1
|
Mao S, Wang J, Guo Z, Huang H, Wang S, Fei D, Liu J, Wu Q, Nie J, Wu Q, Huang K. Improving sulforaphane content in broccoli sprouts by applying Se: transcriptome profiling and coexpression network analysis provide insights into the mechanistic response. PHYSIOLOGIA PLANTARUM 2025; 177:e70037. [PMID: 39790042 DOI: 10.1111/ppl.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF. Previous studies have often focused on gene expression and changes in the synthetic substrates of glucoraphanin (RAA) to explain SF variation in response to Se application. However, the regulatory network and other physiological and biochemical reactions involved in the regulation of SF biosynthesis are poorly understood. In this study, Se-treated broccoli sprouts had higher SF and RAA contents; they increased with increasing Se application. Using RNA-seq in combination with KEGG, GO, phenotypic, and WGCNA analyses, it was observed that not only gene expression was induced but also that glutathione serves as an S donor for SF biosynthesis and acts as an oxidative stress reliever as a result of Se treatment. Additionally, a module related to glucosinolate biosynthesis was identified. Yeast one-hybrid system and dual luciferase reporter assay were utilized. These assays demonstrated the hub transcription factors GATA22, ERF12-like, and MYB108 would directly bind to SUR1 promoter and positively regulate its expression. Our study presents the first global overview of the role of GSH metabolism in response to Se for SF biosynthesis, and provides a novel and valuable gene resource for the molecular breeding of high-SF broccoli.
Collapse
Affiliation(s)
- Shuxiang Mao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Junwei Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Zhijun Guo
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Huiping Huang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Shengze Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Dandan Fei
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Juan Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Qi Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Jin Nie
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Qiuyun Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
2
|
Tong M, Zhai K, Duan Y, Xia W, Zhao B, Zhang L, Chu J, Yao X. Selenium alleviates the adverse effects of microplastics on kale by regulating photosynthesis, redox homeostasis, secondary metabolism and hormones. Food Chem 2024; 450:139349. [PMID: 38631205 DOI: 10.1016/j.foodchem.2024.139349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Kale is a functional food with anti-cancer, antioxidant, and anemia prevention properties. The harmful effects of the emerging pollutant microplastic (MP) on plants have been widely studied, but there is limited research how to mitigate MP damage on plants. Numerous studies have shown that Se is involved in regulating plant resistance to abiotic stresses. The paper investigated impact of MP and Se on kale growth, photosynthesis, reactive oxygen species (ROS) metabolism, phytochemicals, and endogenous hormones. Results revealed that MP triggered a ROS burst, which led to breakdown of antioxidant system in kale, and had significant toxic effects on photosynthetic system, biomass, and accumulation of secondary metabolites, as well as a significant decrease in IAA and a significant increase in GA. Under MP supply, Se mitigated the adverse effects of MP on kale by increasing photosynthetic pigment content, stimulating function of antioxidant system, enhancing secondary metabolite synthesis, and modulating hormonal networks.
Collapse
Affiliation(s)
- Mengting Tong
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Kuizhi Zhai
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yusui Duan
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wansheng Xia
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Bingnan Zhao
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Lulu Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China.
| |
Collapse
|
3
|
Xue C, Sun L, Tai P. Response to the letter to the editor "Decreased cadmium content in Solanum melongena induced by grafting was related to glucosinolates synthesis" by Xue et al. (2024). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173064. [PMID: 38723960 DOI: 10.1016/j.scitotenv.2024.173064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Affiliation(s)
- Chenyang Xue
- Key Lab of Eco-restoration of Reginal Contaminated Environmental, Shenyang University, Ministry of Education, Shenyang 110044, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizong Sun
- Key Lab of Eco-restoration of Reginal Contaminated Environmental, Shenyang University, Ministry of Education, Shenyang 110044, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
4
|
Farooq MR, Zhang Z, Yuan L, Liu X, Li M, Song J, Wang Z, Yin X. Characterization of Selenium Speciation in Se-Enriched Crops: Crop Selection Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3388-3396. [PMID: 38343309 DOI: 10.1021/acs.jafc.3c08116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Accurately quantifying selenium (Se) speciation and transformation in Se-enriched crops is highly significant for human health. The investigation of Se species in Se-enriched crops involves assessing the enrichment of both organic and inorganic Se species, considering their plant families and edible parts. The staple crops of rice, corn, and wheat showed no or less inorganic Se with the increase of total Se; however, potatoes expressed a proportion of selenate [Se(VI)]. In addition, the organic Se proportions in Se-enriched crops of Cruciferous, Brassicaceae, and Umbelliferae plant families were relatively lower than the proportion of inorganic Se. Concurrently, the edible parts of the Se-enriched gramineous or cereal crops enriched with organic Se and crops with fruit, stem, leaf, and root as edible parts contain the maximum percentage of organic Se with a certain proportion of inorganic Se. This study contributes to a sparse body of literature by meticulously discerning appropriate Se-enriched crop selection through a comprehensive evaluation of Se speciation and its organic and inorganic accumulation potential.
Collapse
Affiliation(s)
- Muhammad Raza Farooq
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 239200, P. R. China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, P. R. China
| | - Zezhou Zhang
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 239200, P. R. China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, P. R. China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaodong Liu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Mengqi Li
- Zhejiang Institute of Geosciences, Hangzhou, Zhejiang 310000, P. R. China
| | - Jiaping Song
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 239200, P. R. China
| | - Zhangmin Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Xuebin Yin
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, P. R. China
| |
Collapse
|
5
|
Kamchen CM, de Oliveira FL, de Souza TR, Vieira BS, Telles B, Morzelle MC. Biofortification with selenium as an alternative to increase the total phenolic compounds in brassicas: a systematic review and meta-analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1234-1243. [PMID: 37782303 DOI: 10.1002/jsfa.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
The ability of brassicas to accumulate selenium is crucial for their positive effects on health. Selenium improves the immune system and the antioxidant defenses. Selenium biofortification of brassicas has therefore been explored to increase dietary selenium intake in humans. However, the effects of selenium biofortification on bioactive compounds, mainly phenolic compounds, are not clear. So, this systematic review and meta-analysis aimed to answer the question 'What are effects of the biofortification of brassicas with selenium on total phenolic compounds?' Ten studies, which assessed the effect of selenium biofortification on total phenolic compounds, were selected for qualitative synthesis and four studies were included in the meta-analysis after a thorough literature review of the PubMed, Science Direct, and Web of Knowledge databases. The quality of the evidence ranged from high to moderate. The meta-analysis results indicated that the total phenolic compound content was significantly higher (P = 0.002) in the supplemented group but the results showed considerable heterogeneity (P < 0.00001, I2 = 97%) between studies. This systematic review and meta-analysis summarizes the effect of Se biofortification on the increase in the content of total phenolic compounds and it suggests that several factors can affect this relationship. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Bruno Serpa Vieira
- School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia, Brazil
| | - Bruna Telles
- Department of Food and Nutrition, Federal University of Mato Grosso, Cuiabá, Brazil
| | | |
Collapse
|
6
|
Bouranis DL, Stylianidis GP, Manta V, Karousis EN, Tzanaki A, Dimitriadi D, Bouzas EA, Siyiannis VF, Constantinou-Kokotou V, Chorianopoulou SN, Bloem E. Floret Biofortification of Broccoli Using Amino Acids Coupled with Selenium under Different Surfactants: A Case Study of Cultivating Functional Foods. PLANTS (BASEL, SWITZERLAND) 2023; 12:1272. [PMID: 36986960 PMCID: PMC10055910 DOI: 10.3390/plants12061272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Broccoli serves as a functional food because it can accumulate selenium (Se), well-known bioactive amino-acid-derived secondary metabolites, and polyphenols. The chemical and physical properties of Se are very similar to those of sulfur (S), and competition between sulfate and selenate for uptake and assimilation has been demonstrated. Towards an efficient agronomic fortification of broccoli florets, the working questions were whether we could overcome this competition by exogenously applying the S-containing amino acids cysteine (Cys) or/and methionine (Met), or/and the precursors of Glucosinolate (GSL) types along with Se application. Broccoli plants were cultivated in a greenhouse and at the beginning of floret growth, we exogenously applied sodium selenate in the concentration gradient of 0, 0.2, 1.5, and 3.0 mM to study the impact of increased Se concentration on the organic S (Sorg) content of the floret. The Se concentration of 0.2 mM (Se0.2) was coupled with the application of Cys, Met, their combination, or a mixture of phenylalanine, tryptophane, and Met. The application took place through fertigation or foliar application (FA) by adding isodecyl alcohol ethoxylate (IAE) or a silicon ethoxylate (SiE) surfactant. Fresh biomass, dry mass, and Se accumulation in florets were evaluated, along with their contents of Sorg, chlorophylls (Chl), carotenoids (Car), glucoraphanin (GlRa), glucobrassicin (GlBra), glucoiberin (GlIb), and polyphenols (PPs), for the biofortification efficiency of the three application modes. From the studied selenium concentration gradient, the foliar application of 0.2 mM Se using silicon ethoxylate (SiE) as a surfactant provided the lowest commercially acceptable Se content in florets (239 μg or 0.3 μmol g-1 DM); it reduced Sorg (-45%), GlIb (-31%), and GlBr (-27%); and it increased Car (21%) and GlRa (27%). Coupled with amino acids, 0.2 mM Se provided commercially acceptable Se contents per floret only via foliar application. From the studied combinations, that of Met,Se0.2/FA,IAE provided the lowest Se content per floret (183 μg or 0.2 μmol g-1 DM) and increased Sorg (35%), Car (45%), and total Chl (27%), with no effect on PPs or GSLs. Cys,Met,Se0.2/FA,IAE and amino acid mix,Se0.2/FA,IAE increased Sorg content, too, by 36% and 16%, respectively. Thus, the foliar application with the IAE surfactant was able to increase Sorg, and methionine was the amino acid in common in these treatments, with varying positive effects on carotenoids and chlorophylls. Only the Cys,Met,Se0.2 combination presented positive effects on GSLs, especially GlRa, but it reduced the fresh mass of the floret. The foliar application with SiE as a surfactant failed to positively affect the organic S content. However, in all studied combinations of Se 0.2 mM with amino acids, the Se content per floret was commercially acceptable, the yield was not affected, the content of GSLs was increased (especially that of GlRa and GlIb), and PPs were not affected. The content of GlBr decreased except for the treatment with methionine (Met,Se0.2/FA,SiE) where GlBr remained unaffected. Hence, the combination of Se with the used amino acids and surfactants can provide enhanced biofortification efficiency in broccoli by providing florets as functional foods with enhanced functional properties.
Collapse
Affiliation(s)
- Dimitris L. Bouranis
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
- PlanTerra Institute for Plant Nutrition & Soil Quality, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Georgios P. Stylianidis
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Vassiliki Manta
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Evangelos N. Karousis
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Andriani Tzanaki
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | | | - Emmanuel A. Bouzas
- Chemical Laboratories, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | | | - Violetta Constantinou-Kokotou
- Chemical Laboratories, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Styliani N. Chorianopoulou
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
- PlanTerra Institute for Plant Nutrition & Soil Quality, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Elke Bloem
- Julius Kuehn Institute, Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116 Braunschweig, Germany
| |
Collapse
|
7
|
Rodrigues JPB, Liberal Â, Petropoulos SA, Ferreira ICFR, Oliveira MBPP, Fernandes Â, Barros L. Agri-Food Surplus, Waste and Loss as Sustainable Biobased Ingredients: A Review. Molecules 2022; 27:molecules27165200. [PMID: 36014439 PMCID: PMC9412510 DOI: 10.3390/molecules27165200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Ensuring a sustainable supply of food for the world’s fast growing population is a major challenge in today’s economy, as modern lifestyle and increasing consumer concern with maintaining a balanced and nutritious diet is an important challenge for the agricultural sector worldwide. This market niche for healthier products, especially fruits and vegetables, has increased their production, consequently resulting in increased amounts of agri-food surplus, waste, and loss (SWL) generated during crop production, transportation, storage, and processing. Although many of these materials are not utilized, negatively affecting the environmental, economic, and social segments, they are a rich source of valuable compounds that could be used for different purposes, thus preventing the losses of natural resources and boosting a circular economy. This review aimed to give insights on the efficient management of agri-food SWL, considering conventional and emerging recovery and reuse techniques. Particularly, we explored and summarized the chemical composition of three worldwide cultivated and consumed vegetables (carrots, broccoli and lettuce) and evaluate the potential of their residues as a sustainable alternative for extracting value-added ingredients for the development of new biodynamic products.
Collapse
Affiliation(s)
- Joana P. B. Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ângela Liberal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Spyridon A. Petropoulos
- Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 384 46 Volos, Greece
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| |
Collapse
|
8
|
Liu Z, Wang H, Lv J, Luo S, Hu L, Wang J, Li L, Zhang G, Xie J, Yu J. Effects of Plant Hormones, Metal Ions, Salinity, Sugar, and Chemicals Pollution on Glucosinolate Biosynthesis in Cruciferous Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:856442. [PMID: 35574082 PMCID: PMC9096887 DOI: 10.3389/fpls.2022.856442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Cruciferous vegetable crops are grown widely around the world, which supply a multitude of health-related micronutrients, phytochemicals, and antioxidant compounds. Glucosinolates (GSLs) are specialized metabolites found widely in cruciferous vegetables, which are not only related to flavor formation but also have anti-cancer, disease-resistance, and insect-resistance properties. The content and components of GSLs in the Cruciferae are not only related to genotypes and environmental factors but also are influenced by hormones, plant growth regulators, and mineral elements. This review discusses the effects of different exogenous substances on the GSL content and composition, and analyzes the molecular mechanism by which these substances regulate the biosynthesis of GSLs. Based on the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Huiping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
González F, Quintero J, Del Río R, Mahn A. Optimization of an Extraction Process to Obtain a Food-Grade Sulforaphane-Rich Extract from Broccoli ( Brassica oleracea var. italica). Molecules 2021; 26:molecules26134042. [PMID: 34279379 PMCID: PMC8272218 DOI: 10.3390/molecules26134042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022] Open
Abstract
Sulforaphane (SFN) is a powerful health-promoting compound found in broccoli in the form of its inactive precursor, glucoraphanin (GFN). SFN formation occurs through the enzymatic hydrolysis of glucoraphanin by myrosinase under specific chemical conditions. Its incorporation in food formulations has been hindered by the thermal instability of SFN and low concentration in Brassicaceae. Then, extracting SFN from broccoli at a temperature below 40 °C appears as an option to recover and stabilize SFN, aiming at delivering it as a nutraceutical. We studied an eco-friendly extraction process to obtain an SFN-rich extract from broccoli. The effect of the broccoli mass/solvent ratio, ethanol concentration in the extractant solution, and extraction time on the recovery of SFN, GFN, phenolic compounds, and antioxidant activity were studied through a Box–Behnken design. The regression models explained more than 70% of the variability in the responses, adequately representing the system. The experimental factors differently affected the bioactive compound recovery and antioxidant activity of the extracts. The extraction conditions that allowed the highest recovery of bioactive compounds and antioxidant activity were identified and experimentally validated. The results may provide the basis for the design of a process to produce a sulforaphane-rich food supplement or nutraceutical by using a GRAS extractant.
Collapse
Affiliation(s)
- Francis González
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago 9160000, Chile; (F.G.); (J.Q.)
| | - Julián Quintero
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago 9160000, Chile; (F.G.); (J.Q.)
| | - Rodrigo Del Río
- Laboratory of Cardiorespiratory Control, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (PUC), Santiago 3542000, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Andrea Mahn
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago 9160000, Chile; (F.G.); (J.Q.)
- Correspondence: ; Tel.: +56-2-27181833
| |
Collapse
|
10
|
Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules 2021; 26:molecules26040881. [PMID: 33562416 PMCID: PMC7914768 DOI: 10.3390/molecules26040881] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
The trace element selenium (Se) is a crucial element for many living organisms, including soil microorganisms, plants and animals, including humans. Generally, in Nature Se is taken up in the living cells of microorganisms, plants, animals and humans in several inorganic forms such as selenate, selenite, elemental Se and selenide. These forms are converted to organic forms by biological process, mostly as the two selenoamino acids selenocysteine (SeCys) and selenomethionine (SeMet). The biological systems of plants, animals and humans can fix these amino acids into Se-containing proteins by a modest replacement of methionine with SeMet. While the form SeCys is usually present in the active site of enzymes, which is essential for catalytic activity. Within human cells, organic forms of Se are significant for the accurate functioning of the immune and reproductive systems, the thyroid and the brain, and to enzyme activity within cells. Humans ingest Se through plant and animal foods rich in the element. The concentration of Se in foodstuffs depends on the presence of available forms of Se in soils and its uptake and accumulation by plants and herbivorous animals. Therefore, improving the availability of Se to plants is, therefore, a potential pathway to overcoming human Se deficiencies. Among these prospective pathways, the Se-biofortification of plants has already been established as a pioneering approach for producing Se-enriched agricultural products. To achieve this desirable aim of Se-biofortification, molecular breeding and genetic engineering in combination with novel agronomic and edaphic management approaches should be combined. This current review summarizes the roles, responses, prospects and mechanisms of Se in human nutrition. It also elaborates how biofortification is a plausible approach to resolving Se-deficiency in humans and other animals.
Collapse
|
11
|
Sikorska-Zimny K, Beneduce L. The glucosinolates and their bioactive derivatives in Brassica: a review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Crit Rev Food Sci Nutr 2020; 61:2544-2571. [PMID: 32584172 DOI: 10.1080/10408398.2020.1780193] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study is a systematic review of the scientific literature reporting content, composition and biosynthesis of glucosinolates (GLS), and their derivative compounds in Brassica family. An amended classification of brassica species, varieties and their GLS content, organized for the different plant organs and in uniformed concentration measure unit, is here reported for the first time in a harmonized and comparative manner. In the last years, the studies carried out on the effect of processing on vegetables and the potential benefits for human health has increased rapidly and consistently the knowledge on the topic. Therefore, there was the need for an updated revision of the scientific literature of pre- and post-harvest modifications of GLS content, along with the role of gut microbiota in influencing their bioavailability once they are ingested. After analyzing and standardizing over 100 articles and the related data, the highest GLS content in Brassica, was declared in B. nigra (L.) W. D. J. Koch (201.95 ± 53.36 µmol g-1), followed by B. oleracea Alboglabra group (180.9 ± 70.3 µmol g-1). The authors also conclude that food processing can influence significantly the final content of GLS, considering the most popular methods: boiling, blanching, steaming, the latter can be considered as the most favorable to preserve highest level of GLS and their deriviatives. Therefore, a mild-processing strategic approach for GLS or their derivatives in food is recommended, in order to minimize the loss of actual bioactive impact. Finally, the human gut microbiota is influenced by Brassica-rich diet and can contribute in certain conditions to the increasing of GLS bioavailability but further studies are needed to assess the actual role of microbiomes in the bioavailability of healthy glucosinolate derivatives.
Collapse
Affiliation(s)
- Kalina Sikorska-Zimny
- Fruit and Vegetables Storage and Processing Department, Storage and Postharvest Physiology of Fruit and Vegetables Laboratory, Research Institute of Horticulture, Skierniewice, Poland.,Stefan Batory State University, Skierniewice, Poland
| | - Luciano Beneduce
- Department of the Sciences of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| |
Collapse
|
12
|
D’Amato R, Regni L, Falcinelli B, Mattioli S, Benincasa P, Dal Bosco A, Pacheco P, Proietti P, Troni E, Santi C, Businelli D. Current Knowledge on Selenium Biofortification to Improve the Nutraceutical Profile of Food: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4075-4097. [PMID: 32181658 PMCID: PMC7997367 DOI: 10.1021/acs.jafc.0c00172] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 05/05/2023]
Abstract
Selenium (Se) is an important micronutrient for living organisms, since it is involved in several physiological and metabolic processes. Se intake in humans is often low and very seldom excessive, and its bioavailability depends also on its chemical form, with organic Se as the most available after ingestion. The main dietary source of Se for humans is represented by plants, since many species are able to metabolize and accumulate organic Se in edible parts to be consumed directly (leaves, flowers, fruits, seeds, and sprouts) or after processing (oil, wine, etc.). Countless studies have recently investigated the Se biofortification of plants to produce Se-enriched foods and elicit the production of secondary metabolites, which may benefit human health when incorporated into the diet. Moreover, feeding animals Se-rich diets may provide Se-enriched meat. This work reviews the most recent literature on the nutraceutical profile of Se-enriched foods from plant and animal sources.
Collapse
Affiliation(s)
- Roberto D’Amato
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Luca Regni
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Beatrice Falcinelli
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Simona Mattioli
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Paolo Benincasa
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Alessandro Dal Bosco
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Pablo Pacheco
- Instituto
de Química de San Luis, INQUISAL, Centro Científico-Tecnológico
de San Luis (CCT-San Luis), Consejo Nacional
de Investigaciones Científicas − Universidad Nacional
de San Luis, Chacabuco y Pedernera, Ciudad de San Luis 5700, Argentina
| | - Primo Proietti
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Elisabetta Troni
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Claudio Santi
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia 06123, Italy
| | - Daniela Businelli
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| |
Collapse
|
13
|
Bachiega P, de Almeida E, Salgado JM, Arruda MAZ, Lehmann EL, Morzelle MC, de Carvalho HWP. Benchtop and Handheld Energy-Dispersive X-Ray Fluorescence (EDXRF) as Alternative for Selenium Concentration Measurement in Biofortified Broccoli Seedling. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01489-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Dall'Acqua S, Ertani A, Pilon-Smits EAH, Fabrega-Prats M, Schiavon M. Selenium Biofortification Differentially Affects Sulfur Metabolism and Accumulation of Phytochemicals in Two Rocket Species ( Eruca Sativa Mill. and Diplotaxis Tenuifolia) Grown in Hydroponics. PLANTS 2019; 8:plants8030068. [PMID: 30884867 PMCID: PMC6473880 DOI: 10.3390/plants8030068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Biofortification can be exploited to enrich plants in selenium (Se), an essential micronutrient for humans. Selenium as selenate was supplied to two rocket species, Eruca sativa Mill. (salad rocket) and Diplotaxis tenuifolia (wild rocket), at 0–40 μM in hydroponics and its effects on the content and profile of sulphur (S)-compounds and other phytochemicals was evaluated. D. tenuifolia accumulated more total Se and selenocysteine than E. sativa, concentrating up to ~300 mg Se kg−1 dry weight from 10–40 μM Se. To ensure a safe and adequate Se intake, 30 and 4 g fresh leaf material from E. sativa grown with 5 and 10–20 μM Se, respectively or 4 g from D. tenuifolia supplied with 5 μM Se was estimated to be optimal for consumption. Selenium supplementation at or above 10 μM differentially affected S metabolism in the two species in terms of the transcription of genes involved in S assimilation and S-compound accumulation. Also, amino acid content decreased with Se in E. sativa but increased in D. tenuifolia and the amount of phenolics was more reduced in D. tenuifolia. In conclusion, selenate application in hydroponics allowed Se enrichment of rocket. Furthermore, Se at low concentration (5 μM) did not significantly affect accumulation of phytochemicals and plant defence S-metabolites.
Collapse
Affiliation(s)
- Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| | - Andrea Ertani
- DAFNAE, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | | | - Marta Fabrega-Prats
- DAFNAE, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | - Michela Schiavon
- DAFNAE, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| |
Collapse
|
15
|
White PJ. Selenium metabolism in plants. Biochim Biophys Acta Gen Subj 2018; 1862:2333-2342. [DOI: 10.1016/j.bbagen.2018.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
|
16
|
Tian M, Yang Y, Ávila FW, Fish T, Yuan H, Hui M, Pan S, Thannhauser TW, Li L. Effects of Selenium Supplementation on Glucosinolate Biosynthesis in Broccoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8036-8044. [PMID: 29975053 DOI: 10.1021/acs.jafc.8b03396] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Selenium (Se)-enriched broccoli has health-beneficial selenium-containing compounds, but it may contain reduced amounts of chemopreventive glucosinolates. To investigate the basis by which Se treatment influences glucosinolate levels, we treated two broccoli cultivars with 25 μM Na2SeO4. We found that Se supplementation suppressed the accumulation of total glucosinolates, particularly glucoraphanin, the direct precursor of a potent anticancer compound, in broccoli florets and leaves. We showed that the suppression was not associated with plant sulfur nutrition. The levels of the glucosinolate precursors methionine and phenylalanine as well as the expression of genes involved in glucosinolate biosynthesis were greatly decreased following Se supplementation. Comparative proteomic analysis identified proteins in multiple metabolic and cellular processes that were greatly affected and detected an enzyme affecting methionine biosynthesis that was reduced in the Se-biofortified broccoli. These results indicate that Se-conferred glucosinolate reduction is associated with negative effects on precursor amino acid biosynthesis and glucosinolate-biosynthetic-gene expression and provide information for a better understanding of glucosinolate accumulation in response to Se supplementation in broccoli.
Collapse
Affiliation(s)
- Ming Tian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
| | - Fabricio William Ávila
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- State University of Mid West, UNICENTRO , Irati , Paraná 84500-000 , Brazil
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science , Cornell University , Ithaca , New York 14853 , United States
| | - Maixia Hui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- College of Horticulture , Northwest A&F University , Yangling 712100 , China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
17
|
Zhu Z, Zhang Y, Liu J, Chen Y, Zhang X. Exploring the effects of selenium treatment on the nutritional quality of tomato fruit. Food Chem 2018; 252:9-15. [DOI: 10.1016/j.foodchem.2018.01.064] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 12/01/2022]
|
18
|
|
19
|
Wiesner-Reinhold M, Schreiner M, Baldermann S, Schwarz D, Hanschen FS, Kipp AP, Rowan DD, Bentley-Hewitt KL, McKenzie MJ. Mechanisms of Selenium Enrichment and Measurement in Brassicaceous Vegetables, and Their Application to Human Health. FRONTIERS IN PLANT SCIENCE 2017; 8:1365. [PMID: 28824693 PMCID: PMC5540907 DOI: 10.3389/fpls.2017.01365] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/21/2017] [Indexed: 05/04/2023]
Abstract
Selenium (Se) is an essential micronutrient for human health. Se deficiency affects hundreds of millions of people worldwide, particularly in developing countries, and there is increasing awareness that suboptimal supply of Se can also negatively affect human health. Selenium enters the diet primarily through the ingestion of plant and animal products. Although, plants are not dependent on Se they take it up from the soil through the sulphur (S) uptake and assimilation pathways. Therefore, geographic differences in the availability of soil Se and agricultural practices have a profound influence on the Se content of many foods, and there are increasing efforts to biofortify crop plants with Se. Plants from the Brassicales are of particular interest as they accumulate and synthesize Se into forms with additional health benefits, such as methylselenocysteine (MeSeCys). The Brassicaceae are also well-known to produce the glucosinolates; S-containing compounds with demonstrated human health value. Furthermore, the recent discovery of the selenoglucosinolates in the Brassicaceae raises questions regarding their potential bioefficacy. In this review we focus on Se uptake and metabolism in the Brassicaceae in the context of human health, particularly cancer prevention and immunity. We investigate the close relationship between Se and S metabolism in this plant family, with particular emphasis on the selenoglucosinolates, and consider the methodologies available for identifying and quantifying further novel Se-containing compounds in plants. Finally, we summarize the research of multiple groups investigating biofortification of the Brassicaceae and discuss which approaches might be most successful for supplying Se deficient populations in the future.
Collapse
Affiliation(s)
- Melanie Wiesner-Reinhold
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
- *Correspondence: Melanie Wiesner-Reinhold
| | - Monika Schreiner
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
| | - Susanne Baldermann
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
- Food Chemistry, Institute of Nutritional Science, University of PotsdamNuthethal, Germany
| | - Dietmar Schwarz
- Functional Plant Biology, Leibniz Institute of Vegetable and Ornamental CropGrossbeeren, Germany
| | - Franziska S. Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
| | - Anna P. Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University JenaJena, Germany
| | - Daryl D. Rowan
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| | - Kerry L. Bentley-Hewitt
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| | - Marian J. McKenzie
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| |
Collapse
|