alkyl chain lengths appropriate for the pore size were used. The paper containing MS-CTAC particles was shown to maintain stable viral inactivation for at least three months in a typical indoor environment. Applying this concept to indoor wallpaper and air-conditioning filters could contribute to the inactivation of viruses in aerosols. These findings open possibilities for mesoporous materials with high surface areas, which can further develop into virus inactivation materials.
Collapse
Affiliation(s)
- Rie Hirao
- Toyota
Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan
| | | | - Shinji Inagaki
- Toyota
Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan
| | - Nobuhiro Ishida
- Toyota
Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
13
|
Impact of food preservatives based on immobilized phenolic compounds on an in vitro model of human gut microbiota. Food Chem 2023; 403:134363. [DOI: 10.1016/j.foodchem.2022.134363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
|
14
|
Evaluation of the in vitro and in situ antimicrobial properties of chitosan-functionalised silica materials. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Jailani A, Kalimuthu S, Rajasekar V, Ghosh S, Collart-Dutilleul PY, Fatima N, Koo H, Solomon AP, Cuisinier F, Neelakantan P. Trans-Cinnamaldehyde Eluting Porous Silicon Microparticles Mitigate Cariogenic Biofilms. Pharmaceutics 2022; 14:1428. [PMID: 35890323 PMCID: PMC9322055 DOI: 10.3390/pharmaceutics14071428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Dental caries, a preventable disease, is caused by highly-adherent, acid-producing biofilms composed of bacteria and yeasts. Current caries-preventive approaches are ineffective in controlling biofilm development. Recent studies demonstrate definite advantages in using natural compounds such as trans-cinnamaldehyde in thwarting biofilm assembly, and yet, the remarkable difficulty in delivering such hydrophobic bioactive molecules prevents further development. To address this critical challenge, we have developed an innovative platform composed of components with a proven track record of safety. We fabricated and thoroughly characterised porous silicon (pSi) microparticles to carry and deliver the natural phenyl propanoid trans-cinnamaldehyde (TC). We investigated its effects on preventing the development of cross-kingdom biofilms (Streptococcus mutans and Candida albicans), typical of dental caries found in children. The prepared pSi microparticles were roughly cubic in structure with 70-75% porosity, to which the TC (pSi-TC) was loaded with about 45% efficiency. The pSi-TC particles exhibited a controlled release of the cargo over a 14-day period. Notably, pSi-TC significantly inhibited biofilms, specifically downregulating the glucan synthesis pathways, leading to reduced adhesion to the substrate. Acid production, a vital virulent trait for caries development, was also hindered by pSi-TC. This pioneering study highlights the potential to develop the novel pSi-TC as a dental caries-preventive material.
Collapse
Affiliation(s)
- Afreen Jailani
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (A.J.); (S.K.); (V.R.); (S.G.)
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | - Shanthini Kalimuthu
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (A.J.); (S.K.); (V.R.); (S.G.)
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | - Vidhyashree Rajasekar
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (A.J.); (S.K.); (V.R.); (S.G.)
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | - Sumanta Ghosh
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (A.J.); (S.K.); (V.R.); (S.G.)
| | - Pierre-Yves Collart-Dutilleul
- Laboratory of Bioengineering and Nanosciences, University of Montpellier, CEDEX 5, 34193 Montpellier, France; (P.-Y.C.-D.); (N.F.); (F.C.)
| | - Naveen Fatima
- Laboratory of Bioengineering and Nanosciences, University of Montpellier, CEDEX 5, 34193 Montpellier, France; (P.-Y.C.-D.); (N.F.); (F.C.)
| | - Hyun Koo
- Biofilm Research Labs, Department of Orthodontics, Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | - Frederic Cuisinier
- Laboratory of Bioengineering and Nanosciences, University of Montpellier, CEDEX 5, 34193 Montpellier, France; (P.-Y.C.-D.); (N.F.); (F.C.)
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (A.J.); (S.K.); (V.R.); (S.G.)
| |
Collapse
|
16
|
Ruiz-Rico M, Renwick S, Allen-Vercoe E, Barat JM. In vitro susceptibility of human gut microbes to potential food preservatives based on immobilized phenolic compounds. Food Chem 2022; 378:132136. [PMID: 35042114 DOI: 10.1016/j.foodchem.2022.132136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 11/04/2022]
Abstract
The development of novel food preservatives based on natural antimicrobials such as phenolic compounds is increasing, but their safety should be established before use, including evaluating their impact on the gut microbiota. This work explored the influence of antimicrobial phenolics presented in different forms on selected human gut microbiota members through in vitro susceptibility tests. The bacteria tested exhibited a wide range of susceptibilities to phenolics depending on the molecule structure and mode of administration. Agathobacter rectalis and Clostridium spiroforme, members of the phylum Firmicutes, were the most sensitive strains. Susceptibility was strain- and species-specific, suggesting that it may not be possible to easily extrapolate results across the human microbiome in general. Species of other phyla including Bacteroidetes, Actinobacteria, Proteobacteria and Verrucomicrobia were more resistant than Firmicutes, with growth of some strains even enhanced. Our results provide insights into the biocompatibility of free and immobilized phenolics as potential food additives.
Collapse
Affiliation(s)
- María Ruiz-Rico
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia, Spain.
| | - Simone Renwick
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - José M Barat
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
17
|
Preparation and Enhanced Antimicrobial Activity of Thymol Immobilized on Different Silica Nanoparticles with Application in Apple Juice. COATINGS 2022. [DOI: 10.3390/coatings12050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In order to diminish the application limitations of essential oils (EOs) as natural antimicrobial components in the food industry, novel antimicrobial materials were designed and prepared by immobilization of thymol derivatives on silica particles with different morphologies (hollow mesoporous silica nanoparticles, MCM-41, amorphous silica). The structural characteristics of antimicrobial materials were estimated by FESEM, FT-IR, TGA, N2 adsorption-desorption, and small-angle XRD, and the results revealed that both mesoporous silica nanoparticles maintained the orderly structures and had good immobilization yield. Furthermore, the antibacterial performance tests showed that mesoporous silica nanoparticles greatly enhanced the antimicrobial activity of thymol against two representative foodborne bacteria (Escherichia coli and Staphylococcus aureus), and the application of the antimicrobial support was tested in apple juices inoculated with E. coli. The MBC of functionalized mesoporous silica supports was established to be below 0.1 mg/mL against E. coli and S. aureus, which is much lower than that of free thymol (0.3 mg/mL and 0.5 mg/mL against E. coli and S. aureus, respectively). In addition, at a range from 0.05 mg/mL to 0.2 mg/mL, immobilized hollow mesoporous silica nanoparticles (HMSNs) can inhibit the growth of E. coli in apple juice and maintain good sensory properties during 7 days of storage.
Collapse
|
18
|
Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-Safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. PROGRESS IN MATERIALS SCIENCE 2022; 124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Nanoparticles—Attractive Carriers of Antimicrobial Essential Oils. Antibiotics (Basel) 2022; 11:antibiotics11010108. [PMID: 35052985 PMCID: PMC8773333 DOI: 10.3390/antibiotics11010108] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial pathogens are the most prevalent cause of chronic infections and fatalities around the world. Antimicrobial agents including antibiotics have been frequently utilized in the treatment of infections due to their exceptional outcomes. However, their widespread use has resulted in the emergence of multidrug-resistant strains of bacteria, fungi, viruses, and parasites. Furthermore, due to inherent resistance to antimicrobial drugs and the host defence system, the advent of new infectious diseases, chronic infections, and the occurrence of biofilms pose a tougher challenge to the current treatment line. Essential oils (EOs) and their biologically and structurally diverse constituents provide a distinctive, inexhaustible, and novel source of antibacterial, antiviral, antifungal, and antiparasitic agents. However, due to their volatile nature, chemical susceptibility, and poor solubility, their development as antimicrobials is limited. Nanoparticles composed of biodegradable polymeric and inorganic materials have been studied extensively to overcome these limitations. Nanoparticles are being investigated as nanocarriers for antimicrobial delivery, antimicrobial coatings for food products, implantable devices, and medicinal materials in dressings and packaging materials due to their intrinsic capacity to overcome microbial resistance. Essential oil-loaded nanoparticles may offer the potential benefits of synergism in antimicrobial activity, high loading capacity, increased solubility, decreased volatility, chemical stability, and enhancement of the bioavailability and shelf life of EOs and their constituents. This review focuses on the potentiation of the antimicrobial activity of essential oils and their constituents in nanoparticulate delivery systems for a wide range of applications, such as food preservation, packaging, and alternative treatments for infectious diseases.
Collapse
|
20
|
Takada M, Sakamoto M, Yamada H, Kishikawa N, Mutoh J, Shiraishi Y, Kuroda N, Wada M. HPLC Fluorescence Method for Eugenols in Basil Products Derivatized with DIBI. Chem Pharm Bull (Tokyo) 2022; 70:37-42. [PMID: 34980731 DOI: 10.1248/cpb.c21-00575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eugenols (Eugs) such as eugenol (Eug), methyleugenol (MeEug), and linalool (Lin) in basil product are the main bioactive components of basil products and have a terminal double-bond. A sensitive HPLC-fluorescence method for Eugs derivatized with 4-(4,5-diphenyl-1H-imidazol-2-yl)iodobenzene (DIBI) was developed. Good separation of DIB-Eugs was achieved within 20 min on an Atlantis T3 column (50 × 2.1 mm i.d., 3 µm) with a mobile phase of methanol-water. The calibration curves obtained with Eug standards showed good linearities in the range of 0.1-50 µM (r ≥ 0.999). The limits of detection at a signal-to-noise ratio (S/N) = 3 for Eug, MeEug, and Lin were 1.0, 6.0, and 4.8 nM, respectively. The limits of quantitation (S/N = 10) of the Eugs were lower than 19.9 nM. The accuracies for the Eugs were within 96.8-104.6%. The intra- and inter-day precisions as relative standard deviations for the Eugs were less than 1.2 and 9.6% (n = 3). The recoveries of Eug, MeEug, and Lin were 99.0 ± 0.1, 98.0 ± 0.2, and 96.0 ± 0.4% (n = 3), respectively. The DIB-Eugs were confirmed to be stable for 2 h (>90%) at room temperature and 24 h (>95%) at 4 °C. These parameters of the proposed method were useful for the simultaneous determination of Eugs in basil products. Therefore, the developed method may be a powerful tool for the quality evaluation of dried commercially available basil products.
Collapse
Affiliation(s)
- Makoto Takada
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University
| | | | | | | | - Junpei Mutoh
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University
| | | | - Naotaka Kuroda
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Mitsuhiro Wada
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University
| |
Collapse
|
21
|
Multifunctional poly(vinyl alcohol) films using cellulose nanocrystals/oregano and cellulose nanocrystals/cinnamon Pickering emulsions: Effect of oil type and concentration. Int J Biol Macromol 2022; 194:736-745. [PMID: 34838863 DOI: 10.1016/j.ijbiomac.2021.11.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
Poly (vinyl alcohol) (PVA) films with high transparency, UV-barrier, antioxidant, and antimicrobial properties were prepared using oregano essential oil (OEO) and cinnamon essential oil (CEO) Pickering emulsions. The effect of Pickering emulsion type and concentration on the PVA film properties was studied. Cellulose nanocrystals (CNCs) were used as a natural stabilizer to prepare OEO and CEO Pickering emulsions. Both emulsions showed spherical droplets with diameters of 155-291 nm, zeta potential of -36.2 to -49.6 mV, minimum inhibition concentration of 6.25-12.5 μL/mL, and inhibition zone of 40-65 mm, depending on oil type. Morphology and FTIR analysis showed that OEO and CEO Pickering emulsions were compatible with the PVA matrix. The UV-transmittance of PVA films decreased from 77.3% to 30.4% and 2.0% without sacrificing the transparency after adding OEO and CEO Pickering emulsions, respectively. Antimicrobial results showed that E. coli was more sensitive to CEO, while S. aureus was sensitive to OEO Pickering emulsion. PVA/CEO film displayed higher properties than PVA/OEO film.
Collapse
|
22
|
Sullivan D, O’Mahony TF, Cruz-Romero MC, Cummins E, Kerry JP, Morris MA. The Use of Porous Silica Particles as Carriers for a Smart Delivery of Antimicrobial Essential Oils in Food Applications. ACS OMEGA 2021; 6:30376-30385. [PMID: 34805669 PMCID: PMC8603183 DOI: 10.1021/acsomega.1c03549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 05/15/2023]
Abstract
The objective of this study was to design, develop, and quantify the effectiveness of a simple method to facilitate the smart delivery of antimicrobial essential oils (EOs) via their absorption into a chemically bound high surface area support material. To this end, Santa Barbara Amorphous 15 (SBA-15) was functionalized by means of a post-synthetic reaction using (3-aminopropyl)triethoxysilane (APTES) to create an amine-terminated SBA-15 (SBA-APTES), and functionalization was confirmed by FTIR, TGA, and N2 isotherm analysis. Amine-modified SBA-15 was then grafted to a 3-glycidyloxypropyltrimethoxysilane (GPTS)-modified silicon (Si) surface (Si-GPTS), and subsequent attachment to the GPTS-modified surface was confirmed through XPS, dynamic contact angle, and SEM analysis. The smart delivery devices (SBA-15 and SBA-APTES) were then loaded with antimicrobial oregano essential oil (OEO) and the antimicrobial activity was assessed against common food spoilage microorganisms Escherichia coli, Bacillus cereus, Staphylococcus aureus, and Pseudomonas fluorescens. Antimicrobial activity results indicate that both SBA-OEO and SBA-APTES-OEO have good antimicrobial activity and that functionalization of bare SBA-15 with APTES has no effect on antimicrobial activity (P > 0.05) compared to SBA-OEO. Moreover, it appears that direct surface coating of the modified SBA to a surface substrate may not provide a significant quantity of oil needed to elicit an antimicrobial response. Nevertheless, given the strong absorption properties of SBA materials, good antimicrobial activity, and the GRAS nature of SBA-OEO and SBA-APTES-OEO, the results found in this study open potential applications of the functionalized carrier materials.
Collapse
Affiliation(s)
- David
J. Sullivan
- AMBER
Research Centre and the School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Tom F. O’Mahony
- AMBER
Research Centre and the School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Malco C. Cruz-Romero
- Food
Packaging Group, School of Food & Nutritional Sciences, University College Cork, Cork T12 K8AF, Ireland
| | - Enda Cummins
- UCD
School of Biosystems and Food Engineering, Agriculture and Food Science
Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joseph P. Kerry
- Food
Packaging Group, School of Food & Nutritional Sciences, University College Cork, Cork T12 K8AF, Ireland
| | - Michael A. Morris
- AMBER
Research Centre and the School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
23
|
de Oliveira LH, Trigueiro P, Souza JSN, de Carvalho MS, Osajima JA, da Silva-Filho EC, Fonseca MG. Montmorillonite with essential oils as antimicrobial agents, packaging, repellents, and insecticides: an overview. Colloids Surf B Biointerfaces 2021; 209:112186. [PMID: 34740094 DOI: 10.1016/j.colsurfb.2021.112186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Essential oils (EOs) are complex natural mixtures of secondary plant metabolites that function as biocides and therapeutic agents. They are extensively used in bactericidal, virucidal, fungicidal, antiparasitic, insecticidal, pharmaceutical, and cosmetic products. However, certain characteristics, such as the volatility of EOs, hinder their widespread use. To mitigate this limitation, several studies have investigated combinations of EOs with natural materials, including clay minerals. Clay minerals are abundant in nature, biocompatible, and non-toxic to the environment and humans. Clay minerals such as montmorillonite possess available sites where EO molecules can interact. The combination of EOs with clay minerals produces new materials for various applications including antibacterial, antifungal, insecticidal/repellent, and active packaging materials. Therefore, this review focuses on the immobilization of several types of EOs in raw and modified montmorillonites. The applications of the described systems were evaluated and demonstrated the synergism of the properties of the isolated components as a function of different EOs incorporated in the silicate matrix.
Collapse
Affiliation(s)
- Luís H de Oliveira
- LACOM, Laboratory of Fuels and Materials of Paraíba Federal University, 58051-085 João Pessoa, Paraíba, Brazil
| | - Pollyana Trigueiro
- LIMAV, Interdisciplinary Laboratory of Advanced Materials of Piauí Federal University, 64049-550 Teresina, Piauí, Brazil
| | | | | | - Josy A Osajima
- LIMAV, Interdisciplinary Laboratory of Advanced Materials of Piauí Federal University, 64049-550 Teresina, Piauí, Brazil
| | - Edson C da Silva-Filho
- LIMAV, Interdisciplinary Laboratory of Advanced Materials of Piauí Federal University, 64049-550 Teresina, Piauí, Brazil
| | - Maria G Fonseca
- LACOM, Laboratory of Fuels and Materials of Paraíba Federal University, 58051-085 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
24
|
Azizi-Lalabadi M, Rahimzadeh-Sani Z, Feng J, Hosseini H, Jafari SM. The impact of essential oils on the qualitative properties, release profile, and stimuli-responsiveness of active food packaging nanocomposites. Crit Rev Food Sci Nutr 2021; 63:1822-1845. [PMID: 34486886 DOI: 10.1080/10408398.2021.1971154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food industries attempt to introduce a new food packaging by blending essential oils (EOs) into the polymeric matrix as an active packaging, which has great ability to preserve the quality of food and increase its shelf life by releasing active compounds within storage. The main point in designing the active packaging is controlled-release of active substances for their enhanced activity. Biopolymers are functional substances, which suggest structural integrity to sense external stimuli like temperature, pH, or ionic strength. The controlled release of EOs from active packaging and their stimuli-responsive properties can be very important for practical applications of these novel biocomposites. EOs can affect the uniformity of the polymeric matrix and physical and structural characteristics of the composites, such as moisture content, solubility in water, water vapor transmission rate, elongation at break, and tensile strength. To measure the ingredients of EOs and their migration from food packaging, chromatographic methods can be used. A head-space-solid phase micro-extraction coupled to gas chromatography (HS-SPME-GC-MS) technique is as a good process for evaluating the release of Eos. Therefore, the aims of this review were to evaluate the qualitative characteristics, release profile, and stimuli-responsiveness of active and smart food packaging nanocomposites loaded with essential oils and developing such multi-faceted packaging for advanced applications.
Collapse
Affiliation(s)
- Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Rahimzadeh-Sani
- Nutrition Research Center, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jianguo Feng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hamed Hosseini
- Department of Mechanical Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
25
|
Ning Y, Han P, Ma J, Liu Y, Fu Y, Wang Z, Jia Y. Characterization of brevilaterins, multiple antimicrobial peptides simultaneously produced by Brevibacillus laterosporus S62-9, and their application in real food system. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Natural antimicrobial-coated supports as filter aids for the microbiological stabilisation of drinks. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Towards the Enhancement of Essential Oil Components' Antimicrobial Activity Using New Zein Protein-Gated Mesoporous Silica Microdevices. Int J Mol Sci 2021; 22:ijms22073795. [PMID: 33917595 PMCID: PMC8038806 DOI: 10.3390/ijms22073795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/26/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The development of new food preservatives is essential to prevent foodborne outbreaks or food spoilage due to microbial growth, enzymatic activity or oxidation. Furthermore, new compounds that substitute the commonly used synthetic food preservatives are needed to stifle the rising problem of microbial resistance. In this scenario, we report herein, as far as we know, for the first time the use of the zein protein as a gating moiety and its application for the controlled release of essential oil components (EOCs). The design of microdevices consist of mesoporous silica particles loaded with essential oils components (thymol, carvacrol and cinnamaldehyde) and functionalized with the zein (prolamin) protein found in corn as a molecular gate. The zein protein grafted on the synthesized microdevices is degraded by the proteolytic action of bacterial enzymatic secretions with the consequent release of the loaded essential oil components efficiently inhibiting bacterial growth. The results allow us to conclude that the new microdevice presented here loaded with the essential oil component cinnamaldehyde improved the antimicrobial properties of the free compound by decreasing volatility and increasing local concentration.
Collapse
|
28
|
Gulin-Sarfraz T, Kalantzopoulos GN, Kvalvåg Pettersen M, Wold Åsli A, Tho I, Axelsson L, Sarfraz J. Inorganic Nanocarriers for Encapsulation of Natural Antimicrobial Compounds for Potential Food Packaging Application: A Comparative Study. NANOMATERIALS 2021; 11:nano11020379. [PMID: 33540744 PMCID: PMC7913054 DOI: 10.3390/nano11020379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
Design and development of novel inorganic nanocarriers for encapsulation of natural antimicrobial substances for food packaging applications have received great interest during the last years. Natural nanoclays are the most investigated nanocarriers and recently interest has also grown in the synthetically produced porous silica particles. However, these different carrier matrices have not been compared in terms of their loading capability and subsequent release. In this study, the feasibility of porous silica particles (with different pore structures and/or surface functionalities) and commercially available nanoclays were evaluated as encapsulation matrices. Two well-studied antimicrobial substances, thymol and curcumin, were chosen as volatile and non-volatile model compounds, respectively. The encapsulation efficiency, and the subsequent dispersibility and release, of these substances differed significantly among the nanocarriers. Encapsulation of the volatile compound highly depends on the inner surface area, i.e., the protective pore environment, and an optimal nanocarrier can protect the encapsulated thymol from volatilization. For the non-volatile compound, only the release rate and dispersibility are affected by the pore structure. Further, water-activated release of the volatile compound was demonstrated and exhibited good antimicrobial efficacy in the vapor phase against Staphylococcus aureus. This comparative study can provide a base for selecting the right nanocarrier aimed at a specific food packaging application. No nanocarrier can be considered as a universally applicable one.
Collapse
Affiliation(s)
- Tina Gulin-Sarfraz
- Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, NO-1431 Ås, Norway; (M.K.P.); (A.W.Å.); (L.A.)
- Correspondence: (T.G.-S.); (J.S.)
| | - Georgios N. Kalantzopoulos
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway;
| | - Marit Kvalvåg Pettersen
- Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, NO-1431 Ås, Norway; (M.K.P.); (A.W.Å.); (L.A.)
| | - Anette Wold Åsli
- Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, NO-1431 Ås, Norway; (M.K.P.); (A.W.Å.); (L.A.)
| | - Ingunn Tho
- Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway;
| | - Lars Axelsson
- Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, NO-1431 Ås, Norway; (M.K.P.); (A.W.Å.); (L.A.)
| | - Jawad Sarfraz
- Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, NO-1431 Ås, Norway; (M.K.P.); (A.W.Å.); (L.A.)
- Correspondence: (T.G.-S.); (J.S.)
| |
Collapse
|
29
|
Nanocomposites for Food Packaging Applications: An Overview. NANOMATERIALS 2020; 11:nano11010010. [PMID: 33374563 PMCID: PMC7822409 DOI: 10.3390/nano11010010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
There is a strong drive in industry for packaging solutions that contribute to sustainable development by targeting a circular economy, which pivots around the recyclability of the packaging materials. The aim is to reduce traditional plastic consumption and achieve high recycling efficiency while maintaining the desired barrier and mechanical properties. In this domain, packaging materials in the form of polymer nanocomposites (PNCs) can offer the desired functionalities and can be a potential replacement for complex multilayered polymer structures. There has been an increasing interest in nanocomposites for food packaging applications, with a five-fold rise in the number of published articles during the period 2010–2019. The barrier, mechanical, and thermal properties of the polymers can be significantly improved by incorporating low concentrations of nanofillers. Furthermore, antimicrobial and antioxidant properties can be introduced, which are very relevant for food packaging applications. In this review, we will present an overview of the nanocomposite materials for food packaging applications. We will briefly discuss different nanofillers, methods to incorporate them in the polymer matrix, and surface treatments, with a special focus on the barrier, antimicrobial, and antioxidant properties. On the practical side migration issues, consumer acceptability, recyclability, and toxicity aspects will also be discussed.
Collapse
|
30
|
Verdú S, Ruiz-Rico M, Barat JM, Grau R. Evaluation of the influence of food intake on the incorporation and excretion kinetics of mesoporous silica particles in C.elegans. Chem Biol Interact 2020; 334:109363. [PMID: 33358771 DOI: 10.1016/j.cbi.2020.109363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
The effect of the presence of food on the incorporation and excretion of silica particles was studied in this work using the biological model Caenorhabditis elegans and image analysis techniques. The experiment was based on two 24-hour phases: exposure and depuration. During exposure, nematodes were maintained for 24 h in liquid medium with silica particles, but some with and others without food. During depuration, nematodes were transferred to medium without particles. Nematodes were analysed by an image analysis in both phases to quantify the properties of particle distributions in nematodes' bodies with time. No differences were found in the proportion of nematodes carrying particles in the exposure phase when food was present. However in the depuration phase, lack of food generated a high proportion of particle carriers. Particle distribution properties were also similar in the exposure phase. Nevertheless, lack of food produced particle accumulation due to decelerated excretion because digestive tube relaxed under these conditions. Thus after the depuration phase, lack of food led particles to persist in digestive tubes. According to these results, intake of silica particles had no retention effects when a food flux was provided, but particles were not easily excreted when the food flux was interrupted.
Collapse
Affiliation(s)
- Samuel Verdú
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Spain.
| | - María Ruiz-Rico
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Spain
| | - José M Barat
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Spain
| | - Raúl Grau
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Spain
| |
Collapse
|
31
|
Fuentes C, Ruiz-Rico M, Fuentes A, Barat JM, Ruiz MJ. Comparative cytotoxic study of silica materials functionalised with essential oil components in HepG2 cells. Food Chem Toxicol 2020; 147:111858. [PMID: 33212212 DOI: 10.1016/j.fct.2020.111858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
This work evaluated the cytotoxic effect of different EOCs-functionalised silica particle types. The in vitro toxicity of eugenol and vanillin-immobilised SAS, MCM-41 microparticles and MCM-41 nanoparticles was evaluated on HepG2 cells, and compared to free EOCs and pristine materials. The results revealed that free essential oil components and bare silica had a mild cytotoxic effect on HepG2 cells. However, the comparative study showed that free eugenol and vanillin had a milder cytotoxic effect than the equivalent concentrations of immobilised components on the different silica particles, while differences in cell viability between the bare and functionalised particles relied on the type of analysed material. The most cytotoxic materials were eugenol and vanillin-functionalised MCM-41 micro with IC50 values of 0.19 and 0.17 mg/mL, respectively, at 48 h exposure. Differences in cytotoxicity between functionalised particles may be attributed to the density of the functional components on their surface as a result of the functionalisation reaction performance for different materials. The study of the physico-chemical properties of particles demonstrated that cationic nature and increased hydrophobicity could be responsible for promoting cell-particle interactions for the eugenol and vanillin functionalised silica particles, enhancing their cytotoxic behaviour.
Collapse
Affiliation(s)
- Cristina Fuentes
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022, València, Spain.
| | - María Ruiz-Rico
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022, València, Spain
| | - Ana Fuentes
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022, València, Spain
| | - José Manuel Barat
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022, València, Spain
| | - María José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| |
Collapse
|
32
|
Fuentes C, Ruiz-Rico M, Fuentes A, Ruiz MJ, Barat JM. Degradation of silica particles functionalised with essential oil components under simulated physiological conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123120. [PMID: 32937724 DOI: 10.1016/j.jhazmat.2020.123120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
In this work, the biodurability of three silica particle types (synthetic amourphous silica, MCM-41 microparticles, MCM-41 nanoparticles) functionalised with three different essential oil components (carvacrol, eugenol, vanillin) was studied under conditions that represented the human gastrointestinal tract and lysosomal fluid. The effect of particle type, surface immobilised component and mass quantity on the physico-chemical properties of particles and silicon dissolution was determined. Exposure to biological fluids did not bring about changes in the zeta potential values or particle size distribution of the bare or functionalised materials, but the in vitro digestion process partially degraded the structure of the MCM-41 nanoparticles. Functionalisation preserved the structure of the MCM-41 nanoparticles after simulating an in vitro digestion process, and significantly decreased the amount of silicon dissolved after exposing different particles to both physiological conditions, independently of the essential oil component anchored to their surface. The MCM-41 microparticles showed the highest solubility, while synthetic amorphous silica presented the lowest levels of dissolved silicon. The study of these modified silica particles under physiological conditions could help to predict the toxicological behaviour of these new materials.
Collapse
Affiliation(s)
- Cristina Fuentes
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - María Ruiz-Rico
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ana Fuentes
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - María José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - José Manuel Barat
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
33
|
Verdú S, Ruiz-Rico M, Perez AJ, Barat JM, Talens P, Grau R. Toxicological implications of amplifying the antibacterial activity of gallic acid by immobilisation on silica particles: A study on C. elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103492. [PMID: 32941999 DOI: 10.1016/j.etap.2020.103492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 05/24/2023]
Abstract
Immobilisation of natural compounds on solid supports to amplify antimicrobial properties has reported successful results, but modifications to physico-chemical properties can also imply modifications from a toxicological viewpoint. This work aimed to study the immobilising process of gallic acid in the antibacterial activity of L. innocua and its toxicological properties in vivo using Caenorhabditis elegans. The experiment was based on obtaining the minimum bactericidal concentration for free and immobilised gallic acid by comparing lethality, locomotion behaviour, chemotaxis and thermal stress resistance on C.elegans at those concentrations. The results showed a lowering minimum bactericidal concentration and modifications to nematode responses. Increased lethality and velocity of movements was observed. Immobilisation increased the repellent effect of gallic acid with a negative chemotaxis index. Thermal stress resistance was also affected, with higher mortality for immobilised gallic acid compared to bare particles and free gallic acid. Thus despite evidencing a generalised increase in the toxicity of gallic acid in vivo, lowering the minimum bactericidal concentration allowed a bacterial reduction of 99 % with less than one third of mortality for the nematodes exposed to free gallic acid.
Collapse
Affiliation(s)
- Samuel Verdú
- Departamento de Tecnología de Alimentos, Universidad Politècnica de València, Spain.
| | - María Ruiz-Rico
- Departamento de Tecnología de Alimentos, Universidad Politècnica de València, Spain
| | - Alberto J Perez
- Departamento de Informática de Sistemas y Computadores, Universidad Politècnica de València, Spain
| | - José M Barat
- Departamento de Tecnología de Alimentos, Universidad Politècnica de València, Spain
| | - Pau Talens
- Departamento de Tecnología de Alimentos, Universidad Politècnica de València, Spain
| | - Raúl Grau
- Departamento de Tecnología de Alimentos, Universidad Politècnica de València, Spain
| |
Collapse
|
34
|
Verdú S, Ruiz-Rico M, Pérez AJ, Barat JM, Grau R. Application of laser backscattering imaging for the physico-chemical characterisation of antimicrobial silica particles functionalised with plant essential oils. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Biodegradable Poly(ε-Caprolactone) Active Films Loaded with MSU-X Mesoporous Silica for the Release of α-Tocopherol. Polymers (Basel) 2020; 12:polym12010137. [PMID: 31935865 PMCID: PMC7022599 DOI: 10.3390/polym12010137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 01/07/2023] Open
Abstract
In this study, new active PCL (poly(ε-caprolactone)) films containing α-tocopherol (TOC) and MSU-X mesoporous silica were prepared by melt blending. The studied additives were directly incorporated into the polymer matrix or by impregnating TOC into MSU-X silica (PCL-IMP). Thermal, optical, oxygen and water barrier properties as well as oxidation onset parameters, were studied. Films containing MSU-X and/or TOC showed a significant increase in oxidative onset temperature (OOT) and oxidative induction time (OIT), improving thermal stability against materials oxidation by the addition of mesoporous silica and TOC into the polymer matrix. In addition, the effect of MSU-X addition on the migration behaviour of α-tocopherol from active films was investigated at 40 °C using 50% (v/v) ethanol as fatty food simulant, showing PCL-IMP films the lower release content and diffusion coefficient (3.5 × 10−15 cm2 s−1). Moreover, radical scavenging (DPPH and ABTS) and antibacterial activity against E. coli and S. aureus were favoured by the release of α-tocopherol in the developed films. The obtained results have demonstrated the potential of the new PCL-based active formulations for TOC controlled release in antioxidant and antibacterial food packaging applications.
Collapse
|
36
|
Peña-Gómez N, Ruiz-Rico M, Pérez-Esteve É, Fernández-Segovia I, Barat JM. Microbial stabilization of craft beer by filtration through silica supports functionalized with essential oil components. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Ruiz-Rico M, Moreno Y, Barat JM. In vitro antimicrobial activity of immobilised essential oil components against Helicobacter pylori. World J Microbiol Biotechnol 2019; 36:3. [PMID: 31832784 DOI: 10.1007/s11274-019-2782-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Available disinfection methods and therapies against Helicobacter pylori have multiple disadvantages, such as increased prevalence of antibiotic-resistant strains, which requires the search for novel effective antimicrobial agents against H. pylori. Among them, naturally-occurring antimicrobial compounds, like essential oil components (EOCs), have been reported as substances with anti-H. pylori potential. To avoid the disadvantages associated with using EOCs in their free form, including volatility, low water solubility and intense sensory properties, their immobilisation in inert supports has recently been developed. This study sought to evaluate the inhibitory properties of EOCs immobilised on silica microparticles against H. pylori and to elucidate the mechanism of action of the immobilised antimicrobials. After the preparation and characterisation of the antimicrobial supports, the susceptibility of H. pylori in the presence of the immobilised compounds was assessed by plate count, fluorescent viability staining and direct viable count-fluorescent in situ hybridisation analyses. The antimicrobial supports were found to inhibit H. pylori growth, and to induce morphological and metabolic alterations to the H. pylori membrane, with a minimum bactericidal concentration value between 25 and 50 μg/ml according to the tested EOC. These findings indicate that immobilised EOCs can be used as potential antimicrobial agents for H. pylori clearance and treatment.
Collapse
Affiliation(s)
- María Ruiz-Rico
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
- Grupo de Investigación E Innovación Alimentaria, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Yolanda Moreno
- Instituto de Ingeniería del Agua Y Medio Ambiente (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - José M Barat
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
38
|
Novel antimicrobial filtering materials based on carvacrol, eugenol, thymol and vanillin immobilized on silica microparticles for water treatment. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
39
|
Peña-Gómez N, Ruiz-Rico M, Fernández-Segovia I, Barat JM. Study of apple juice preservation by filtration through silica microparticles functionalised with essential oil components. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Ribes S, Ruiz-Rico M, Pérez-Esteve É, Fuentes A, Barat JM. Enhancing the antimicrobial activity of eugenol, carvacrol and vanillin immobilised on silica supports against Escherichia coli or Zygosaccharomyces rouxii in fruit juices by their binary combinations. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108326] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Jin L, Teng J, Hu L, Lan X, Xu Y, Sheng J, Song Y, Wang M. Pepper fragrant essential oil (PFEO) and functionalized MCM-41 nanoparticles: formation, characterization, and bactericidal activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5168-5175. [PMID: 31056749 DOI: 10.1002/jsfa.9776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND It is well known that plant essential oils have good antimicrobial activity. However, their strong volatility and intense odor limit their application. Mesoporous silica (MCM-41), a non-toxic mesoporous material with excellent loading capability, is a promising delivery system for different types of food ingredients in the food industry. RESULTS In this study, we first performed component analysis of pepper fragrant essential oil (PFEO) by gas chromatography - mass spectrometry (GC-MS), then the MCM-41 host was prepared, and the essential oil functionalized nanoparticles (EONs) were formed by embedding PFEO into mesoporous silica particles. Further analysis indicated that the particle size and zeta potential of EONs were 717 ± 13.38 nm and - 43.90 ± 0.67 mV, respectively. Transmission electron microscopy (TEM) images showed that EONs had an inerratic morphology and stable structure. The bactericidal activities of PFEO and EONs against Escherichia coli (E. coli), Salmonella enterica (S. enterica), Staphylococcus aureus (S. aureus) and Listeria monocytogenes (L. monocytogenes) were subsequently tested using the twofold dilution method. Results indicated that, after 48 h incubation, minimum bactericidal concentrations (MBC) of EONs used against gram-negative bacteria were decreased to a greater degree than those of PFEO, suggesting that nanoencapsulation by MCM-41 can improve antimicrobial activity. Atomic force microscopy (AFM) observation also confirmed that EONs showed a notable inhibitory effect against E. coli by disrupting cell membrane structure. CONCLUSION Pepper fragrant essential oil nanoencapsulation could be a very promising organic delivery system in food industry for antimicrobial activity enhancement. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Jin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P. R. China
| | - Jing Teng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P. R. China
| | - Linghao Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P. R. China
| | - Xiuting Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P. R. China
| | - Yue Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P. R. China
| | - Jie Sheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P. R. China
| | - Yishan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P. R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, P. R. China
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P. R. China
- School of Biological Sciences, The University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
42
|
Orhan-Yanıkan E, da Silva-Janeiro S, Ruiz-Rico M, Jiménez-Belenguer AI, Ayhan K, Barat JM. Essential oils compounds as antimicrobial and antibiofilm agents against strains present in the meat industry. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Xiao Z, Kang Y, Hou W, Niu Y, Kou X. Microcapsules based on octenyl succinic anhydride (OSA)-modified starch and maltodextrins changing the composition and release property of rose essential oil. Int J Biol Macromol 2019; 137:132-138. [PMID: 31252018 DOI: 10.1016/j.ijbiomac.2019.06.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
Octenyl succinic anhydride (OSA)-modified starch and maltodextrins (MDs) are important carbohydrate polymers as wall materials. However, few studies have shown whether these two wall materials affect the composition of core materials. In this work, we investigated the effects of OSA-modified starch and MD on the release property of essential oils. Results showed that among the seven characteristic aroma components (CACs) of rose essential oil (REO), the esters released the fastest, followed by the alcohols, while the release of the phenols was the slowest. Environmental factors such as temperature and relative humidities (RHs) had significant influences on the release kinetics of CACs in REO. This work provides new insights into the use of OSA-modified starch and MDs as wall materials for encapsulating complex and bioactive components.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Wenjing Hou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
44
|
Bernardos A, Piacenza E, Sancenón F, Hamidi M, Maleki A, Turner RJ, Martínez-Máñez R. Mesoporous Silica-Based Materials with Bactericidal Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900669. [PMID: 31033214 DOI: 10.1002/smll.201900669] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/25/2019] [Indexed: 05/27/2023]
Abstract
Bacterial infections are the main cause of chronic infections and even mortality. In fact, due to extensive use of antibiotics and, then, emergence of antibiotic resistance, treatment of such infections by conventional antibiotics has become a major concern worldwide. One of the promising strategies to treat infection diseases is the use of nanomaterials. Among them, mesoporous silica materials (MSMs) have attracted burgeoning attention due to high surface area, tunable pore/particle size, and easy surface functionalization. This review discusses how one can exploit capacities of MSMs to design and fabricate multifunctional/controllable drug delivery systems (DDSs) to combat bacterial infections. At first, the emergency of bacterial and biofilm resistance toward conventional antimicrobials is described and then how nanoparticles exert their toxic effects upon pathogenic cells is discussed. Next, the main aspects of MSMs (e.g., physicochemical properties, multifunctionality, and biosafety) which one should consider in the design of MSM-based DDSs against bacterial infections are introduced. Finally, a comprehensive analysis of all the papers published dealing with the use of MSMs for delivery of antibacterial chemicals (antimicrobial agents functionalized/adsorbed on mesoporous silica (MS), MS-loaded with antimicrobial agents, gated MS-loaded with antimicrobial agents, MS with metal-based nanoparticles, and MS-loaded with metal ions) is provided.
Collapse
Affiliation(s)
- Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Camí de Vera s/n, 46022, València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012, València, Spain
| | - Elena Piacenza
- Faculty of Science, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Camí de Vera s/n, 46022, València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012, València, Spain
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
- Unidad Mixta de Investigacion en Nanomedicina y Sensores, Universitat Politecnica de Valencia, Instituto de Investigacion Sanitaria La Fe, 46026, Valencia, Spain
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran
| | - Raymond J Turner
- Faculty of Science, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Camí de Vera s/n, 46022, València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012, València, Spain
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
- Unidad Mixta de Investigacion en Nanomedicina y Sensores, Universitat Politecnica de Valencia, Instituto de Investigacion Sanitaria La Fe, 46026, Valencia, Spain
| |
Collapse
|
45
|
Marques CS, Carvalho SG, Bertoli LD, Villanova JCO, Pinheiro PF, dos Santos DCM, Yoshida MI, de Freitas JCC, Cipriano DF, Bernardes PC. β-Cyclodextrin inclusion complexes with essential oils: Obtention, characterization, antimicrobial activity and potential application for food preservative sachets. Food Res Int 2019; 119:499-509. [DOI: 10.1016/j.foodres.2019.01.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
46
|
Melendez-Rodriguez B, Figueroa-Lopez KJ, Bernardos A, Martínez-Máñez R, Cabedo L, Torres-Giner S, Lagaron JM. Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E227. [PMID: 30744000 PMCID: PMC6409543 DOI: 10.3390/nano9020227] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/19/2022]
Abstract
The main goal of this study was to develop poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films with long-term antimicrobial capacity of interest in food packaging applications. To this end, eugenol was first highly efficiently encapsulated at 50 wt.-% in the pores of mesoporous silica nanoparticles by vapor adsorption. The eugenol-containing nanoparticles were then loaded in the 2.5⁻20 wt.-% range into PHBV by electrospinning and the resultant electrospun composite fibers were annealed at 155 °C to produce continuous films. The characterization showed that the PHBV films filled with mesoporous silica nanoparticles containing eugenol present sufficient thermal resistance and enhanced mechanical strength and barrier performance to water vapor and limonene. The antimicrobial activity of the films was also evaluated against foodborne bacteria for 15 days in open vs. closed conditions in order to simulate real packaging conditions. The electrospun PHBV films with loadings above 10 wt.-% of mesoporous silica nanoparticles containing eugenol successfully inhibited the bacterial growth, whereas the active films stored in hermetically closed systems increased their antimicrobial activity after 15 days due to the volatile portion accumulated in the system's headspace and the sustained release capacity of the films. The resultant biopolymer films are, therefore, potential candidates to be applied in active food packaging applications to provide shelf life extension and food safety.
Collapse
Affiliation(s)
- Beatriz Melendez-Rodriguez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain.
| | - Kelly J Figueroa-Lopez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain.
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), camí de Vera s/n, 46022, Valencia, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Camino de Vera s/n, 46022 Valencia, Spain.
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València (UPV), Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València (UPV), Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), camí de Vera s/n, 46022, Valencia, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Camino de Vera s/n, 46022 Valencia, Spain.
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València (UPV), Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València (UPV), Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, 12071 Castellón, Spain.
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain.
| | - Jose M Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain.
| |
Collapse
|
47
|
García-Ríos E, Ruiz-Rico M, Guillamón JM, Pérez-Esteve É, Barat JM. Improved antimicrobial activity of immobilised essential oil components against representative spoilage wine microorganisms. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Polo L, Díaz de Greñu B, Della Bella E, Pagani S, Torricelli P, Vivancos JL, Ruiz-Rico M, Barat JM, Aznar E, Martínez-Máñez R, Fini M, Sancenón F. Antimicrobial activity of commercial calcium phosphate based materials functionalized with vanillin. Acta Biomater 2018; 81:293-303. [PMID: 30273745 DOI: 10.1016/j.actbio.2018.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/22/2018] [Accepted: 09/23/2018] [Indexed: 02/09/2023]
Abstract
Infections represent one of the most frequent causes of arthroplasty revision. Thus, design of new antimicrobial scaffolds to reduce implant rejections, bone infections and associated medical costs is highly desired. In recent years, essential oil components (EOCs) have merged as compounds with significant antimicrobial activity that can be attached to specific surfaces to enhance and prolong their antimicrobial effect. Herein calcium phosphate CaP regenerative materials have been coated with a vanillin derivative to combine its original bone regeneration properties with antimicrobial action of EOCs. Materials in form of microparticles and blocks were prepared and fully characterized. Clonogenic viability tests demonstrated that low concentrations of material (10 mg·mL-1) resulted effective to kill 100% of E. coli DH5α bacteria. Additionally, vanillin containing scaffolds did not display any toxic effect over cells, yet they preserve the ability to express alkaline phosphatase (ALPL), collagen type 1, chain α1 (COL1A1) and bone gamma-carboxyglutamic acid-containing protein or osteocalcin (BGLAP), which are genes typically expressed by osteoblasts. These results demonstrate that commercially available scaffolds can be functionalized with EOCs, achieving antimicrobial activity and open up a new approach for the treatment and prevention of infection. STATEMENT OF SIGNIFICANCE: During the last years, the interest in bone regenerative materials with antibiotic properties has increased, since prosthesis infection is one of the most usual complications in implant surgery. In this work, we report a hybrid system composed by a calcium phosphate material (powders and scaffolds) functionalized with the derivative of an essential oil component (EOC). Our purpose was to provide the calcium phosphate material with antimicrobial activity without harming its bone regenerative capability. The obtained results were encouraging, which opens up the possibility of developing new modified materials for the prevention and treatment of bone infection.
Collapse
|
49
|
Reitzer F, Allais M, Ball V, Meyer F. Polyphenols at interfaces. Adv Colloid Interface Sci 2018; 257:31-41. [PMID: 29937230 DOI: 10.1016/j.cis.2018.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022]
Abstract
Polyphenols are important molecules in living organisms, particularly in plants, where they serve as protectants against predators. They are also of fundamental importance in pharmacology for their antioxidant and antibacterial activities. Since a few years polyphenols are also used in surface functionalization mimicking the tannin deposition observed when tea or red wine are in contact with the surface of cups or glasses respectively. The interaction of polyphenols with proteins to yield colloids and of polyphenol with surfaces will be reviewed in this article to provide an overview of such particles and surface functionalization methods in modern surface science. Particular emphasis will be given to biological applications of polyphenols at interfaces.
Collapse
Affiliation(s)
- François Reitzer
- Université de Strasbourg, INSERM, UMR_S 1121 Biomatériaux et bioingénierie, FMTS, 11 rue Humann, 67085 Strasbourg, Cedex, France
| | - Manon Allais
- Université de Strasbourg, INSERM, UMR_S 1121 Biomatériaux et bioingénierie, FMTS, 11 rue Humann, 67085 Strasbourg, Cedex, France
| | - Vincent Ball
- Université de Strasbourg, INSERM, UMR_S 1121 Biomatériaux et bioingénierie, FMTS, 11 rue Humann, 67085 Strasbourg, Cedex, France.
| | - Florent Meyer
- Université de Strasbourg, INSERM, UMR_S 1121 Biomatériaux et bioingénierie, FMTS, 11 rue Humann, 67085 Strasbourg, Cedex, France
| |
Collapse
|
50
|
A friendly environmental approach for the controlled release of Eucalyptus essential oil. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|