1
|
Bhavana MR, Hegde KR, Buvaneswaran M, Sinija VR, Rawson A, Hema V. The effect of co-precipitation and high-pressure treatment on functional and structural properties of millet and moringa protein. Food Chem 2025; 471:142773. [PMID: 39818096 DOI: 10.1016/j.foodchem.2025.142773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/12/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
Protein co-precipitation overcomes the limitations of individual proteins and improves their nutritional profile and functional properties. This study examined the impact of co-precipitation and high-pressure (HP) treatment on millet-moringa protein co-precipitate structure and functional properties. The co-precipitation has significantly (p < 0.05) improved the water holding (4.17 ± 0.02 g/g), oil holding (7.49 ± 0.16 g/g) capacity, and emulsifying stability index (60.72 ± 2.00 %). The increase in zeta potential and decrease in particle size were observed in co-precipitated samples, which explains their high solubility. Circular dichroism (CD) spectra results depict a change in the secondary structure of protein during the co-precipitation and HP treatment. The co-precipitation and HP treatment have significantly increased the invitro protein digestibility of millet and moringa leaf protein isolates. According to the findings, co-precipitation and HP treatment could be an effective method for enhancing the functional properties of millet and moringa protein.
Collapse
Affiliation(s)
- M R Bhavana
- Department of Food Plant Operations, Incubation, and Entrepreneurship, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur 613005, Tamil Nadu, India
| | - Keshav Raghav Hegde
- Department of Food Process Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), Thanjavur 613005, Tamil Nadu, India
| | - Malini Buvaneswaran
- Department of Food Process Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), Thanjavur 613005, Tamil Nadu, India
| | - V R Sinija
- Department of Food Process Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), Thanjavur 613005, Tamil Nadu, India
| | - Ashish Rawson
- Department of Food Process Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), Thanjavur 613005, Tamil Nadu, India
| | - V Hema
- Department of Food Plant Operations, Incubation, and Entrepreneurship, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur 613005, Tamil Nadu, India.
| |
Collapse
|
2
|
Alu'datt MH, Tranchant CC, Alhamad MN, Rababah T, Al-U'datt D, Gammoh S, Alrosan M, Alkandari S, Zghoul R. Impact of ultrasonication on the contents, profiles and biofunctional properties of free and bound phenolics from white desert truffle (Tirmania nivea) and its protein fractions. Food Res Int 2023; 174:113453. [PMID: 37986408 DOI: 10.1016/j.foodres.2023.113453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 11/22/2023]
Abstract
The molecular and biofunctional properties of protein and phenolic fractions in edible truffles remain largely unknown. This study examined the effect of ultrasonication on the contents, profiles, and bioactive properties of free and bound phenolics (FP and BP) from desert truffle (Tirmania nivea) and its protein fractions. Protein fractions from the Osborne extraction scheme were biochemically and structurally characterized. The albumin fraction showed the highest abundance (16.8%) and yield (35.8%). Total phenolic contents were the highest in non-sonicated samples (3.5-34.1 mg/g), particularly in the albumin fraction and in whole truffle. FP extracted at 30 °C (FP-30 °C) accounted for the largest proportion of total phenolics in all protein fractions, whereas BP-30 °C and FP-60 °C were predominant in non-sonicated and sonicated truffle, respectively. The highest antioxidant activity was obtained with FP-30 °C extracts from non-sonicated albumins, globulins and truffle (91.9, 72.7 and 30.0%), followed by BP-30 °C from non-sonicated albumins (25.4%) and FP-60 °C from sonicated glutelins-1 (24.2%). High inhibition of α-amylase was evidenced in several extracts, including FP-30 °C from non-sonicated glutelins-1 (99.2%) and FP-30 °C from sonicated globulins (72.4%). Several extracts also displayed high inhibition of angiotensin I-converting enzyme (ACE), including FP-60 °C from non-sonicated glutelins-1 (65.1%) and sonicated glutelins-1 (71.1%) and globulins (64.7%). Most extracts were rich in epicatechin, gallic acid, chlorogenic acid and catechin. Correlations between phenolic content, antioxidant activity, anti-α-amylase and anti-ACE activities were influenced by sonication. Sonication reduced the particle size of the proteins and modified their structural characteristics. These findings demonstrate that white desert truffle proteins co-occur with bioactive phenolics whose functionalities can be tailored by protein fractionation and sonication.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; Department of Food Science & Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, Safat 13060, Kuwait.
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada.
| | - Mohammad N Alhamad
- Department of Natural Resources and Environment, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Doa'a Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Mohammad Alrosan
- Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan
| | - Sharifa Alkandari
- Department of Food Science & Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, Safat 13060, Kuwait
| | - Roa'a Zghoul
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
3
|
Anwar A, Imran M, Iqbal HM. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges. Coord Chem Rev 2023; 493:215329. [DOI: 10.1016/j.ccr.2023.215329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
4
|
Liao N, Pang B, Jin H, Zhao X, Shao D, Jiang C, Shi J. Modifications of Ganoderma lucidum spores into digestive-tissue highly adherent porous carriers with selective affinity to hydrophilic or hydrophobic drugs. Biomaterials 2023; 299:122177. [PMID: 37262935 DOI: 10.1016/j.biomaterials.2023.122177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/04/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023]
Abstract
Ganoderma lucidum spores (GLSs) have been suggested to provide optimal structures for transporting orally bioavailable drugs. However, the double-layer wall and cavities of GLSs are naturally closed. This study aimed to modify GLSs into porous carriers by opening the layers and internal cavity with iturin A (IA) followed by potassium hydroxide (KOH) or hydrochloric acid (HCl). The (IA + KOH)- and (IA + HCl)-treated GLS carriers exhibited a high loading rate of 301.50 ± 2.33 and 268.18 ± 7.72 mg/g for the hydrophilic methylene blue (MB) and hydrophobic rifampicin (RF), respectively. The mechanisms underlying the modification involved the enhancement of the specific surface area with IA and the exposure of hydrophilic groups or hydrophobic groups of the GLSs with KOH or HCl. The sustained 48-h molecule-release profiles of the MB- and RF-loaded GLS carriers were best fitted using a first-order kinetics model in simulated gastric (or intestinal) fluid compared with other models. In mice, the designed GLS carriers had high adhesion capacities onto the mucosa of the digestive tract and long retention times (120 h), and even promoted the secretion of mucus and expression of several key intestinal barrier proteins. This study provided a new method to modify GLSs into oral carriers with selective drug affinity, high loading capacity, sustained drug release, and high adhesion to the digestive tract.
Collapse
Affiliation(s)
- Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Han Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Xixi Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Al-U'datt DGF, Alu'datt MH, Tranchant CC, Al-Dwairi A, Al-Shboul O, Almajwal A, Elsalem L, Jaradat S, Alzoubi KH, Faleh BG, Ahmed YB, Alqbelat J. Royal jelly mediates fibrotic signaling, collagen cross-linking and cell proliferation in cardiac fibroblasts. Biomed Pharmacother 2023; 164:114922. [PMID: 37236025 DOI: 10.1016/j.biopha.2023.114922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Royal jelly (RJ) is a multifunctional bee product with a unique composition and wide-ranging biological properties, including antioxidant, anti-inflammatory and antiproliferative activities. Still, little is known about the possible myocardial protective properties of RJ. Considering that sonication could enhance RJ bioactivity, this study aimed to assess the effects of non-sonicated (NS) and sonicated (S) RJ on fibrotic signaling, cell proliferation, and collagen production in cardiac fibroblasts. S-RJ was produced by ultrasonication at 20 kHz. Ventricular fibroblasts isolated from neonatal rats were cultured and treated with different concentrations of NS-RJ or S-RJ (0, 50, 100, 150, 200, and 250 µg/well). S-RJ significantly depressed the expression levels of transglutaminase 2 (TG2) mRNA across all the concentrations tested and was inversely associated with the expression of this profibrotic marker. S-RJ and NS-RJ displayed distinct dose-dependent effects on mRNA expression of several other profibrotic, proliferation, and apoptotic markers. Unlike NS-RJ, S-RJ elicited strong negative dose-dependent relationships with the expression of profibrotic markers (TG2, COL1A1, COL3A1, FN1, CTGF, MMP-2, α-SMA, TGF-β1, CX43, periostin), as well as proliferation (CCND1) and apoptotic (BAX, BAX/BCL-2) markers, indicating that RJ dose-response effects were significantly modified by sonification. NS-RJ and S-RJ increased the content of soluble collagen, while decreasing collagen cross-linking. Collectively, these findings show that S-RJ has a greater range of action than NS-RJ for downregulating the expression of biomarkers associated with cardiac fibrosis. Reduced biomarker expression and collagen cross-linkages upon cardiac fibroblast treatment with specific concentrations of S-RJ or NS-RJ suggests putative roles and mechanisms by which RJ may confer some protection against cardiac fibrosis.
Collapse
Affiliation(s)
- Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada.
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lina Elsalem
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Belal G Faleh
- General Surgery Department, Princess Basma Teaching Hospital, Irbid, Jordan
| | - Yaman B Ahmed
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Jenan Alqbelat
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
6
|
Rodriguez LM, Camina JL, Borroni V, Pérez EE. Protein recovery from brewery solid wastes. Food Chem 2023; 407:134810. [PMID: 36565578 DOI: 10.1016/j.foodchem.2022.134810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
Brewing produces significant amounts of solid waste during the process: spent cereals (BSG), hops and spent yeast (BSY). These residues are sustainable sources of valuable nutrients and functional compounds like proteins, polyphenols, and polysaccharides. This review describes the three solid wastes and the different extraction techniques for protein recovery. The protein obtained can be used as a new source of non-animal protein or as a functional and bioactive ingredient. Particular attention was given to methods using conventional technologies (alkaline and ethanolic extraction) and more innovative approaches (enzymes, microwaves, ultrasound, pressurized liquids and sub-critical water extraction). Although the BSG is used in some industrial applications, studies in operating conditions, cost, energy efficiency, and product performance are still required to consolidate these solid wastes as a source of non-animal protein. The application of proteins is also an important question when choosing the extraction method.
Collapse
Affiliation(s)
- Luciana M Rodriguez
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253. Primer Piso - Ala C, 8000 Bahía Blanca, Argentina; Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina.
| | - Julia L Camina
- Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| | - Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología - ITPN (UBA-CONICET), Facultad de Arquitectura, Diseño y Urbanismo (FADU), Universidad de Buenos Aires (UBA), Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Ethel E Pérez
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253. Primer Piso - Ala C, 8000 Bahía Blanca, Argentina; Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| |
Collapse
|
7
|
How do pH and temperature influence extraction yield, physicochemical, functional, and rheological characteristics of brewer spent grain protein concentrates? FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Naibaho J, Pudło A, Korzeniowska M, Lu Y, Yang B. Alteration of volatile compounds profile of brewers' spent grain by bath-ultrasonication and its combination with conventional water-bath and autoclave treatment. ULTRASONICS SONOCHEMISTRY 2022; 90:106192. [PMID: 36219887 PMCID: PMC9554806 DOI: 10.1016/j.ultsonch.2022.106192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The study aimed to investigate the capability of bath-ultrasonication and its combination with conventional water-bath and autoclave treatment in modifying the volatile composition of brewers' spent grain (BSG). It was hypothesized that the treatments modified the volatile composition of BSG due to the sonochemical modification. The results demonstrated that the treatments intensified the desirable odor and removed the undesirable one which might allow the possibility of masking and renewing the odor perception of BSG. Besides the influence on odor perception related compounds, it is worth to highlight that the treatments eliminated herbicidal compounds such as (E,E)-2,4-heptadienal and (E)-2-hexenal which might be present from herbicidal treatment. Combination of bath-ultrasonication with autoclave treatment modified the volatile aldehydes while its combination with conventional water-bath generated the same profile as it was in untreated BSG. Time elevation on bath-ultrasonication had no significant impact on the amount of ketones and alkanes, while the fluctuation occurred as an impact of thermal exposures. Moreover, the treatment reduced the amount of alcohol and increased the fatty acids. In conclusion, bath-ultrasonication and its combination with thermal exposure modified the volatile compositions of BSG.
Collapse
Affiliation(s)
- Joncer Naibaho
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland.
| | - Anna Pudło
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland.
| | - Yuyun Lu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| |
Collapse
|
9
|
Sun B, Li Z, Huang Y, Liu L, Gu X, Gao Y, Zhu X, Zhu Y, Xia X. High‐pressure homogenisation ‐ Lactobacillus induced changes in the properties and structure of soymilk protein gels. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bingyu Sun
- College of Food Engineering Harbin University of Commerce, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province 150028 Harbin
| | - Zhimin Li
- College of Food Engineering Harbin University of Commerce, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province 150028 Harbin
| | - Yuyang Huang
- College of Food Engineering Harbin University of Commerce, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province 150028 Harbin
| | - Linlin Liu
- College of Food Engineering Harbin University of Commerce, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province 150028 Harbin
| | - XueLian Gu
- College of Food Engineering Harbin University of Commerce, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province 150028 Harbin
| | - Yuan Gao
- College of Food Engineering Harbin University of Commerce, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province 150028 Harbin
| | - Xiuqing Zhu
- College of Food Engineering Harbin University of Commerce, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province 150028 Harbin
| | - Ying Zhu
- College of Food Engineering Harbin University of Commerce, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province 150028 Harbin
| | - Xiaoyu Xia
- College of Food Engineering Harbin University of Commerce, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province 150028 Harbin
- Soybean Research Institute Academy of Agricultural Sciences 150086 Heilongjiang Harbin
| |
Collapse
|
10
|
Gammoh S, Alu'datt MH, Alhamad MN, Alrosan M, Al‐husein B, AL‐U'datt DG, Al‐kandari S, Rababah T, Ammari Z, Albiss BA, Alzoubi H, Kubow S. Enzymatic bioactive peptides from sonicated whey proteins of camel milk: Impacts of nanopeptides on structural properties, antioxidant activity and inhibitory activity of alpha‐amylase and
ACE. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan
| | - Muhammad H. Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan
| | - Mohammad N. Alhamad
- Department of Natural Resources and Environment, Faculty of Agriculture Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan
| | - Mohammad Alrosan
- Department of Nutrition and Food Technology, Faculty of Agriculture Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan
| | - Belal Al‐husein
- Department of Clinical Pharmacy, Faculty of Pharmacy Jordan University of Science and Technology Irbid 22110 Jordan
| | - Doa'a G. AL‐U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine Jordan University of Science and Technology Irbid 22110 Jordan
| | - Sharifa Al‐kandari
- Department of Food Science and Nutrition, College of Life Sciences Kuwait University Box 5969 13060 Safat Kuwait
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan
| | - Zaid Ammari
- Department of Medicine, Critical Care Medicine Stanford University Medical Center 300 Pasteur Dr Stanford CA 94305 USA
| | - Borhan A. Albiss
- Department of Applied Physics Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan
| | - Haya Alzoubi
- Department of Nutrition and Food Technology, Faculty of Agriculture Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan
| | - Stan Kubow
- School of Dietetics and Human Nutrition McGill University Montreal QC H9X 3V9 Canada
| |
Collapse
|
11
|
Mature Landfill Leachate as a Medium for Hydrodynamic Cavitation of Brewery Spent Grain. ENERGIES 2021. [DOI: 10.3390/en14041150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we evaluate the usefulness of mature landfill leachate (MLL) as a carrier allowing hydrodynamic cavitation (HD) of brewery spent grain (BSG). The HD experiments were conducted using an orifice plate with a conical concentric hole of 3/10 mm (inlet/outlet diameter) as a constriction in the cavitation device. The initial pressure was 7 bar and the number of recirculation passes through the cavitation zone reached 30. The results showed that complex organic matter was degraded and solubilized when cavitating the MLL and BSG mixture. The biochemical oxygen demand (BOD5) increased by 45% and the BOD5/total chemical oxygen demand (COD) ratio increased by 69%, whereas the COD, total solids, and nutrient concentration dropped noticeably. However, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) revealed the generation of possibly toxic HD byproducts such as aromatic compounds. This seems to indicate that MLL could not be regarded as a suitable carrier for BSG cavitation.
Collapse
|
12
|
Alu'datt MH, Al-U'datt DG, Tranchant CC, Alhamad MN, Rababah T, Gammoh S, Almajwal A, Alli I. Phenolic and protein contents of differently prepared protein co-precipitates from flaxseed and soybean and antioxidant activity and angiotensin inhibitory activity of their phenolic fractions. NFS JOURNAL 2020. [DOI: 10.1016/j.nfs.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Wen C, Zhang J, Duan Y, Zhang H, Ma H. A Mini‐Review on Brewer's Spent Grain Protein: Isolation, Physicochemical Properties, Application of Protein, and Functional Properties of Hydrolysates. J Food Sci 2019; 84:3330-3340. [DOI: 10.1111/1750-3841.14906] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/30/2019] [Accepted: 10/01/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Chaoting Wen
- School of Food and Biological EngineeringJiangsu Univ. Zhenjiang 212013 China
| | - Jixian Zhang
- School of Food and Biological EngineeringJiangsu Univ. Zhenjiang 212013 China
| | - Yuqing Duan
- School of Food and Biological EngineeringJiangsu Univ. Zhenjiang 212013 China
- Inst. of Food Physical ProcessingJiangsu Univ. Zhenjiang 212013 China
| | - Haihui Zhang
- School of Food and Biological EngineeringJiangsu Univ. Zhenjiang 212013 China
| | - Haile Ma
- School of Food and Biological EngineeringJiangsu Univ. Zhenjiang 212013 China
- Inst. of Food Physical ProcessingJiangsu Univ. Zhenjiang 212013 China
| |
Collapse
|
14
|
Tan L, Hong P, Yang P, Zhou C, Xiao D, Zhong T. Correlation Between the Water Solubility and Secondary Structure of Tilapia-Soybean Protein Co-Precipitates. Molecules 2019; 24:molecules24234337. [PMID: 31783603 PMCID: PMC6930460 DOI: 10.3390/molecules24234337] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022] Open
Abstract
The secondary structure of a protein has been identified to be a crucial indicator that governs its water solubility. Tilapia protein isolate (TPI), soybean protein isolate (SPI), and tilapia-soybean protein co-precipitates (TSPC3:1, TSPC2:1, TSPC1:1, TSPC1:2, and TSPC1:3) were prepared by mixing tilapia meat and soybean meal at different mass ratios. The results demonstrated that the water solubility of TSPCs was significantly greater than that of TPI (p <0.05). The changes in ultraviolet–visible and near-ultraviolet circular dichroism spectra indicated that the local structure of TSPCs was different from that of TPI and SPI. Fourier transform infrared Spectroscopy revealed the co-existence of TPI and SPI structures in TSPCs. The secondary structures of TSPCs were predominantly α-helix and β-sheet. TSPC1:1 was unique compared to the other TSPCs. In addition, there was a good correlation between the water solubility and secondary structure of TSPCs, in which the correlation coefficients of α-helix and β-sheet were −0.964 (p <0.01) and 0.743, respectively. TSPCs displayed lower α-helix contents and higher β-sheet contents compared to TPI, which resulted in a significant increase in their water solubility. Our findings could provide insight into the structure–function relationship of food proteins, thus creating more opportunities to develop innovative applications for mixed proteins.
Collapse
Affiliation(s)
- Li Tan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.T.); (P.H.); (P.Y.); (D.X.); (T.Z.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.T.); (P.H.); (P.Y.); (D.X.); (T.Z.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Ping Yang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.T.); (P.H.); (P.Y.); (D.X.); (T.Z.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.T.); (P.H.); (P.Y.); (D.X.); (T.Z.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Correspondence: ; Tel.: +86‐13828262885
| | - Dinghao Xiao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.T.); (P.H.); (P.Y.); (D.X.); (T.Z.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Tanjun Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.T.); (P.H.); (P.Y.); (D.X.); (T.Z.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
15
|
Yu D, Sun Y, Wang W, O’Keefe SF, Neilson AP, Feng H, Wang Z, Huang H. Recovery of protein hydrolysates from brewer’s spent grain using enzyme and ultrasonication. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14314] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dajun Yu
- Department of Food Science and Technology Virginia Polytechnic Institute and State University Blacksburg VA 24061USA
| | - Yewei Sun
- Department of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Blacksburg VA 24061USA
| | - Wenjun Wang
- Department of Food Science and Human Nutrition University of Illinois at Urbana Champaign Urbana IL 61801USA
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058China
| | - Sean F. O’Keefe
- Department of Food Science and Technology Virginia Polytechnic Institute and State University Blacksburg VA 24061USA
| | - Andrew P. Neilson
- Department of Food Science and Technology Virginia Polytechnic Institute and State University Blacksburg VA 24061USA
| | - Hao Feng
- Department of Food Science and Human Nutrition University of Illinois at Urbana Champaign Urbana IL 61801USA
| | - Zhiwu Wang
- Department of Food Science and Technology Virginia Polytechnic Institute and State University Blacksburg VA 24061USA
| | - Haibo Huang
- Department of Food Science and Technology Virginia Polytechnic Institute and State University Blacksburg VA 24061USA
| |
Collapse
|