1
|
Gao H, Liu P, He W, Bi F, Hu C, Deng G, Dou T, Yang Q, Li C, Yi G, Sheng O, Dong T. Ripening-stage variations in small metabolites across six banana cultivars: A metabolomic perspective. Food Chem 2025; 478:143658. [PMID: 40054203 DOI: 10.1016/j.foodchem.2025.143658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/02/2025] [Accepted: 02/26/2025] [Indexed: 04/06/2025]
Abstract
Currently, understanding of how banana cultivars differ in metabolism during ripening is limited. This study compared the pulp metabolites of six banana cultivars using NMR. Bananas with B genome were found to have higher amounts of total starch, amylose, amylopectin, and resistant starch compared to those without B genome. NMR identified 21 key metabolites distinguish these cultivars. These metabolites included four soluble sugars, three organic acids, eleven amino acids, one alcohol, one choline, and one other compound. Notably, the levels of four soluble sugars varied significantly among the cultivars. 'Gongjiao' and 'Guangfen No. 1' had a slightly sour taste due to higher levels of malate and citrate. The accumulation of eleven key amino acids differed among varieties and changed unpredictably during ripening. Other important metabolites also played a role in distinguishing six banana varieties. This research provided new insights into how metabolites were used to differentiate between banana cultivars.
Collapse
Affiliation(s)
- Huijun Gao
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Ping Liu
- Guangxi Academy of Specialty Crops, Guilin, Guangxi, PR China
| | - Weidi He
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Fangcheng Bi
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Chunhua Hu
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Guiming Deng
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Tongxin Dou
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Qiaosong Yang
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Chunyu Li
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Ganjun Yi
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Ou Sheng
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China.
| | - Tao Dong
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China.
| |
Collapse
|
2
|
Ghosh Biswas R, Bermel W, Jenne A, Soong R, Simpson MJ, Simpson AJ. HR-MAS DREAMTIME NMR for Slow Spinning ex Vivo and in Vivo Samples. Anal Chem 2023; 95:17054-17063. [PMID: 37934172 DOI: 10.1021/acs.analchem.3c03800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
HR-MAS NMR is a powerful tool, capable of monitoring molecular changes in intact heterogeneous samples. However, one of the biggest limitations of 1H NMR is its narrow spectral width which leads to considerable overlap in complex natural samples. DREAMTIME NMR is a highly selective technique that allows users to isolate suites of metabolites from congested spectra. This permits targeted metabolomics by NMR and is ideal for monitoring specific processes. To date, DREAMTIME has only been employed in solution-state NMR, here it is adapted for HR-MAS applications. At high spinning speeds (>5 kHz), DREAMTIME works with minimal modifications. However, spinning over 3-4 kHz leads to cell lysis, and if maintaining sample integrity is necessary, slower spinning (<2.5 kHz) is required. Very slow spinning (≤500 Hz) is advantageous for in vivo analysis to increase organism survival; however, sidebands from water pose a problem. To address this, a version of DREAMTIME, termed DREAMTIME-SLOWMAS, is introduced. Both techniques are compared at 2500, 500, and 50 Hz, using ex vivo worm tissue. Following this, DREAMTIME-SLOWMAS is applied to monitor key metabolites of anoxic stress in living shrimp at 500 Hz. Thus, standard DREAMTIME works well under MAS conditions and is recommended for samples reswollen in D2O or spun >2500 Hz. For slow spinning in vivo or intact tissue samples, DREAMTIME-SLOWMAS provides an excellent way to target process-specific metabolites while maintaining sample integrity. Overall, DREAMTIME should find widespread application wherever targeted molecular information is required from complex samples with a high degree of spectral overlap.
Collapse
Affiliation(s)
| | - Wolfgang Bermel
- Bruker Biospin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Amy Jenne
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Andre J Simpson
- Environmental NMR Centre, University of Toronto, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
3
|
Kim YM, Lubinska-Szczygeł M, Park YS, Deutsch J, Ezra A, Luksrikul P, Beema Shafreen RM, Gorinstein S. Characterization of Bioactivity of Selective Molecules in Fruit Wines by FTIR and NMR Spectroscopies, Fluorescence and Docking Calculations. Molecules 2023; 28:6036. [PMID: 37630288 PMCID: PMC10457986 DOI: 10.3390/molecules28166036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopies were applied to characterize and compare the chemical shifts in the polyphenols' regions of some fruit wines. The obtained results showed that FTIR spectra (1800-900 cm-1) and 1H NMR (δ 6.5-9.3 ppm) of different fruit wines can be used as main indices of the year of vintage and quality of fruit wines. In addition to the classical determination of antioxidant profiles and bioactive substances in wines, fluorometric measurements were used to determine the interactions of wine substances with the main human serum proteins. The results showed relatively high binding properties of wines with the highest one for pomegranate, followed by kiwifruit and persimmon wines. The interactions of vitamin C, catechin and gallic acid with human serum albumin (HSA) were also examined by docking studies. The docking calculations showed that gallic acid has a stronger binding affinity compared to catechin and vitamin C. The stronger binding affinity of gallic acid may be due to three hydrogen bonds and pi-pi interactions. The fluorescence and docking studies proved that only the bioactive compounds of wines and not the amount of alcohol have high binding properties to human serum proteins. The emphasis in this report was made on the utility of FTIR, NMR and fluorescence of wines as a mean of wine authentication and its fingerprint. The findings, based on polyphenols from fruits and fruit wines, their bioactivity and health properties, offer valuable insights for future endeavours focused on designing healthy food products.
Collapse
Affiliation(s)
- Young-Mo Kim
- Industry Academic Collaboration Foundation, Kwangju Women’s University, Gwangju 62396, Republic of Korea;
| | - Martyna Lubinska-Szczygeł
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Yong-Seo Park
- Department of Horticultural Science, Mokpo National University, Muan 58554, Republic of Korea;
| | - Joseph Deutsch
- Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (A.E.)
| | - Aviva Ezra
- Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (A.E.)
| | - Patraporn Luksrikul
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Raja Mohamed Beema Shafreen
- Dr Umayal Ramanathan College for Women, Alagappa University, Alagappapuram, Karaikudi 630003, Tamilnadu, India
| | - Shela Gorinstein
- Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (A.E.)
| |
Collapse
|
4
|
Salazar-Bermeo J, Moreno-Chamba B, Heredia-Hortigüela R, Lizama V, Martínez-Madrid MC, Saura D, Valero M, Neacsu M, Martí N. Green Technologies for Persimmon By-Products Revalorisation as Sustainable Sources of Dietary Fibre and Antioxidants for Functional Beverages Development. Antioxidants (Basel) 2023; 12:antiox12051085. [PMID: 37237951 DOI: 10.3390/antiox12051085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The use of green technologies such as ultrasound and natural deep eutectic solvents (NADES) for revalorisation of food and agricultural by-products represents a sustainable way to tackle waste and promote a healthier environment while delivering much-needed functional food ingredients for an increasingly unhealthy population. The processing of persimmon (Diospyros kaki Thunb.) generates large amounts of by-products rich in fibre-bound bioactive phytochemicals. This paper assessed the extractability of bioactive compounds through NADES and the functional properties of the persimmon polysaccharide-rich by-products to evaluate their suitability to be used as functional ingredients in commercial beverages. Although higher amounts of carotenoids and polyphenols were extracted after eutectic treatment vs. conventional extraction (p < 0.05), the fibre-bound bioactives remained abundant (p < 0.001) in the resulting persimmon pulp by-product (PPBP) and persimmon pulp dietary fibre (PPDF), showing also a strong antioxidant activity (DPPH•, ABTS•+ assays) and an improved digestibility and fibre fermentability. The main structural components of PPBP and PPDF are cellulose, hemicellulose and pectin. PPDF-added dairy-based drink showed more than 50% of preference over the control among panellists and similar acceptability scores to the commercial ones. Persimmon pulp by-products represent sustainable source of dietary fibre and bioactives and are suitable candidates to develop functional ingredients for food industry applications.
Collapse
Affiliation(s)
- Julio Salazar-Bermeo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Avenida Fausto Elio s/n, Edificio 8E, Acceso F Planta 0, 46022 Valencia, Spain
| | - Bryan Moreno-Chamba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Avenida Fausto Elio s/n, Edificio 8E, Acceso F Planta 0, 46022 Valencia, Spain
| | - Rosa Heredia-Hortigüela
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Victoria Lizama
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Avenida Fausto Elio s/n, Edificio 8E, Acceso F Planta 0, 46022 Valencia, Spain
| | - María Concepción Martínez-Madrid
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Domingo Saura
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Manuel Valero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Madalina Neacsu
- The Rowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Nuria Martí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| |
Collapse
|
5
|
1H NMR-based metabolic profile and chemometric analysis for the discrimination of Passiflora species genotypic variations. Food Res Int 2023; 164:112441. [PMID: 36738006 DOI: 10.1016/j.foodres.2022.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
The species of the genus Passiflora (Passifloraceae family) have been used as food, cosmetic and traditional herbal. As a result, the Passiflora species are widely cultivated and has an economic, medicinal and ornamental importance. The popular designation as "passion fruit" and chemical profile of several Passiflora species remains unknown. The lack of chemical information contributes to the erroneous classification and adulteration. In recent years, special attention has been paid to the bioactivity and phytochemical profiles of several Passiflora species extracts. In this research, 1H NMR-based metabolic profiling coupled with chemometric tools was used to characterize and distinguish extracts obtained from different wild Passiflora species (P. alata, P. cincinnata, and P. setacea) and genetic varieties (P. alata var. BRS Pérola do Cerrado, P. cincinnata var. BRS Sertão Forte, and P. setacea var. BRS Pérola do Cerrado). Fourteen metabolites were identified by 1D and 2D NMR experiments, highlighting the presence of fatty acids, carbohydrates, saponins, alkaloids, and mainly C-glycosidic flavones. Principal components analysis (PCA) allowed discrimination of Passiflora extracts, which the quadranguloside, oleanolic acid-3-sophoroside, α-glucose, β-glucose, and vitexin-2-O"-rhamnoside were relevant in the differentiation of P. alata and P. alata var. BRS Pérola do Cerrado, while the flavones isovitexin and isovitexin-2-O"-xyloside were dominant in the grouping of P. setacea and P. setacea var. BRS Pérola do Cerrado, and finally P. cincinnata and P. cincinnata var. BRS Sertão Forte grouped by the influence of the fatty acids, sucrose, flavones (isoorientin and vitexin-2-O"-xyloside), and trigonelline. The varieties of P. setacea, and P. cincinnata are chemically equivalent to the original Passiflora species. However, the PCA analysis showed that the genetic variety of P. alata occupied a different position in the scores plot provoked mainly by the presence of oleanolic acid-3-sophoroside. The 1H NMR metabolic profile can be efficient for quality control evaluation, and can contribute to the investigation of new alternatives for official Passiflora herbal medicines.
Collapse
|
6
|
Caprara CDSC, Mathias TK, Santos MDFC, D’Oca MGM, D’Oca CDRM, Roselet F, Abreu PC, Ramos DF. Application of 1H HR-MAS NMR-Based Metabolite Fingerprinting of Marine Microalgae. Metabolites 2023; 13:metabo13020202. [PMID: 36837821 PMCID: PMC9965007 DOI: 10.3390/metabo13020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Natural products from the marine environment as well as microalgae, have been known for the complexity of the metabolites they produce due to their adaptability to different environmental conditions, which has been an inexhaustible source of several bioactive properties, such as antioxidant, anti-tumor, and antimicrobial. This study aims to characterize the main metabolites of three species of microalgae (Nannochloropsis oceanica, Chaetoceros muelleri, and Conticribra weissflogii), which have important applications in the biofuel and nutrition industries, by 1H High-resolution magic angle spinning nuclear magnetic resonance (1H HR-MAS NMR), a method which is non-destructive, is highly reproducible, and requires minimal sample preparation. Even though the three species were found in the same ecosystem and a superior production of lipid compounds was observed, important differences were identified in relation to the production of specialized metabolites. These distinct properties favor the use of these compounds as leaders in the development of new bioactive compounds, especially against environmental, human, and animal pathogens (One Health), and demonstrate their potential in the development of alternatives for aquaculture.
Collapse
Affiliation(s)
| | - Tatiane Ksyvickas Mathias
- NMR Laboratory, NMR Center, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Maria de Fátima C. Santos
- NMR Laboratory, NMR Center, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Marcelo G. M. D’Oca
- NMR Laboratory, NMR Center, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Caroline Da R. M. D’Oca
- NMR Laboratory, NMR Center, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Fabio Roselet
- Laboratório de Produção de Microalgas (LPM), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande 96210-030, RS, Brazil
| | - Paulo Cesar Abreu
- Laboratório de Produção de Microalgas (LPM), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande 96210-030, RS, Brazil
| | - Daniela Fernandes Ramos
- Laboratório de Desenvolvimento de Novos Fármacos (LADEFA), Universidade Federal do Rio Grande (FURG), Rio Grande 96200-400, RS, Brazil
- Núcleo de Desenvolvimento de Novos Fármacos—NUDEFA, Rua General Osório, s/n°, Campus Saúde, 2° andar, Rio Grande 96200-400, RS, Brazil
- Correspondence: ; Tel.: +55-53-3237-4634
| |
Collapse
|
7
|
De Pascale S, Troise AD, Petriccione M, Nunziata A, Cice D, Magri A, Salzano AM, Scaloni A. Investigating phenotypic relationships in persimmon accessions through integrated proteomic and metabolomic analysis of corresponding fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1093074. [PMID: 36794209 PMCID: PMC9923171 DOI: 10.3389/fpls.2023.1093074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Together with phenological and genomic approaches, gel-based and label-free proteomic as well metabolomic procedures were separately applied to plants to highlight differences between ecotypes, to estimate genetic variability within/between organism populations, or to characterize specific mutants/genetically modified lines at metabolic level. To investigate the possible use of tandem mass tag (TMT)-based quantitative proteomics in the above-mentioned contexts and based on the absence of combined proteo-metabolomic studies on Diospyros kaki cultivars, we here applied integrated proteomic and metabolomic approaches to fruits from Italian persimmon ecotypes with the aim to characterize plant phenotypic diversity at molecular level. We identified 2255 proteins in fruits, assigning 102 differentially represented components between cultivars, including some related to pomological, nutritional and allergenic characteristics. Thirty-three polyphenols were also identified and quantified, which belong to hydroxybenzoic acid, flavanol, hydroxycinnamic acid, flavonol, flavanone and dihydrochalcone sub-classes. Heat-map representation of quantitative proteomic and metabolomic results highlighted compound representation differences in various accessions, whose elaboration through Euclidean distance functions and other linkage methods defined dendrograms establishing phenotypic relationships between cultivars. Principal component analysis of proteomic and metabolomic data provided clear information on phenotypic differences/similarities between persimmon accessions. Coherent cultivar association results were observed between proteomic and metabolomic data, emphasizing the utility of integrating combined omic approaches to identify and validate phenotypic relationships between ecotypes, and to estimate corresponding variability and distance. Accordingly, this study describes an original, combined approach to outline phenotypic signatures in persimmon cultivars, which may be used for a further characterization of other ecotypes of the same species and an improved description of nutritional characteristics of corresponding fruits.
Collapse
Affiliation(s)
- Sabrina De Pascale
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Antonio Dario Troise
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Milena Petriccione
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| | - Angelina Nunziata
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| | - Danilo Cice
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| | - Anna Magri
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Anna Maria Salzano
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| |
Collapse
|
8
|
Özdemir N, Budak NH, Ertekin‐ Filiz B, Özer E. Occurrences and changes in aroma‐associated volatile compound profiles and prominent bioactive compounds at different stages of persimmon vinegar production process. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Nilgün Özdemir
- Ondokuz Mayis University Faculty of Engineering, Department of Food Engineering Samsun Turkey
| | - Nilgün H. Budak
- Isparta University of Applied Sciences Egirdir Vocational School, Food Processing Department Isparta Türkiye
| | - Bilge Ertekin‐ Filiz
- Süleyman Demirel University Faculty of Engineering, Department of Food Engineering Isparta Türkiye
| | - Elif Özer
- Süleyman Demirel University Faculty of Engineering, Department of Food Engineering Isparta Türkiye
| |
Collapse
|
9
|
Direito R, Rocha J, Sepodes B, Eduardo-Figueira M. From Diospyros kaki L. (Persimmon) Phytochemical Profile and Health Impact to New Product Perspectives and Waste Valorization. Nutrients 2021; 13:3283. [PMID: 34579162 PMCID: PMC8465508 DOI: 10.3390/nu13093283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 01/13/2023] Open
Abstract
Persimmon (Diospyros kaki L.) fruit's phytochemical profile includes carotenoids, proanthocyanidins, and gallic acid among other phenolic compounds and vitamins. A huge antioxidant potential is present given this richness in antioxidant compounds. These bioactive compounds impact on health benefits. The intersection of nutrition and sustainability, the key idea behind the EAT-Lancet Commission, which could improve human health and decrease the global impact of food-related health conditions such as cancer, heart disease, diabetes, and obesity, bring the discussion regarding persimmon beyond the health effects from its consumption, but also on the valorization of a very perishable food that spoils quickly. A broad option of edible products with better storage stability or solutions that apply persimmon and its byproducts in the reinvention of old products or even creating new products, or with new and better packaging for the preservation of food products with postharvest technologies to preserve and extend the shelf-life of persimmon food products. Facing a global food crisis and the climate emergency, new and better day-to-day solutions are needed right now. Therefore, the use of persimmon waste has also been discussed as a good solution to produce biofuel, eco-friendly alternative reductants for fabric dyes, green plant growth regulator, biodegradable and edible films for vegetable packaging, antimicrobial activity against foodborne methicillin-resistant Staphylococcus aureus found in retail pork, anti-Helicobacter pylori agents from pedicel extracts, and persimmon pectin-based emulsifiers to prevent lipid peroxidation, among other solutions presented in the revised literature. It has become clear that the uses for persimmon go far beyond the kitchen table and the health impact consumption demonstrated over the years. The desired sustainable transition is already in progress, however, mechanistic studies and clinical trials are essential and scaling-up is fundamental to the future.
Collapse
Affiliation(s)
- Rosa Direito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Maria Eduardo-Figueira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| |
Collapse
|
10
|
Augustijn D, de Groot HJM, Alia A. HR-MAS NMR Applications in Plant Metabolomics. Molecules 2021; 26:molecules26040931. [PMID: 33578691 PMCID: PMC7916392 DOI: 10.3390/molecules26040931] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolomics is used to reduce the complexity of plants and to understand the underlying pathways of the plant phenotype. The metabolic profile of plants can be obtained by mass spectrometry or liquid-state NMR. The extraction of metabolites from the sample is necessary for both techniques to obtain the metabolic profile. This extraction step can be eliminated by making use of high-resolution magic angle spinning (HR-MAS) NMR. In this review, an HR-MAS NMR-based workflow is described in more detail, including used pulse sequences in metabolomics. The pre-processing steps of one-dimensional HR-MAS NMR spectra are presented, including spectral alignment, baseline correction, bucketing, normalisation and scaling procedures. We also highlight some of the models which can be used to perform multivariate analysis on the HR-MAS NMR spectra. Finally, applications of HR-MAS NMR in plant metabolomics are described and show that HR-MAS NMR is a powerful tool for plant metabolomics studies.
Collapse
Affiliation(s)
- Dieuwertje Augustijn
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands;
- Correspondence: (D.A.); (A.A.)
| | - Huub J. M. de Groot
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands;
| | - A. Alia
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands;
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16–17, D-04107 Leipzig, Germany
- Correspondence: (D.A.); (A.A.)
| |
Collapse
|
11
|
Kim M, Son J, Song Y, Kim Y. Analysis of Plant Metabolites Damaged in Chemical Accidents Using
NMR
Spectroscopy. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Minseon Kim
- Department of Chemistry Hankuk University of Foreign Studies Yong‐In 17035 Republic of Korea
| | - Jinyoung Son
- Department of Chemistry Hankuk University of Foreign Studies Yong‐In 17035 Republic of Korea
| | - Yuyoung Song
- Department of Chemistry Hankuk University of Foreign Studies Yong‐In 17035 Republic of Korea
| | - Yongae Kim
- Department of Chemistry Hankuk University of Foreign Studies Yong‐In 17035 Republic of Korea
| |
Collapse
|
12
|
1H HR-MAS NMR and chemometric methods for discrimination and classification of Baccharis (Asteraceae): A proposal for quality control of Baccharis trimera. J Pharm Biomed Anal 2020; 184:113200. [DOI: 10.1016/j.jpba.2020.113200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/28/2022]
|
13
|
Matheus JRV, Andrade CJD, Miyahira RF, Fai AEC. Persimmon (Diospyros Kaki L.): Chemical Properties, Bioactive Compounds and Potential Use in the Development of New Products – A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1733597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program (PPGAN), Federal Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Roberta Fontanive Miyahira
- Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program (PPGAN), Federal Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Ramírez-Briones E, Rodríguez Macías R, Casarrubias Castillo K, Del Río RE, Martínez-Gallardo N, Tiessen A, Ordaz-Ortiz J, Cervantes-Hernández F, Délano-Frier JP, Zañudo-Hernández J. Fruits of wild and semi-domesticated Diospyros tree species have contrasting phenological, metabolic, and antioxidant activity profiles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6020-6031. [PMID: 31226216 DOI: 10.1002/jsfa.9878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/07/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND In contrast to commercial Diospyros species, Mesoamerican fruit-producing species are scarcely known, particularly wild species that might harbor desirable traits suitable for breeding. Thus, metabolomic, chemical, and antioxidant profiles of fruits harvested from cultivated Diospyros digyna and wild Diospyros rekoi trees during consecutive winter seasons were obtained. Fruits were harvested in habitats having marked differences in soil quality, climate, and luminosity. RESULTS D. digyna fruits were larger and less acid than D. rekoi fruits, whereas antioxidant activity tended to be higher in D. rekoi fruits. Phenolic, flavonoid, and sugar contents also varied significantly between species. Metabolomic analysis allowed the pre-identification of 519 and 1665 metabolites in negative and positive electrospray ionization (ESI) modes, respectively. Principal component analysis of the positive ESI data explained 51.8% of the variance and indicated clear metabolomic differences between D. rekoi and D. digyna fruits that were confirmed by direct-injection ESI mass spectrometry profiles. Twenty-one discriminating metabolites were detected in fruits of both species; D. digyna fruits differentially accumulated lysophospholipids, whereas discriminating metabolites in D. rekoi fruits were chemically more diverse than those in D. digyna fruits. CONCLUSION Domesticated D. digyna fruits have improved physicochemical fruit traits compared with wild D. rekoi fruits, including larger size and lower acidity. The metabolomic and chemical composition of their respective fruits were also significantly different, which in D. rekoi was manifested as a notable season-dependent increase in antioxidant capacity. Therefore, wild D. rekoi can be considered as an important genetic resource for the improvement of commercial Diospyros fruit quality. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ernesto Ramírez-Briones
- Department of Ecology and Department of Botany and Zoology, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, México
| | - Ramón Rodríguez Macías
- Department of Ecology and Department of Botany and Zoology, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, México
| | - Kena Casarrubias Castillo
- Department of Ecology and Department of Botany and Zoology, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, México
| | - Rosa E Del Río
- Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Químico Biológicas, Natural Products Laboratory, Morelia, México
| | - Norma Martínez-Gallardo
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, México
| | - Axel Tiessen
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, México
| | - José Ordaz-Ortiz
- Metabolomics Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Guanajuato, México
| | - Felipe Cervantes-Hernández
- Metabolomics Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Guanajuato, México
| | - John Paul Délano-Frier
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, México
| | - Julia Zañudo-Hernández
- Department of Ecology and Department of Botany and Zoology, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, México
| |
Collapse
|
15
|
Maulidiani M, Abdul-Hamid NA, Abas F, Park YS, Park YK, Kim YM, Gorinstein S. Detection of bioactive compounds in persimmon (Diospyros kaki) using UPLC-ESI-Orbitrap-MS/MS and fluorescence analyses. Microchem J 2019. [DOI: 10.1016/j.microc.2019.103978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Flores IS, Martinelli BCB, Pinto VS, Queiroz LHK, Lião LM. Important issues in plant tissues analyses by HR-MAS NMR. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:5-13. [PMID: 30091158 DOI: 10.1002/pca.2785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/21/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION High-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy enables the analysis of the metabolic profile of plant and animal tissues under close to natural conditions, as well as of other heterogeneous natural or synthetic materials. Neither sample pretreatment is required after fragmentation nor powdering of the sample before insertion into the rotor. However, the efficiency of the method depends strongly on the sample preparation, rotor insertion procedure, and analysis conditions. OBJECTIVE To identify some of the variables that affect the spectral data and to propose solutions that minimise their impact on the quality of the analyses and results. METHODS Dried plant tissues were powdered, weighed, and homogenised in a 50 μL rotor with an optimised volume of deuterated solvent and sample in order to prevent material from escaping during spacer insertion, avoiding variations in magnetic susceptibility. Factors affecting the quality of HR-MAS NMR analysis such as particle size, sample and solvent amounts, solvent polarity, swelling time, rotor manipulation and pulse sequence setting were evaluated. RESULTS A strong correlation was observed between the signal area and the particle size of the powdered sample. The spectral profile varied depending on the deuterated solvent used. An incubation period was necessary to achieve adequate swelling of the sample and to ensure good data reproducibility. Proper sealing of the rotor, number of cycles and τ time on cpmgpr1d pulse sequence were found to affect the signal areas. CONCLUSION The study highlights the need for standardised sample preparation and instrumental setup protocols in order to achieve high reproducibility and obtain reliable data from HR-MAS NMR analyses.
Collapse
Affiliation(s)
| | | | - Vinicius S Pinto
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Luiz H K Queiroz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Luciano M Lião
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
17
|
Quality by design compliant strategy for the development of a liquid chromatography–tandem mass spectrometry method for the determination of selected polyphenols in Diospyros kaki. J Chromatogr A 2018; 1569:79-90. [DOI: 10.1016/j.chroma.2018.07.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
|
18
|
Maulidiani M, Mediani A, Abas F, Park YS, Park YK, Kim YM, Gorinstein S. 1H NMR and antioxidant profiles of polar and non-polar extracts of persimmon (Diospyros kaki L.) - Metabolomics study based on cultivars and origins. Talanta 2018; 184:277-286. [PMID: 29674043 DOI: 10.1016/j.talanta.2018.02.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 10/18/2022]
Abstract
Persimmon (Diospyros kaki L.) is one of the most important fruits that has been consumed for its medicinal properties due to the presence of some active metabolites, particularly polyphenols and carotenoids. Previously described methods, including HPLC, were limited in the determination of metabolites in different persimmon varieties. The present study shows the evaluation and the differences among persimmon polar and non-polar extracts by 1H NMR-based metabolomics approach. The hierarchical clustering analysis (HCA) based on score values of principal component analysis (PCA) model was used to analyze the important compounds in investigated fruits. The 1H NMR spectrum of persimmon chloroform (CDCl3) extracts showed different types of compounds as compared to polar methanol-water (CD3OD-D2O) ones. Persimmons growing in Israel were clustered different from those growing in Korea with the abundance of phenolic compounds (gallic, caffeic and protocathecuic acids), carotenoids (β-cryptoxanthin, lutein, and zeaxanthin), amino acids (alanine), maltose, uridine, and fatty acids (myristic and palmitoleic acids). Glucose, choline and formic acid were more prominent in persimmon growing in Korea. In CD3OD-D2O and CDCl3 persimmon extracts, 43 metabolites were identified. The metabolic differences were shown as well on the results of bioactivities and antioxidant capacities determined by ABTS, FRAP, CUPRAC and DPPH assays. The presented methods can be widely used for quantitation of multiple compounds in many plant and biological samples especially in vegetables and fruits.
Collapse
Affiliation(s)
- M Maulidiani
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ahmed Mediani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Yong Seo Park
- Department of Horticultural Science, Mokpo National University, Muan, Jeonnam, South Korea
| | - Yang-Kyun Park
- Department of Food Engineering, Mokpo National University, Muan, Jeonnam, South Korea
| | - Young Mo Kim
- Department of Food Nutrition, Gwangju Health University, Gwangsan-gu, Gwangju, South Korea
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Hadassah Medical School, The Hebrew University, Jerusalem 9112001, Israel.
| |
Collapse
|