1
|
Liu N, Huang J, Liu X, Wu J, Huang M. Pesticide-induced metabolic disruptions in crops: A global perspective at the molecular level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177665. [PMID: 39581450 DOI: 10.1016/j.scitotenv.2024.177665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Pesticide pollution has emerged as a critical global environmental issue of pervasive concern. Although the application of pesticides has provided substantial benefits in controlling weeds, pests, and crop diseases, their indiscriminate use poses considerable challenges to soil health and food safety. Pesticides can be absorbed by crops through either foliar or root uptake, resulting in deleterious effects such as extensive tissue damage, growth inhibition, and reduced crop quality. Beside these visible effects, pesticides can alter gene expression and disrupt cellular signaling transduction, thereby interfering with essential metabolic processes even inducing toxic stress. Moreover, pesticides can interact intricately with biomolecules (e.g. proteins, nucleic acid) in crops, causing significant alterations in protein structure and physiological function. This review focuses on pesticide residues and their associated toxicity, emphasizing their pervasive influence on vital physiological and metabolic pathways, including carbohydrate metabolism, amino acid metabolism, and fatty acid metabolism. Particular attention is given to elucidating the molecular mechanisms underlying these disturbances, specifically regarding transcriptional regulation, cell signaling pathways, and biomolecular interactions. This review provides a comprehensive understanding of multifaceted effects of pesticides and to underscore the necessity for sustainable agricultural practices to safeguard crop yield and quality.
Collapse
Affiliation(s)
- Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jiawen Huang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xinyue Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jianjian Wu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Ming Huang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
2
|
Cao S, Fu Y. Lipid degradation contributes to flavor formation during air-dried camel jerky processing. Food Chem X 2024; 23:101683. [PMID: 39157658 PMCID: PMC11327448 DOI: 10.1016/j.fochx.2024.101683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Lipids play an important role in flavor formation in meat products. To determine the contribution of lipids to flavor formation during air-dried camel jerky processing, lipid changes were analyzed by UHPLC-Q-Exactive Orbitrap MS/MS in this study, and volatile compounds were identified by HS-SPME-GC-ToF-MS. Results showed that 606 lipid molecules belonging to 30 subclasses were identified and 206 differential lipid molecules were screened out (VIP > 1, P < 0.05); Cer/NS (d18:1/20:0), LPE (18:1), FA (18:0), GlcADG (12:0/24:1), and PE (18:2e/22:5) were identified as potential lipid biomarkers. A total of 96 volatile compounds were also identified, and 16 of these were identified as key aroma compounds in air-dried camel jerky. Meanwhile, 11 differential lipids significantly, negatively correlated with 7 key aroma compounds (P < 0.05) during processing, indicating that the precursors produced by the degradation of lipid molecules were important sources of volatile flavor substances in air-dried camel jerky.
Collapse
Affiliation(s)
- Shenyi Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Yinghua Fu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, China
| |
Collapse
|
3
|
Lampová B, Doskočil I, Kulma M, Kurečka M, Kouřimská L. Culinary treatments impact the digestibility and protein quality of edible insects: a case study with Tenebrio molitor and Gryllus assimilis. Front Nutr 2024; 11:1399827. [PMID: 38883861 PMCID: PMC11179427 DOI: 10.3389/fnut.2024.1399827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
The escalating global population is anticipated to intensify the demand for high-quality proteins, necessitating the exploration of alternative protein sources. Edible insects are a promising solution, owing to their nutritional richness and sustainability. However, their digestibility and protein quality, particularly after culinary treatment, remains underexplored. In the present study, we investigated the effects of various culinary treatments on the protein digestibility of two insect species, Tenebrio molitor and Gryllus assimilis. Our findings revealed that culinary treatments such as boiling, roasting, drying, and microwave heating significantly influenced the digestibility of both insect species. Notably, drying emerged as the most effective method, leading to a substantial increase in digestibility. Furthermore, we assessed protein quality using the digestible indispensable amino acid score (DIAAS) and found that the choice of the calculation method significantly influenced the evaluation of protein quality. By including the sum of the anhydrous amino acids, we eliminated the potential overestimation of protein content and obtained a more reliable assessment of protein quality. Our results underscore the importance of culinary treatments and calculation methods in determining the suitability of insects as protein sources for human nutrition.
Collapse
Affiliation(s)
- Barbora Lampová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ivo Doskočil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Martin Kulma
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Michal Kurečka
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Lenka Kouřimská
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
4
|
Alba C, Castejón D, Remiro V, Rodríguez JM, Sobrino OJ, de María J, Fumanal P, Fumanal A, Cambero MI. Ligilactobacillus salivarius MP100 as an Alternative to Metaphylactic Antimicrobials in Swine: The Impact on Production Parameters and Meat Composition. Animals (Basel) 2023; 13:ani13101653. [PMID: 37238083 DOI: 10.3390/ani13101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The metaphylactic use of antimicrobials in swine farms contributes to the emergence of antibiotic-resistant bacteria, which constitutes a major challenge for public health. Alternative strategies are required to eradicate their routine use. In a previous study, metaphylactic antimicrobials were replaced by the administration of Ligilactobacillus salivarius MP100 to sows and piglets for two years. This practice positively modified the fecal microbiota and metabolic profiles in the farm. In this work, the farm dataset was used to compare the productivity-related parameters between a 2-year period of routine metaphylactic antibiotherapy and the first 2 years of a replacement with the probiotic strain. The probiotic period improved these productivity-related parameters, from litter size to growth performance. In addition, samples of Longissimus lumborum, including skin and subcutaneous fat, were obtained from the animals ingesting the probiotic strain and controls (metaphylactic antibiotherapy) and analyzed for their pH, water holding capacity, composition, and metabolic profiling. The probiotic intake did not negatively affect the meat composition and was associated with an increase in inosine concentration and a slight tendency for increasing the intramuscular fat content. These factors are considered as biomarkers of meat quality. In conclusion, the substitution of metaphylactic antimicrobials with the administration of the probiotic strain was associated with beneficial productivity and meat quality outcomes.
Collapse
Affiliation(s)
- Claudio Alba
- Department Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - David Castejón
- ICTS Bioimagen Complutense (BIOIMAC), Universidad Complutense de Madrid. Pº de Juan XXIII 1, 28040 Madrid, Spain
| | - Víctor Remiro
- Department Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan M Rodríguez
- Department Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Odón J Sobrino
- Scientific Society of Veterinary Public and Community Health (SOCIVESC), 28040 Madrid, Spain
| | | | | | | | - M Isabel Cambero
- Department Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Rocchetti G, Scansani A, Leni G, Sigolo S, Bertuzzi T, Prandini A. Untargeted Metabolomics Combined with Sensory Analysis to Evaluate the Chemical Changes in Coppa Piacentina PDO during Different Ripening Times. Molecules 2023; 28:molecules28052223. [PMID: 36903465 PMCID: PMC10004812 DOI: 10.3390/molecules28052223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Ripening time is known to drive the chemical and sensory profiles of dry meat products, thus potentially affecting the final quality of the product. Starting from these background conditions, the aim of this work was to shed light, for the first time, on the chemical modifications of a typical Italian PDO meat product-namely, Coppa Piacentina-during ripening, to find correlations between its sensory quality and the biomarker compounds related to the progress of ripening. The ripening time (from 60 to 240 days) was found to deeply modify the chemical composition of this typical meat product, providing potential biomarkers of both oxidative reactions and sensory attributes. The chemical analyses revealed that there is typically a significant decrease in the moisture content during ripening, likely due to increased dehydration. In addition, the fatty acid profile showed that the distribution of polyunsaturated fatty acids significantly (p < 0.05) decreased during ripening, because of their high susceptibility to oxidation and conversion to intermediate and secondary molecules. An untargeted metabolomics approach, coupled with unsupervised and supervised multivariate statistics, highlighted a significant impact (prediction scores > 1) of lipid oxidation during ripening time, with some metabolites (such as γ -glutamyl-peptides, hydroperoxy-fatty acids, and glutathione) being particularly discriminant in predicting the changes observed. The discriminant metabolites were coherent with the progressive increase of peroxide values determined during the entire ripening period. Finally, the sensory analysis outlined that the highest degree of ripening provided greater color intensity of the lean part, slice firmness, and chewing consistency, with glutathione and γ-glutamyl-glutamic acid establishing the highest number of significant correlations with the sensory attributes evaluated. Taken together, this work highlights the importance and validity of untargeted metabolomics coupled with sensory analysis to investigate the comprehensive chemical and sensory changes to dry meat during ripening.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
- Correspondence:
| | - Alessandra Scansani
- Consorzio Tutela Salumi DOP Piacentini, Via Tirotti 11, 29122 Piacenza, Italy
| | - Giulia Leni
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Samantha Sigolo
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Terenzio Bertuzzi
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Aldo Prandini
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
6
|
Li S, Du D, Wang J, Wei Z. Application progress of intelligent flavor sensing system in the production process of fermented foods based on the flavor properties. Crit Rev Food Sci Nutr 2022; 64:3764-3793. [PMID: 36259959 DOI: 10.1080/10408398.2022.2134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are sensitive to the production conditions because of microbial and enzymatic activities, which requires intelligent flavor sensing system (IFSS) to monitor and optimize the production process based on the flavor properties. As the simulation system of human olfaction and gustation, IFSS has been widely used in the field of food with the characteristics of nondestructive, pollution-free, and real-time detection. This paper reviews the application of IFSS in the control of fermentation, ripening, and shelf life, and the potential in the identification of quality differences and flavor-producing microbes in fermented foods. The survey found that electronic nose (tongue) is suitable to monitor fermentation process and identify food authenticity in real time based on the changes of flavor profile. Gas chromatography-ion mobility spectrometry and nuclear magnetic resonance technology can be used to analyze the flavor metabolism of fermented foods at various production stages and explore the correlation between flavor substances and microorganisms.
Collapse
Affiliation(s)
- Siying Li
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Dongdong Du
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Zhenbo Wei
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Dehghani F, Yousefinejad S, Walker DI, Omidi F. Metabolomics for exposure assessment and toxicity effects of occupational pollutants: current status and future perspectives. Metabolomics 2022; 18:73. [PMID: 36083566 DOI: 10.1007/s11306-022-01930-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Work-related exposures to harmful agents or factors are associated with an increase in incidence of occupational diseases. These exposures often represent a complex mixture of different stressors, challenging the ability to delineate the mechanisms and risk factors underlying exposure-disease relationships. The use of omics measurement approaches that enable characterization of biological marker patterns provide internal indicators of molecular alterations, which could be used to identify bioeffects following exposure to a toxicant. Metabolomics is the comprehensive analysis of small molecule present in biological samples, and allows identification of potential modes of action and altered pathways by systematic measurement of metabolites. OBJECTIVES The aim of this study is to review the application of metabolomics studies for use in occupational health, with a focus on applying metabolomics for exposure monitoring and its relationship to occupational diseases. METHODS PubMed, Web of Science, Embase and Scopus electronic databases were systematically searched for relevant studies published up to 2021. RESULTS Most of reviewed studies included worker populations exposed to heavy metals such as As, Cd, Pb, Cr, Ni, Mn and organic compounds such as tetrachlorodibenzo-p-dioxin, trichloroethylene, polyfluoroalkyl, acrylamide, polyvinyl chloride. Occupational exposures were associated with changes in metabolites and pathways, and provided novel insight into the relationship between exposure and disease outcomes. The reviewed studies demonstrate that metabolomics provides a powerful ability to identify metabolic phenotypes and bioeffect of occupational exposures. CONCLUSION Continued application to worker populations has the potential to enable characterization of thousands of chemical signals in biological samples, which could lead to discovery of new biomarkers of exposure for chemicals, identify possible toxicological mechanisms, and improved understanding of biological effects increasing disease risk associated with occupational exposure.
Collapse
Affiliation(s)
- Fatemeh Dehghani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Health Sciences, Research Institute for Health, Department of Occupational Health and Safety Engineering, School of Health Shiraz, University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Research Center for Health Sciences, Research Institute for Health, Department of Occupational Health and Safety Engineering, School of Health Shiraz, University of Medical Sciences, Shiraz, Iran.
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fariborz Omidi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Sangaré M, Karoui R. Evaluation and monitoring of the quality of sausages by different analytical techniques over the last five years. Crit Rev Food Sci Nutr 2022; 63:8136-8160. [PMID: 35333686 DOI: 10.1080/10408398.2022.2053059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sausages are among the most vulnerable and perishable products, although those products are an important source of essential nutrients for human organisms. The evaluation of the quality of sausages becomes more and more required by consumers, producers, and authorities to thwarter falsification. Numerous analytical techniques including chemical, sensory, chromatography, and so on, are employed for the determination of the quality and authenticity of sausages. These methods are expensive and time consuming, and are often sensitive to significant sources of variation. Therefore, rapid analytical techniques such as fluorescence spectroscopy, near infrared (NIR), mid infrared (MIR), nuclear magnetic resonance (NMR), among others were considered helpful tools in this domain. This review will identify current gaps related to different analytical techniques in assessing and monitoring the quality of sausages and discuss the drawbacks of existing analytical methods regarding the quality and authenticity of sausages from 2015 up to now.
Collapse
Affiliation(s)
- Moriken Sangaré
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, BioEcoAgro, Lens, France
- Institut Supérieur des Sciences et Médecine Vétérinaire de Dalaba, Département de Technologie et Contrôle des Produits Alimentaires, DTCPA, ISSMV/Dalaba, Guinée
- Univ. Gamal Abdel Nasser de Conakry, Guinée, Uganc, Guinée
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, BioEcoAgro, Lens, France
| |
Collapse
|
9
|
Changes in the chemical and sensory profile of ripened Italian salami following the addition of different microbial starters. Meat Sci 2021; 180:108584. [PMID: 34087663 DOI: 10.1016/j.meatsci.2021.108584] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
In this work, Italian salami were produced using microbial starters (Pediococcus pentosaceus, Lactobacillus sakei, and Staphylococcus xylosus) and compared to a control sample (without starter). Metabolomics in combination with microbiological and sensory analyses were used to investigate the overall quality. Samples were analyzed immediately after stuffing, following 7, 30, and 45 days of ripening. Each microbial starter imposed distinctive metabolomic signatures at the end of ripening. The accumulated discriminant compounds were mainly related to lipid oxidation (including hydroxy- and epoxy derivatives of fatty acids) following the inoculation with L. sakei. However, the inoculation with P. pentosaceus resulted in the accumulation of γ-glutamyl peptides, compounds driving a kokumi-related taste. Noteworthy, our findings supported the involvement of the chemical compounds profiled in the definition of final taste and aroma. This information paves the way towards the definition of more objective and tailored starters-related flavours enhancement approaches in the sector of cured meat.
Collapse
|
10
|
Impact of hurdle technologies and low temperatures during ripening on the production of nitrate-free pork salami: A microbiological and metabolomic comparison. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Cônsolo NR, Olivecrona N, Samuelsson LM, Reis MG, Edwards PJ, Reis MM. Investigation of metabolites associated with confinement odour in chilled vacuum-packed lamb by proton nuclear magnetic resonance (1H NMR) spectroscopy. Meat Sci 2020; 169:108207. [DOI: 10.1016/j.meatsci.2020.108207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 02/04/2023]
|
12
|
Ali S, Badshah G, Da Ros Montes D’Oca C, Ramos Campos F, Nagata N, Khan A, de Fátima Costa Santos M, Barison A. High-Resolution Magic Angle Spinning (HR-MAS) NMR-Based Fingerprints Determination in the Medicinal Plant Berberis laurina. Molecules 2020; 25:E3647. [PMID: 32796509 PMCID: PMC7465263 DOI: 10.3390/molecules25163647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 01/10/2023] Open
Abstract
Berberis laurina (Berberidaceae) is a well-known medicinal plant used in traditional medicine since ancient times; however, it is scarcely studied to a large-scale fingerprint. This work presents a broad-range fingerprints determination through high-resolution magical angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy, a well-established flexible analytical method and one of most powerful "omics" platforms. It had been intended to describe a large range of chemical compositions in all plant parts. Beyond that, HR-MAS NMR allowed the direct investigation of botanical material (leaves, stems, and roots) in their natural, unaltered states, preventing molecular changes. The study revealed 17 metabolites, including caffeic acid, and berberine, a remarkable alkaloid from the genus Berberis L. The metabolic pattern changes of the leaves in the course of time were found to be seasonally dependent, probably due to the variability of seasonal and environmental trends. This metabolites overview is of great importance in understanding plant (bio)chemistry and mediating plant survival and is influenceable by interacting environmental means. Moreover, the study will be helpful in medicinal purposes, health sciences, crop evaluations, and genetic and biotechnological research.
Collapse
Affiliation(s)
- Sher Ali
- NMR Lab, Department of Chemistry, Federal University of Paraná, Curitiba 81530-900, PR, Brazil; (G.B.); (C.D.R.M.D.); (N.N.); (M.d.F.C.S.)
| | - Gul Badshah
- NMR Lab, Department of Chemistry, Federal University of Paraná, Curitiba 81530-900, PR, Brazil; (G.B.); (C.D.R.M.D.); (N.N.); (M.d.F.C.S.)
| | - Caroline Da Ros Montes D’Oca
- NMR Lab, Department of Chemistry, Federal University of Paraná, Curitiba 81530-900, PR, Brazil; (G.B.); (C.D.R.M.D.); (N.N.); (M.d.F.C.S.)
| | | | - Noemi Nagata
- NMR Lab, Department of Chemistry, Federal University of Paraná, Curitiba 81530-900, PR, Brazil; (G.B.); (C.D.R.M.D.); (N.N.); (M.d.F.C.S.)
| | - Ajmir Khan
- School of Packaging, Michigan State University, East Lansing, MI 48824-1223, USA;
- Institute of Chemistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Maria de Fátima Costa Santos
- NMR Lab, Department of Chemistry, Federal University of Paraná, Curitiba 81530-900, PR, Brazil; (G.B.); (C.D.R.M.D.); (N.N.); (M.d.F.C.S.)
| | - Andersson Barison
- NMR Lab, Department of Chemistry, Federal University of Paraná, Curitiba 81530-900, PR, Brazil; (G.B.); (C.D.R.M.D.); (N.N.); (M.d.F.C.S.)
| |
Collapse
|
13
|
Muroya S, Ueda S, Komatsu T, Miyakawa T, Ertbjerg P. MEATabolomics: Muscle and Meat Metabolomics in Domestic Animals. Metabolites 2020; 10:E188. [PMID: 32403398 PMCID: PMC7281660 DOI: 10.3390/metabo10050188] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
In the past decades, metabolomics has been used to comprehensively understand a variety of food materials for improvement and assessment of food quality. Farm animal skeletal muscles and meat are one of the major targets of metabolomics for the characterization of meat and the exploration of biomarkers in the production system. For identification of potential biomarkers to control meat quality, studies of animal muscles and meat with metabolomics (MEATabolomics) has been conducted in combination with analyses of meat quality traits, focusing on specific factors associated with animal genetic background and sensory scores, or conditions in feeding system and treatments of meat in the processes such as postmortem storage, processing, and hygiene control. Currently, most of MEATabolomics approaches combine separation techniques (gas or liquid chromatography, and capillary electrophoresis)-mass spectrometry (MS) or nuclear magnetic resonance (NMR) approaches with the downstream multivariate analyses, depending on the polarity and/or hydrophobicity of the targeted metabolites. Studies employing these approaches provide useful information to monitor meat quality traits efficiently and to understand the genetic background and production system of animals behind the meat quality. MEATabolomics is expected to improve the knowledge and methodologies in animal breeding and feeding, meat storage and processing, and prediction of meat quality.
Collapse
Affiliation(s)
- Susumu Muroya
- NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901, Japan
| | - Shuji Ueda
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan;
| | - Tomohiko Komatsu
- Livestock Research Institute of Yamagata Integrated Research Center, Shinjo, Yamagata 996-0041, Japan;
| | - Takuya Miyakawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Per Ertbjerg
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
14
|
San Martín E, Avenoza A, Peregrina JM, Busto JH. Solvent-based strategy improves the direct determination of key parameters in edible fats and oils by 1 H NMR. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1726-1734. [PMID: 31821564 DOI: 10.1002/jsfa.10193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Edible fats and oils are very important in nutrition and as a main source of energy and are also essential nutrients. There are several methods for the analysis of edible fats and oils, but nowadays nuclear magnetic resonance (NMR) is emerging as a powerful tool (albeit complex and high-tech demanding) to identify, quantify, and differentiate many types of food, including fats and oils. In this sense, the challenges of this technique are the simplification of methodology and taking advantage of a 400 MHz NMR instrument. RESULTS Through an adequate mixture of solvents, we have developed a methodology to quantify essential parameters in edible fats and oils, including 1,2-diacylglycerol, 1,3-diacylglycerol, and 1-monoacylglycerol, by using a single experiment and without the need for matrix derivatization. CONCLUSION This methodology has been successfully applied to the analysis of olive, sunflower, corn, sesame, and peanut oils, as well as butter, walnut, salmon, and spicy pork sausage. Moreover, the evolution of thermal oxidation and lipolysis of virgin olive oil and sunflower has been analyzed. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Emilio San Martín
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Logroño, Spain
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Logroño, Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Logroño, Spain
| | - Jesús H Busto
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Logroño, Spain
| |
Collapse
|
15
|
Selection of native bacterial starter culture in the production of fermented meat sausages: Application potential, safety aspects, and emerging technologies. Food Res Int 2019; 122:371-382. [DOI: 10.1016/j.foodres.2019.04.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/04/2023]
|
16
|
Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS. NMR Spectroscopy for Metabolomics Research. Metabolites 2019; 9:E123. [PMID: 31252628 PMCID: PMC6680826 DOI: 10.3390/metabo9070123] [Citation(s) in RCA: 601] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past two decades, nuclear magnetic resonance (NMR) has emerged as one of the three principal analytical techniques used in metabolomics (the other two being gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography coupled with single-stage mass spectrometry (LC-MS)). The relative ease of sample preparation, the ability to quantify metabolite levels, the high level of experimental reproducibility, and the inherently nondestructive nature of NMR spectroscopy have made it the preferred platform for long-term or large-scale clinical metabolomic studies. These advantages, however, are often outweighed by the fact that most other analytical techniques, including both LC-MS and GC-MS, are inherently more sensitive than NMR, with lower limits of detection typically being 10 to 100 times better. This review is intended to introduce readers to the field of NMR-based metabolomics and to highlight both the advantages and disadvantages of NMR spectroscopy for metabolomic studies. It will also explore some of the unique strengths of NMR-based metabolomics, particularly with regard to isotope selection/detection, mixture deconvolution via 2D spectroscopy, automation, and the ability to noninvasively analyze native tissue specimens. Finally, this review will highlight a number of emerging NMR techniques and technologies that are being used to strengthen its utility and overcome its inherent limitations in metabolomic applications.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raja Roy
- Centre of Biomedical Research, Formerly, Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Uttar Pradesh 226014, India
| | - Ryan T McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Leonardo Tenori
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - G A Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA
| | - Fatimah Alahmari
- Department of NanoMedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Lukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada
| |
Collapse
|
17
|
García-García A, Herrera A, Fernández-Valle M, Cambero M, Castejón D. Evaluation of E-beam irradiation and storage time in pork exudates using NMR metabolomics. Food Res Int 2019; 120:553-559. [DOI: 10.1016/j.foodres.2018.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/29/2018] [Accepted: 11/03/2018] [Indexed: 10/27/2022]
|
18
|
Jia G, Sha K, Feng X, Liu H. Post-thawing metabolite profile and amino acid oxidation of thawed pork tenderloin by HVEF-A short communication. Food Chem 2019; 291:16-21. [PMID: 31006455 DOI: 10.1016/j.foodchem.2019.03.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
Abstract
The post-thawing quality, metabolite profile and amino acid oxidation of frozen pork tenderloin following the use of a high-voltage electrostatic field (HVEF) were investigated in this study. There were not significant differences of pH for pork thawed by air and HVEF, which were consistent with the lactic acid level and glycogen content. No changes in the tenderness of thawed pork were found. There were only 6 volatiles with different contents in the pork tenderloin (P < 0.05). Moreover, there were no oxidized cysteine and methionine residues in myosin of thawed pork by HVEF. A total of 23 discriminating metabolites between the air-thawed and HVEF-thawed pork after orthogonal partial least squares-discriminate analysis (OPLS-DA). There were 10 pathways containing >5 discriminating metabolites, among them, there were 10 discriminating metabolites in the glycerophospholipid metabolism (ssc00564) and retrograde endocannabinoid signaling (ssc04723). The glycerophospholipid metabolism could be related to the pork spoilage processes.
Collapse
Affiliation(s)
- Guoliang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kun Sha
- Yantai Research Institute, China Agricultural University, Yantai 264670, China
| | - Xudong Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haijie Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
19
|
Shao B, Li H, Shen J, Wu Y. Nontargeted Detection Methods for Food Safety and Integrity. Annu Rev Food Sci Technol 2019; 10:429-455. [DOI: 10.1146/annurev-food-032818-121233] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nontargeted workflows for chemical hazard analyses are highly desirable in the food safety and integrity fields to ensure human health. Two different analytical strategies, nontargeted metabolomics and chemical database filtering, can be used to screen unknown contaminants in food matrices. Sufficient mass and chromatographic resolutions are necessary for the detection of compounds and subsequent componentization and interpretation of candidate ions. Analytical chemistry–based technologies, including gas chromatography–mass spectrometry (GC-MS), liquid chromatography–mass spectrometry (LC-MS), nuclear magnetic resonance (NMR), and capillary electrophoresis–mass spectrometry (CE-MS), combined with chemometrics analysis are being used to generate molecular formulas of compounds of interest. The construction of a chemical database plays a crucial role in nontargeted detection. This review provides an overview of the current sample preparation, analytical chemistry–based techniques, and data analysis as well as the limitations and challenges of nontargeted detection methods for analyzing complex food matrices. Improvements in sample preparation and analytical platforms may enhance the relevance of food authenticity, quality, and safety.
Collapse
Affiliation(s)
- Bing Shao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongning Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| |
Collapse
|
20
|
Jensen HM, Bertram HC. The magic angle view to food: magic-angle spinning (MAS) NMR spectroscopy in food science. Metabolomics 2019; 15:44. [PMID: 30868337 DOI: 10.1007/s11306-019-1504-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/04/2019] [Indexed: 01/16/2023]
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy has been used in food science and nutritional studies for decades and is one of the major analytical platforms in metabolomics. Many foods are solid or at least semi-solid, which denotes that the molecular motions are restricted as opposed to in pure liquids. While the majority of NMR spectroscopy is performed on liquid samples and a solid material gives rise to constraints in terms of many chemical analyses, the magic angle thrillingly enables the application of NMR spectroscopy also on semi-solid and solid materials. This paper attempts to review how magic-angle spinning (MAS) NMR is used from 'farm-to-fork' in food science.
Collapse
Affiliation(s)
- Henrik Max Jensen
- DuPont Nutrition Biosciences ApS, Edwin Rahrsvej 38, 8220, Brabrand, Denmark
| | | |
Collapse
|
21
|
Abstract
NMR spectroscopy is one of the major analytical techniques used in the metabolomics studies of food. There are many applications of metabolomics on food-related topics and on the food itself. Here, we describe protocols for performing NMR-based metabolomics of foods ranging from simple beverages to solid foods and semisolid foods. Beverages can be analyzed either directly or after sample preprocessing to remove interfering macromolecules, muscle-based foods can be analyzed after extraction, and semisolid foods can be analyzed directly using high-resolution magic-angle spinning (HR-MAS) NMR. Finally, we discuss metabolomic data analysis as well as different procedures and strategies for targeted and untargeted approaches.
Collapse
Affiliation(s)
| | - Nina Eggers
- Department of Food Science, Aarhus University, Årslev, Denmark
| | | |
Collapse
|
22
|
Hatzakis E. Nuclear Magnetic Resonance (NMR) Spectroscopy in Food Science: A Comprehensive Review. Compr Rev Food Sci Food Saf 2018; 18:189-220. [PMID: 33337022 DOI: 10.1111/1541-4337.12408] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/28/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a robust method, which can rapidly analyze mixtures at the molecular level without requiring separation and/or purification steps, making it ideal for applications in food science. Despite its increasing popularity among food scientists, NMR is still an underutilized methodology in this area, mainly due to its high cost, relatively low sensitivity, and the lack of NMR expertise by many food scientists. The aim of this review is to help bridge the knowledge gap that may exist when attempting to apply NMR methodologies to the field of food science. We begin by covering the basic principles required to apply NMR to the study of foods and nutrients. A description of the discipline of chemometrics is provided, as the combination of NMR with multivariate statistical analysis is a powerful approach for addressing modern challenges in food science. Furthermore, a comprehensive overview of recent and key applications in the areas of compositional analysis, food authentication, quality control, and human nutrition is provided. In addition to standard NMR techniques, more sophisticated NMR applications are also presented, although limitations, gaps, and potentials are discussed. We hope this review will help scientists gain some of the knowledge required to apply the powerful methodology of NMR to the rich and diverse field of food science.
Collapse
Affiliation(s)
- Emmanuel Hatzakis
- Dept. of Food Science and Technology, The Ohio State Univ., Parker Building, 2015 Fyffe Rd., Columbus, OH, U.S.A.,Foods for Health Discovery Theme, The Ohio State Univ., Parker Building, 2015 Fyffe Rd., Columbus, OH, U.S.A
| |
Collapse
|
23
|
Sundekilde UK, Jarno L, Eggers N, Bertram HC. Real-time monitoring of enzyme-assisted animal protein hydrolysis by NMR spectroscopy – An NMR reactomics concept. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Melis R, Braca A, Mulas G, Sanna R, Spada S, Serra G, Fadda ML, Roggio T, Uzzau S, Anedda R. Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
An Overview of Metabolomics Data Analysis: Current Tools and Future Perspectives. COMPREHENSIVE ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/bs.coac.2018.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|