1
|
Wang J, Yang S, Wang X, Zhang L, Zhao Y. Comparative efficacy of natural seed coats in regulating protein aggregation in pre-roasted pine kernels and enhancing associated techno-functionality. Food Chem 2025; 479:143766. [PMID: 40101380 DOI: 10.1016/j.foodchem.2025.143766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
To investigate the regulatory effect of pine nut seed coats on protein techno-functionality during pre-roasting, proteins from kernels subjected to various treatments, including de-shelling, de-skinning, and roasting with or without seed coat, were compared in terms of gelation behavior and interfacial properties. Results indicated that roasting without the seed coat caused disordered unfolding of proteins and the formation of heterogeneous, blocky protein aggregates. In contrast, skin-coating facilitated polyphenol binding with proteins by 2.5-fold, promoting ordered aggregation. Solubility, emulsification activity, emulsion stability, and foaming capacity increased by 34.52 %, 210.46 %, 59.51 %, and 55.54 %, respectively, while the gel network formed uniformly. Shell-coating promoted the formation of heat-stable aggregates, characterized by strong hydrogen bonds, disulfide bonds, and α-helical conformation. The seed coat was found to mediate roasting-induced modifications in protein spatial conformations and aggregate morphological transformations. This study proposes a novel strategy for modulating the functionality of nut proteins.
Collapse
Affiliation(s)
- Jiarong Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Shuang Yang
- College of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Xuemei Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Ligang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuhong Zhao
- College of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China.
| |
Collapse
|
2
|
Ruan YY, Fan SS, Jing KN, Song Y, Ding ZY, Wu DT, Hu YC, Zou L, Li W. Structural and functional modifications of quinoa protein via hyaluronic acid-induced Maillard reaction. Int J Biol Macromol 2025; 298:139940. [PMID: 39824407 DOI: 10.1016/j.ijbiomac.2025.139940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
In recent years, quinoa protein (QP) has attracted attention for its balanced amino acids composition, but its limited techno-functional properties continue to pose challenges for its utilization. Non-enzymatic Maillard glycation is considered as a promising strategy to expand the utilization of plant proteins in food processing due to its cost-effectiveness, spontaneous nature, and the lack of need for additives to initiate the reaction. Furthermore, the use of hyaluronic acid (HA) as an ingredient in food products is becoming increasingly accepted and popular. Therefore, the present study aims to prepare QP-HA glyconjugates by wet heating and to investigate the effects of sugar/protein ratios and reaction times on the structural features and functional properties of QP. The results showed that heating time and sugar/protein concentration ratio obviously affected the degree of grafting, structure and hydrophobicity of the conjugates. The random coil content of QP-HA increased significantly, resulting in a more flexible structure after Maillard glycation. After 3 h of glycation reaction, the QP-HA conjugates showed better emulsification, solubility, thermal stability and antioxidant activity compared to QP. Accordingly, these results indicate that polysaccharide-induced Maillard reaction is a potentially attractive approach for selective functionality enhancement and nutraceutical development of QP, which provides a new way to expand the application range of QP.
Collapse
Affiliation(s)
- Yu-Yue Ruan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Sha-Sha Fan
- Institute of Instrumental Analysis and Applied Technology, Chengdu Institute of Food Inspection, Chengdu 611135, Sichuan, PR China
| | - Kai-Ni Jing
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Zi-Yang Ding
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China; Chengdu Agricultural College, Chengdu 611130, Sichuan, PR China.
| | - Wei Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China; School of Basic Medicine, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
3
|
Zhou L, Lv L, Zhao P, Zhang J, Liu Y, Zhao W, Zhang K, Du S. Theaflavin Reduces Oxidative Stress and Apoptosis in Oxidized Protein-Induced Granulosa Cells and Improves Production Performance in Laying Hens. Animals (Basel) 2025; 15:845. [PMID: 40150374 PMCID: PMC11939771 DOI: 10.3390/ani15060845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
This study aims to investigate the effects of theaflavins on production performance and egg quality in laying hens fed oxidized corn gluten meal while evaluating their antioxidant and anti-apoptotic effects on granulosa cells (GCs) from chicken follicles. In total, 600 Lohmann commercial laying hens, aged 64 weeks, were randomly assigned to four treatment groups: a control group, a theaflavin-supplemented group, an oxidized corn gluten meal group, and a combination group. After 8 weeks of feeding, production performance, egg quality, and antioxidant status, along with GC apoptosis and the antioxidant capacity of eggs, were measured. The results demonstrated that oxidized corn gluten meal significantly reduced production performance, antioxidant capacity, and egg quality in laying hens while increasing GC apoptosis. Theaflavin significantly enhanced egg production during weeks 5-8, along with superoxide dismutase activity in the liver, serum, and ovary, alongside egg white reducing power and egg yolk threonine content (p < 0.05). Additionally, theaflavin decreased feed conversion ratios during weeks 5-8 and 1-8, lowered egg white malondialdehyde content (p < 0.05), and inhibited GC apoptosis. In conclusion, oxidized protein reduced production performance, while theaflavin supplementation partially alleviated its adverse effects.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644001, China; (L.Z.); (P.Z.); (J.Z.)
| | - Li Lv
- Institute of Brain Science and Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611134, China;
| | - Pinyao Zhao
- Department of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644001, China; (L.Z.); (P.Z.); (J.Z.)
| | - Jinwei Zhang
- Department of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644001, China; (L.Z.); (P.Z.); (J.Z.)
| | - Yan Liu
- Department of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644001, China; (L.Z.); (P.Z.); (J.Z.)
| | - Wei Zhao
- Department of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644001, China; (L.Z.); (P.Z.); (J.Z.)
| | - Keying Zhang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611134, China;
| | - Shuwen Du
- Department of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644001, China; (L.Z.); (P.Z.); (J.Z.)
| |
Collapse
|
4
|
Hashemi H, Eskandari MH, Khalesi M, Golmakani MT, Niakousari M, Hosseini SMH. Effects of Conjugation with Basil Seed Gum on Physicochemical, Functional, Foaming, and Emulsifying Properties of Albumin, Whey Protein Isolate and Soy Protein Isolate. Foods 2025; 14:390. [PMID: 39941983 PMCID: PMC11816446 DOI: 10.3390/foods14030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Protein conjugation with the Maillard reaction has received considerable attention in the past decades in terms of improving functional properties. This study evaluated the changes in the techno-functional properties of whey protein isolate (WPI), soy protein isolate (SPI), and albumin (Alb) after conjugation with basil seed gum (BSG). The conjugates were developed via the Maillard reaction. Various analyses including FT-IR, XRD, SEM, SDS-PAGE, DSC, RVA, rheology, zeta potential, emulsion, and foaming ability were used for evaluating conjugation products. Conjugation between proteins (WPI, SPI, Alb) and BSG was validated by FT-IR spectroscopy. XRD results revealed a decrease in the peak of BSG after conjugation with proteins. SDS-PAGE demonstrated the conjugation of WPI, SPI, and Alb with BSG. DSC results showed that conjugation with BSG reduced the Tg of WPI, SPI, and Alb from 210.21, 207.21, and 210.90 °C to 190.30, 192.91, and 196.66 °C, respectively. The emulsion activity and emulsion stability of protein/BSG conjugates were increased significantly. The droplet size of emulsion samples ranged from 112.1 to 239.3 nm on day 3. Nanoemulsions stabilized by Alb/BSG conjugate had the smallest droplet sizes (112.1 and 143.3 nm after 3 and 17 days, respectively). The foaming capacity of WPI (78.57%), SPI (61.91%), and Alb (71.43%) in their mixtures with BSG increased to 107.14%, 85.71%, and 85.71%, respectively, after making conjugates with BSG. The foam stability of WPI (39.34%), SPI (61.57%), and Alb (53.37%) in their mixtures with BSG (non-conjugated condition) increased to 77.86%, 77.91%, and 72.32%, respectively, after formation of conjugates with BSG. Conjugation of BSG to proteins can improve the BSG applications as a multifunctional stabilizer in pharmaceutical and food industries.
Collapse
Affiliation(s)
- Hadi Hashemi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-13131, Iran; (H.H.); (M.H.E.); (M.-T.G.); (M.N.)
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-13131, Iran; (H.H.); (M.H.E.); (M.-T.G.); (M.N.)
| | - Mohammadreza Khalesi
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-13131, Iran; (H.H.); (M.H.E.); (M.-T.G.); (M.N.)
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-13131, Iran; (H.H.); (M.H.E.); (M.-T.G.); (M.N.)
| | - Seyed Mohammad Hashem Hosseini
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-13131, Iran; (H.H.); (M.H.E.); (M.-T.G.); (M.N.)
| |
Collapse
|
5
|
Chen WM, Wang Y, Wang XM, Shao YH, Tu ZC, Liu J. Effect of superheated steam on Maillard reaction products, digestibility, and antioxidant activity in β-Lactoglobulin-glucose system. Int J Biol Macromol 2025; 287:138514. [PMID: 39647727 DOI: 10.1016/j.ijbiomac.2024.138514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
This study analyzes the interactions among Maillard reaction products (MRPs), digestibility and antioxidant activity in a β-lactoglobulin-glucose (βlg-Glu) model system during superheated steam treatment at 120 °C for 1 to 5 min. With an increase in treatment duration, there were significant increases in glucose loss, grafting degree, browning, and the formation of intermediate products in βlg-Glu. Characteristic MRPs, including α-dicarbonyl compounds, 5-hydroxymethylfurfural, and advanced glycation end products (AGEs), were formed through the degradation of sugars and condensation reactions between carbonyls and amines, accompanied by an increase in oxidative products. These changes impacted the molecular weight distribution and conformational structure of βlg-Glu, resulting in decreased digestibility. βLg-Glu with the highest level of glycation exhibited superior antioxidant activity after in vitro digestion, which was closely associated with the increase in AGEs and oxidation products. Therefore, the protein-sugar system treated by superheated steam with different heating time can significantly affect the formation and activity of the products, providing theoretical basis for superheated steam processing nutritious and healthy food.
Collapse
Affiliation(s)
- Wen-Mei Chen
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yang Wang
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xu-Mei Wang
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan-Hong Shao
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Jun Liu
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
6
|
Maryam S, Krukiewicz K. Sweeten the pill: Multi-faceted polysaccharide-based carriers for colorectal cancer treatment. Int J Biol Macromol 2024; 282:136696. [PMID: 39437958 DOI: 10.1016/j.ijbiomac.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Colorectal cancer (CRC) ranks as the second deadliest cancer globally and the third most common malignant tumor. While surgery remains the primary treatment for CRC, alternative therapies such as chemotherapy, molecular targeted therapy, and immunotherapy are also commonly used. The significant side effects and toxicity of conventional drugs drive the search for novel targeted therapies, including the design of advanced drug delivery systems. Polysaccharide-based biopolymers, with their low toxicity, non-immunogenic behavior, synergistic interactions with other biopolymers, and tissue and cell compatibility, emerge as excellent drug carriers for this application. This review aims to provide an in-depth overview of recent advancements in developing polysaccharide-based biopolymeric carriers for anticancer compounds in the treatment of CRC. We highlight the multifunctional nature of polysaccharides, showcasing their potential as standalone drug carriers or as integral components of intelligent robotic devices for biomedical therapeutic applications. In addition to exploring the opportunities for using carbohydrate polymers in CRC treatment, we address the challenges and failures that may limit their applicability in biomedical research, as well as summarize the recent preclinical and clinical trials, resulting in several commercialization attempts. This comprehensive overview critically summarizes the potential of polysaccharide-based biomaterials in CRC treatment.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
7
|
Rawat R, Saini CS. Glycation of sunnhemp protein with dextran via dry heating: Thermal, micro-structural characterization, and amino acid profiling. J Food Sci 2024; 89:8983-8998. [PMID: 39495561 DOI: 10.1111/1750-3841.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 11/06/2024]
Abstract
This study aims to obtain sunnhemp protein isolate (SHPI) and dextran conjugates by dry heating method of Maillard conjugation. The effects of different incubation time (0, 1, 3, 5, 7, and 9 days) on the molecular flexibility, available lysine content, antioxidant properties, molecular structure, and thermal and micro-structural properties of conjugates were compared with SHPI (no conjugation) at 60°C and 79% relative humidity. The results indicated the formation of SHPI-dextran conjugates as confirmed by the change in molecular flexibility, lysine content, antioxidant activities, color, and water activity values. The molecular structure revealed the confirmation of covalent bonding between SHPI and dextran. Differential scanning calorimetry and thermo-gravimetric analysis results exhibited improvement in the thermal stability of SHPI when conjugated with dextran. The microstructural characterization showed that Maillard conjugation changed the surface structure of SHPI. The analysis of amino acid composition displayed that lysine, arginine, and phenylalanine were the dominant Maillard reaction sites of SHPI and dextran. Among all the conjugated samples, 5 days of incubation time was selected as an optimum condition for the development of SHPI-dextran conjugates on the basis of the aforementioned characterization. Overall, it was concluded that Maillard conjugation of sunnhemp protein with dextran via dry-heating technique could modify and improve its various attributes. PRACTICAL APPLICATION: The conjugation of plant proteins with polysaccharide through the Maillard reaction under dry heating conditions represents a natural and green technique for improving the techno-functional properties of proteins. The study has the potential to establish framework for the utilization of Sunnhemp protein isolate-dextran conjugates. This approach offers the potential for cost-effective production of emulsifiers and development of effective encapsulating matrices. The investigation expands on an underutilized plant protein source facilitating an alternative to animal-based proteins and contributing to the development of a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Rashmi Rawat
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab, India
| | - Charanjiv Singh Saini
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab, India
| |
Collapse
|
8
|
Ding Y, Xiao N, Guo S, Lin J, Chen L, Mou X, Ai M. Impact of NaCl perturbation on physicochemical and structural properties of preheat-treated egg white protein modulating foaming property. Food Chem 2024; 459:140377. [PMID: 38991442 DOI: 10.1016/j.foodchem.2024.140377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
This study aimed to investigate the mechanism of NaCl perturbed preheat-treated egg white proteins' (EWPs) physicochemical and structural properties to modulate the foaming property (FP). The results revealed that NaCl regulated the salinolysis (5 mM) - salt precipitation (50 mM) - gradual or complete coverage with hydrated Na+ of the hydration layer (100-300 mM) - enhanced Cl- hydration repulsion (500 mM) of EWP, showing a gradual decrease in aggregates particle size, and reversibility of structural freedom, including moleculer flexibility and surface hydrophobicity. Whereas preheating temperature affected the secondary structure rearrangement and tertiary conformation exposure, and excessive temperature reduced foaming capacity while enhanced foam stability, with a tight correlation between NaCl-mediated EWPs' FP and the extent of Na+ covering the hydration layer. The findings provide a theoretical basis for processing factors to modulate the protein hydration layer to influence the functional properties.
Collapse
Affiliation(s)
- Yiwen Ding
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Junhao Lin
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Lintao Chen
- Teachers College for Vocational and Technical Education, Guangxi Normal University, Guilin, 541004, China
| | - Xiangwei Mou
- Teachers College for Vocational and Technical Education, Guangxi Normal University, Guilin, 541004, China..
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China..
| |
Collapse
|
9
|
Zhang S, Liu Y, Wu W. Study on the Structural Characteristics and Foaming Properties of Ovalbumin-Citrus Pectin Conjugates Prepared by the Maillard Reaction. Foods 2024; 13:3542. [PMID: 39593958 PMCID: PMC11593048 DOI: 10.3390/foods13223542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
This study explored the structural features and foaming properties of ovalbumin (OVA) and its glycosylated conjugates with citrus pectin (CP) formed through the Maillard reaction. The results demonstrated that OVA and CP were successfully conjugated, with the degree of grafting increasing to 43.83% by day 5 of the reaction. SDS-PAGE analysis confirmed the formation of high-molecular-weight conjugates. Fourier-transform infrared (FT-IR) and fluorescence spectroscopy further revealed alterations in the secondary and tertiary structures of OVA, including an enhanced β-sheet content, a reduced β-turn content, and the depletion of tryptophan residues. Moreover, the surface hydrophobicity of the OVA-CP conjugates significantly increased, enhancing foaming properties. Furthermore, the analysis of foaming properties exhibited that the Maillard reaction improved the foaming capacity of OVA to 66.22% and foaming stability to 81.49%. These findings highlight the potential of glycosylation via the Maillard reaction to significantly improve the foaming properties of OVA, positioning it as a promising novel foaming agent.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Yibo Liu
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China;
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China
| |
Collapse
|
10
|
Tan KB, Zheng M, Lin J, Zhu Y, Zhan G, Chen J. Properties of Guar Gum/Pullulan/Loquat Leaf Extract Green Composite Packaging in Enhancing the Preservation of Chinese Water Chestnut Fresh-Cut Fruit. Foods 2024; 13:3295. [PMID: 39456358 PMCID: PMC11507296 DOI: 10.3390/foods13203295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Loquat leaf extract (LLE) was added to guar gum and pullulan as an environmentally friendly packaging film (GPE) to preserve Chinese water chestnuts (CWCs). The effect of the amount of LLE on the guar gum/pullulan composite film was investigated. The optimal amount of LLE was 4% (GPE4), with lower water vapor permeability (WVP) and greater mechanical strength, antioxidant, and comparable antibacterial performance than many pullulan-based films. Upon packing the CWCs for 4 days, the weight loss rate of GPE4 was only 1.80 ± 0.05%. For GPE4, the POD activity, the soluble solid content, and the vitamin C (Vc) content of the CWCs were 21.61%, 36.16%, and 26.22% higher than those of the control sample, respectively. More importantly, GPE4 was effective in preserving the quality of CWCs after 4 days of storage, better or at least comparable to non-biodegradable plastic wrapping (PE). Therefore, it can be concluded that GPE films hold significant promise as a sustainable alternative packaging material for preserving fruit-based foods like CWCs, potentially replacing PE in the future.
Collapse
Affiliation(s)
- Kok Bing Tan
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, China
| | - Meixia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Junyan Lin
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Yujing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Guowu Zhan
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, China
| | - Jianfu Chen
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| |
Collapse
|
11
|
Hussain A, Hussain M, Ashraf W, Karim A, Muhammad Aqeel S, Khan A, Hussain A, Khan S, Lianfu Z. Preparation, characterization and functional evaluation of soy protein isolate-peach gum conjugates prepared by wet heating Maillard reaction. Food Res Int 2024; 192:114681. [PMID: 39147541 DOI: 10.1016/j.foodres.2024.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 08/17/2024]
Abstract
This study was conducted to formulate a conjugate of soy protein isolate (SPI) and peach gum (PG) with improved functional properties, interacting at mass ratios of 1:1, 1:2, 1:3, 2:1, and 2:3 by Maillard reaction via wet heating method. Conjugation efficiency was confirmed by grafting degree (DG) and browning index (BI). Results indicated that DG increased with increasing concentration of PG, and decreased with increasing pH, whereas no remarkable change was observed with increasing reaction time. The conjugates were optimized at a ratio of 1:3. SDS-PAGE confirmed conjugate formation, Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) verified conjugate secondary structural changes, and scanning electron microscopy (SEM) indicated significant overall structural changes. The functional properties, solubility, emulsifying stability, water holding, foaming, and antioxidant activity were significantly improved. This study revealed the wet heating method as an effective approach to improve the functional properties of soy protein.
Collapse
Affiliation(s)
- Arif Hussain
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Muhammad Hussain
- Moganshan Institute ZJUT, Kangqian District, Deqing 313200, China
| | - Waqas Ashraf
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Adil Khan
- College of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Asif Hussain
- College of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Salman Khan
- College of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhang Lianfu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; College of Shihezi University, Shihezi, Xinjiang 832002, China.
| |
Collapse
|
12
|
Wen L, He H, Liu Y, Wang W, Du P, Hu P, Cao J, Ma Y. Research progress on natural preservatives of meat and meat products: classifications, mechanisms and applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7085-7095. [PMID: 38546416 DOI: 10.1002/jsfa.13495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Meat and meat products are highly susceptible to contamination by microorganisms and foodborne pathogens, which cause serious economic losses and health hazards. The large consumption and waste of meat and meat products means that there is a need for safe and effective preservation methods. Furthermore, toxicological aspects of chemical preservation techniques related to major health problems have sparked controversies and have prompted consumers and producers to turn to natural preservatives. Consequently, natural preservatives are being increasingly used to ensure the safety and quality of meat products as a result of customer preferences and biological efficacy. However, information on the current status of these preservatives is scattered and a comprehensive review is lacking. Here, we review current knowledge on the classification, mechanisms of natural preservatives and their applications in the preservation of meat and meat products, and also discuss the potential of natural preservatives to improve the safety of meat and meat products. The current status and the current research gaps in the extraction, application and controlled-release of natural antibacterial agents for meat preservation are also discussed in detail. This review may be useful to the development of efficient food preservation techniques in the meat industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Wen
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Yantai University, Yantai, China
| | - Hongjun He
- College of Life Sciences, Yantai University, Yantai, China
| | - Yaobo Liu
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Weiting Wang
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Pengfei Du
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Peng Hu
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianfang Cao
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanli Ma
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
13
|
Li Z, Jiang H, Guo M, Zhang Z, You X, Wang X, Ma M, Zhang X, Wang C. Modification of casein with oligosaccharides via the Maillard reaction: As natural emulsifiers. Food Res Int 2024; 191:114648. [PMID: 39059902 DOI: 10.1016/j.foodres.2024.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
In the present study, different oligosaccharides (fructooligosaccharide (FOS), galactooligosaccharide (GOS), isomaltooligosaccharide (IMO), and xylooligosaccharide (XOS)) were modified on casein (CN) via Maillard reaction. The CN-oligosaccharide conjugates were evaluated for modifications to functional groups, fluorescence intensity, water- and oil-holding properties, emulsion foaming properties, as well as general emulsion properties and stability. The results demonstrated that the covalent combination of CN and oligosaccharides augmented the spatial repulsion and altered the hydrophobic milieu of proteins, which resulted in a diminution in water-holding capacity, an augmentation in oil-holding capacity, and an enhancement in the emulsification properties of proteins. Among them, CN-XOS exhibited the most pronounced changes, with the emulsification activity index and emulsion stability index increasing by approximately 72% and 84.3%, respectively. Furthermore, CN-XOS emulsions have smaller droplet sizes and higher absolute potential values than CN emulsions. Additionally, CN-XOS emulsions demonstrate remarkable stability when ion concentration and pH are varied. These findings indicate that oligosaccharides modified via Maillard reaction can be used as good natural emulsifiers. This provides a theoretical basis for using oligosaccharides to modify proteins and act as natural emulsifiers.
Collapse
Affiliation(s)
- Zhenghao Li
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Hua Jiang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Min Guo
- Network Information Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zheng Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Xinyu You
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xipeng Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mengjia Ma
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaoning Zhang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Cunfang Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
14
|
Guo J, Gao X, Chi Y, Chi Y. Potassium Chloride as an Effective Alternative to Sodium Chloride in Delaying the Thermal Aggregation of Liquid Whole Egg. Foods 2024; 13:1107. [PMID: 38611411 PMCID: PMC11011459 DOI: 10.3390/foods13071107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The potential of potassium chloride (KCl) to be used as a substitute for sodium chloride (NaCl) was studied by monitoring the effects of salt treatment on thermal behavior, aggregation kinetics, rheological properties, and protein conformational changes. The results show that the addition of KCl can improve solubility, reduce turbidity and particle size, and positively influence rheological parameters such as apparent viscosity, consistency coefficient (K value), and fluidity index (n). These changes indicate delayed thermal denaturation. In addition, KCl decreased the content of β-sheet and random coil structures and increased the content of α-helix and β-turn structures. The optimal results were obtained with 2% KCl addition, leading to an increase in Tp up to 85.09 °C. The correlation results showed that Tp was positively correlated with solubility, α-helix and β-turn but negatively correlated with ΔH, turbidity, β-sheet and random coil. Overall, compared to NaCl, 2% KCl is more effective in delaying the thermal aggregation of LWE, and these findings lay a solid theoretical foundation for the study of sodium substitutes in heat-resistant liquid egg products.
Collapse
Affiliation(s)
- Jiayu Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.G.); (X.G.)
| | - Xin Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.G.); (X.G.)
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.G.); (X.G.)
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
15
|
Zhang Q, Zhao Y, Yao Y, Wu N, Chen S, Xu L, Tu Y. Characteristics of hen egg white lysozyme, strategies to break through antibacterial limitation, and its application in food preservation: A review. Food Res Int 2024; 181:114114. [PMID: 38448098 DOI: 10.1016/j.foodres.2024.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Hen egg white lysozyme (HEWL) is used as a food additive in China due to its outstanding antibacterial properties. It is listed as GRAS grade (generally recognized as safe) by the United States Food and Drug Administration (FDA, US) and has been extensively researched and used in food preservation. And the industrial production of HEWL already been realized. Given the complex food system that can affect the antibacterial activity of HEWL, and the limitations of HEWL itself on Gram-negative bacteria. Based on the structure and main biological characteristics of HEWL, this paper focuses on reviewing methods to enhance the stability and antibacterial properties of HEWL. Immobilization tactics such as chemically driven self-assembly, embedding and adsorption address the restriction of poor HEWL antibacterial activity effected by external factors. Both intermolecular and intramolecular modification strategies break the bactericidal deficiencies of HEWL itself. It also comprehensively analyzes the current application status and future prospects of HEWL in the food preservation. There was limited research on the biological methods in modifying HEWL. If the HEWL is genetically engineered, it can broaden its antimicrobial spectrum, improve its other biological activities, so as to further expand its application in the food industry. At present, research on HEWL mainly focused on its antibacterial properties, whereas its application in anti-inflammatory and antioxidant effects also presented great potential.
Collapse
Affiliation(s)
- Qingqing Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
16
|
Nong K, Zhao YL, Yi S, Zhang X, Wei S, Yao ZJ. 3-Acyl-4-Pyranone as a Lysine Residue-Selective Bioconjugation Reagent for Peptide and Protein Modification. Bioconjug Chem 2024; 35:286-299. [PMID: 38451202 DOI: 10.1021/acs.bioconjchem.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Chemoselective protein modification plays extremely important roles in various biological, medical, and pharmaceutical investigations. Mimicking the mechanism of the chemoselective reaction between natural azaphilones and primary amines, this work successfully simplified the azaphilone scaffold into much simpler 3-acyl-4-pyranones. Examinations confirmed that these slim-size mimics perfectly kept the unique reactivity for selective conjugation with the primary amines including lysine residues of peptides and proteins. The newly developed pyranone tool presents remarkably increased aqueous solubility and compatible second-order rate constant by comparison with the original azaphilone. Additional advantages also include the ease of biorthogonal combinative use with a copper-catalyzed azide-alkyne Click reaction, which was conveniently applied to decorate lysozyme with neutral-, positive- and negative-charged functionalities in parallel. Moderate-degree modification of lysozyme with positively charged quaternary ammoniums was revealed to increase the enzymatic activities.
Collapse
Affiliation(s)
- Keyi Nong
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yi-Lu Zhao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Shandong Yi
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xuchun Zhang
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Siyuan Wei
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zhu-Jun Yao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| |
Collapse
|
17
|
Xu Y, Liu Y, Luo Y, Xu X, Li Y, Zhao L, Li T, Zhang Y, He P, Mou X. Targeted-activation superparamagnetic spherical nucleic acid nanomachine for ultrasensitive SERS detection of lysozyme based on a bienzymatic-mediated in situ amplification strategy. ANAL SCI 2024; 40:429-438. [PMID: 38112960 DOI: 10.1007/s44211-023-00471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023]
Abstract
Lysozyme (LYS) is a widely used bacteriostatic enzyme. In this paper, we built a sensitive and accurate Raman biosensing platform to detect trace amounts of LYS. The method is based on magnetic spherical nucleic acid formed by a combination of LYS aptamer (Apt) and magnetic beads (MBs). Meanwhile, this method utilizes a dual enzyme-assisted nucleic acid amplification circuit and surface-enhanced Raman scattering (SERS). In this sensing strategy, which is based on the specific recognition of Apt, magnetic spherical nucleic acids were associated with SERS through a nucleic acid amplification circuit, and the low abundance of LYS was converted into a high-specificity Raman signal. Satellite-like MB@AuNPs were formed in the presence of the target, which separated specifically in a magnetic field, effectively avoided the interference of complex sample environment. Under the optimal sensing conditions, the concentration of LYS exhibited a good linear relationship between 1.0 × 10-14 and 5.0 × 10-12 M and the limit of detection was as low as 8.3 × 10-15 M. In addition, the sensor strategy shows excellent accuracy and sensitivity in complex samples, providing a new strategy for the specific detection of LYS.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yue Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yu Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xinlin Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yingying Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Lin Zhao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Tiantian Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yan Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Peng He
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaoming Mou
- Analytical and Testing Center, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
18
|
Barman M, Rahman S, Joshi N, Sarma N, Bharadwaj P, Thakur D, Devi R, Chowdhury D, Hurren C, Rajkhowa R. Banana fibre-chitosan-guar gum composite as an alternative wound healing material. Int J Biol Macromol 2024; 259:129653. [PMID: 38280292 DOI: 10.1016/j.ijbiomac.2024.129653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Bio-composites, which can be obtained from the renewable natural resources, are fascinating material for use as sustainable biomaterials with essential properties like biodegradable, bio-compatibility as well cyto-compatibility etc. These properties are useful for bio-medical including wound healing applications. In this study, fibre obtained banana pseudo stem of banana plant, which is otherwise wasted, was used as a material along with chitosan and guar gum to fabricate a banana fibre-biopolymer composite patch. The physiochemical properties of the patches were examined using Fourier Transformed Infra-red spectrophotometer (FT-IR), tensile tester, Scanning Electron Microscope (SEM), contact angle tester, swelling and degradation studies. We further demonstrated that a herbal drug, Nirgundi could be loaded to the patch showed controlled its release at different pHs. The patch had good antibacterial property and supported proliferation of mouse fibroblast cells. The study thus indicates that banana fibre-chitosan-guar gum composite can be developed into an alternative wound healing material.
Collapse
Affiliation(s)
- Mridusmita Barman
- Institute of Frontier Materials, Deakin University, Geelong, Victoria, Australia; Material Nanochemistry Laboratory, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India; Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Sazzadur Rahman
- Material Nanochemistry Laboratory, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Naresh Joshi
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Neeraj Sarma
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Pranami Bharadwaj
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Debajit Thakur
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India.
| | - Christopher Hurren
- Institute of Frontier Materials, Deakin University, Geelong, Victoria, Australia
| | - Rangam Rajkhowa
- Institute of Frontier Materials, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
19
|
Amiratashani F, Yarmand MS, Kiani H, Askari G, Naeini KK, Parandi E. Comprehensive structural and functional characterization of a new protein-polysaccharide conjugate between grass pea protein (Lathyrus sativus) and xanthan gum produced by wet heating. Int J Biol Macromol 2024; 254:127283. [PMID: 37806423 DOI: 10.1016/j.ijbiomac.2023.127283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The purpose of this work was to use a controlled wet-heating process to promote Maillard reaction (MR) between grass pea protein (GPPI) and xanthan gum (XG), and then analyse structural, functional and antioxidant properties of the conjugate (GPPI-XGCs). During heating, the degree of glycation of all conjugated samples was raised (up to 37.43 %) and, after heating for 24 h, the lightness of the samples decreased by 24.75 %. Circular dichroism showed changes in secondary structure with lower content of α-helix and random coil in conjugates. XRD patterns showed that MR destroyed the crystalline structure of the protein. In addition, Lys and Arg content of the produced conjugates decreased by 16.94 % and 6.17 %, respectively. Functional properties including foaming capacity and stability were increased by 45.17 % and 37.17 %, and solubility reached 98.88 %, due to the protein unfolding driven by MR. GPPI-XGCs showed significantly higher antioxidant activities with maximum ABTS-RS value of 49.57 %. This study revealed how MR can improve GPPI's properties, which can aid the food industry in producing a wide range of plant-based foods. Especially, among other characteristics, the foaming properties were significantly improved and the final product can be introduced as a promising foaming agent to be used in food formulation.
Collapse
Affiliation(s)
- Farzane Amiratashani
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Mohammad Saeid Yarmand
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| | - Hossein Kiani
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| | - Gholamreza Askari
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Kiana Kassaeian Naeini
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| |
Collapse
|
20
|
Fu JJ, Yu JX, He FY, Huang YN, Wu ZP, Chen YW. Physicochemical and functional characteristics of glycated collagen protein from giant salamander skin induced by ultrasound Maillard reaction. Int J Biol Macromol 2024; 254:127558. [PMID: 37865368 DOI: 10.1016/j.ijbiomac.2023.127558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Chinese giant salamander skin collagen (CGSSC) was successfully conjugated with glucose (Glu)/xylose (Xy) by ultrasound Maillard reaction (MR) in nature deep eutectic solvents (NADES). The effects of ultrasound and reducing sugar types on the degree graft (DG) of MR products (MRPs), as well as the influence of DG on the structure and functional properties of MRPs were investigated. The results indicated that the ultrasound assisted could markedly enhance the MR of CGSSC, and low molecular weight reducing sugars were more reactive in MR. The ultrasound MR significantly changed the microstructure, secondary and tertiary structures of CGSSC. Moreover, the free sulfhydryl content of MRPs were increased, thus enhancing the surface hydrophobicity, emulsifying properties and antioxidant activity, which were positively correlated with DG. These findings provided theoretical insights into the effects of ultrasound assisted and different sugar types on the functional properties of collagen induced by MR.
Collapse
Affiliation(s)
- Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Jin-Xiu Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Fan-Yu He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yang-Na Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Zhi-Ping Wu
- Zhejiang Shanding Biotechnology Co., Ltd, Lishui, Zhejiang 323000, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| |
Collapse
|
21
|
Tavasoli S, Maghsoudlou Y, Shahiri Tabarestani H, Mahdi Jafari S. Changes in emulsifying properties of caseinate-Soy soluble polysaccharides conjugates by ultrasonication. ULTRASONICS SONOCHEMISTRY 2023; 101:106703. [PMID: 38016333 PMCID: PMC10711224 DOI: 10.1016/j.ultsonch.2023.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/21/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
This research aimed to assess the impact of ultrasonication on the emulsifying ability of a conjugate system composed of sodium caseinate and soluble soy polysaccharides. The study analyzed the characteristics of the particles and evaluated the emulsions produced using nanoconjugates. The results showed that ultrasonication improved the contact angle (63.7°) and decreased particle size (75 nm), resulting in more effective emulsifying efficiency. At a 2 % concentration of the nanoconjugates, stable emulsions with a 50 % oil content were successfully formed through complete coverage of the droplets' surface, and no oil release was observed. Moreover, the emulsions' creaming index remained below 25 % even after 60 days of storage. The stability of the nanoconjugate-based emulsions depended on the concentration of nanoconjugates, with an optimal concentration of 4 %. These findings suggest that the nanoconjugates have great potential as a natural stabilizer for emulsion-based products.
Collapse
Affiliation(s)
- Sedighe Tavasoli
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Yahya Maghsoudlou
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Hoda Shahiri Tabarestani
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
22
|
Zhang Q, Dou L, Sun T, Li X, Xue B, Xie J, Bian X, Shao Z, Gan J. Physicochemical and functional property of the Maillard reaction products of soy protein isolate with L-arabinose/D-galactose. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7040-7049. [PMID: 37318938 DOI: 10.1002/jsfa.12790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Soy protein isolate (SPI) is widely used in the food industry because of its nutritional and functional properties. During food processing and storage, the interaction with co-existing sugars can cause changes in the structural and functional properties of SPI. In this study, SPI-l-arabinose conjugate (SPI:Ara) and SPI-d-galactose conjugate (SPI:Gal) were prepared using Maillard reaction (MR), and the effects of five-carbon/six-carbon sugars on the structural information and function of SPI were compared. RESULTS MR unfolded and stretched the SPI, changing its ordered conformation into disorder. Lysine and arginine of SPI were bonded with the carbonyl group of sugar. The MR between SPI and l-arabinose has a higher degree of glycosylation compared to d-galactose. MR of SPI enhanced its solubility, emulsifying property and foaming property. Compared with SPI:Ara, SPI:Gal exhibited better aforementioned properties. The functionalities of amphiphilic SPI were enhanced by MR, SPI:Gal possessed better hypoglycemic effect, fat binding capacity and bile acid binding ability than SPI:Ara. MR endowed SPI with enhanced biological activities, SPI:Ara showed higher antioxidant activities, and SPI:Gal exhibited stronger antibacterial activities. CONCLUSION Our work revealed that l-arabinose/d-galactose exhibited different effects on the structural information of SPI, and further affected its physicochemical and functional property. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiyun Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lanxing Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tao Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaohui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Bin Xue
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaojun Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zehuai Shao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jianhong Gan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
23
|
Du T, Liu Z, Guan Q, Xiong T, Peng F. Application of soy protein isolate-xylose conjugates for improving the viability and stability of probiotics microencapsulated by spray drying. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6500-6509. [PMID: 37254470 DOI: 10.1002/jsfa.12728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Production and consumption of probiotics need to meet many adverse stresses, which can reduce their health-promoting effects on humans. Microencapsulation is an effective technique to improve the biological activity of probiotics and wall materials are also required during encapsulation. Application of Maillard reaction products (MRPs) in probiotic delivery is increasing. RESULTS This work aims to study the effects of soy protein isolate (SPI)-xylose conjugates heated at different times on the viability and stability of probiotics. SPI-xylose MRPs formed after heat treatment based on changes in the browning intensity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Fourier transform infrared spectroscopy. After heat treatment, α-helix and β-sheet contents of SPI-xylose mixture shifted from 11.3% and 31.3% to 6.4-11.0% and 31.0-36.9%, respectively, and the thermal stability slightly changed. During spray drying, except for MRP240@LAB, probiotic viability was higher in the MRP-based probiotic microcapsules (21.36-25.31%) than in Mix0@LAB (20.17%). MRP-based probiotic microcapsules had smaller particle sizes (431.1-1243.0 nm vs. 7165.0 nm) and greater intestinal digestion tolerance than Mix0@LAB. Moreover, the MRP-based probiotic microcapsules showed better storability than Mix0@LAB and adequate growth and metabolism capacity. CONCLUSION SPI-xylose Maillard reaction products are a promising wall material for probiotics microencapsulation, which can improve bacterial survivability during spray drying and enhance bacterial gastrointestinal digestion resistance. This study sheds light on preparing probiotic microcapsules with superior properties by spray drying. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tonghao Du
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Zhanggen Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, PR China
| | - Qianqian Guan
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, PR China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, PR China
| | - Fei Peng
- School of Food Science and Technology, Nanchang University, Nanchang, PR China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, PR China
| |
Collapse
|
24
|
Chen R, Jin H, Pan J, Zeng Q, Lv X, Xia J, Ma J, Shi M, Jin Y. Underlying mechanisms of egg white thinning in hot spring eggs during storage: Weak gel properties and quantitative proteome analysis. Food Res Int 2023; 172:113157. [PMID: 37689846 DOI: 10.1016/j.foodres.2023.113157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
As a weakly gelling protein, hot spring egg white underwent thinning during storage. This study explored the mechanism of thinning in hot spring egg white from the perspective of "gel structure and protein composition" using quantitative proteomics, SEM, SDS-PAGE, and other techniques. Quantitative proteomics analysis showed that there were 81 (44 up-regulated and 21 down-regulated) key proteins related to thinning of hot spring egg white. The changes in the relative abundance of proteins such as ovalbumin-related Y, mucin-6, lysozyme, ovomucoid, and ovotransferrin might be important reasons for thinning in hot spring egg white. SEM results indicated that the gel network gradually became regular and uniform, with large pores appearing on the cross-section and being pierced. Along with the decrease in intermolecular electrostatic repulsion, protein molecules gradually aggregated. The particle size gradually increased from 139.1 nm to 422.5 nm. Meanwhile, the surface hydrophobicity, and disulfide bond content gradually increased. These changes might be the reasons for thinning in hot spring egg white during storage. It can provide a new perspective for studying the thinning mechanism of weakly gelling egg whites.
Collapse
Affiliation(s)
- Rong Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haobo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajing Pan
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zeng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiyu Xia
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxuan Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Manqi Shi
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
25
|
Chaipoot S, Wiriyacharee P, Phongphisutthinant R, Buadoktoom S, Srisuwun A, Somjai C, Srinuanpan S. Changes in Physicochemical Characteristics and Antioxidant Activities of Dried Shiitake Mushroom in Dry-Moist-Heat Aging Process. Foods 2023; 12:2714. [PMID: 37509806 PMCID: PMC10379447 DOI: 10.3390/foods12142714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Shiitake mushrooms are prized for their unique flavor and bioactive properties. While there has been extensive research on drying methods, a comprehensive investigation of the effects of drying parameters in the dry-moist-heat system on shiitake quality is still needed. This study aimed to investigate the effects of dry-moist-heat aging on dried shiitake mushrooms comprehensively. Four aging temperatures, specifically 50, 60, 70, and 80 °C, were applied to the mushrooms, maintaining a constant humidity level of 75% RH and aging duration of 20 days. Color analysis revealed a progressive decrease in measured values as aging temperature increased, indicating noticeable changes in visual characteristics. Regarding amino acid composition, glutamic acid was found to be the predominant amino acid in shiitake mushrooms in the range of 90.29-467.42 mg/100 g. However, aging led to a reduction in overall amino acid content, with higher aging temperatures resulting in greater decline. Similarly, the equivalent umami content (EUC) also decreased (from 123.99 to 7.12 g MSG/100 g) with the increase in aging temperatures up to 80 °C, suggesting a decline in the overall umami taste sensation. Interestingly, despite the reduction in amino acid levels and umami content, the aging process positively impacted the phenolic compounds and the antioxidant activity of dried shiitake mushrooms. The antioxidative abilities of all aged mushroom extracts for DPPH, ABTS, and FRAP ranged from 65.01 to 81.39 µg TE/mL, 87.04 to 258.33 µg GAE/mL, and 184.50 to 287.68 µg FeSO4/mL, respectively. The utilization of aged temperature at 60 °C for 20 days with controlled relative humidity (~75%) should be a suitable aging condition of this edible mushroom with both antioxidant and umami qualities. Nevertheless, the control sample demonstrated higher levels of amino acid content and EUC compared to the aged samples. Conversely, the aged samples exhibited higher polyphenol content and greater antioxidant activity. Depending on specific requirements, these powders can be used in food formulation as flavor enhancers for control samples or as enriching agents for polyphenols and antioxidant activity in matured samples. Therefore, all of the powders obtained have potential applications in the field of nutrition.
Collapse
Affiliation(s)
- Supakit Chaipoot
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pairote Wiriyacharee
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Srirana Buadoktoom
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Aungkana Srisuwun
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chalermkwan Somjai
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
26
|
Nooshkam M, Varidi M, Zareie Z, Alkobeisi F. Behavior of protein-polysaccharide conjugate-stabilized food emulsions under various destabilization conditions. Food Chem X 2023; 18:100725. [PMID: 37397219 PMCID: PMC10314162 DOI: 10.1016/j.fochx.2023.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
The sensitivity of protein-stabilized emulsions to flocculation, coalescence, and phase separation under destabilization conditions (i.e., heating, aging, pH, ionic strength, and freeze-thawing) may limit the widespread use of proteins as effective emulsifiers. Therefore, there is a great interest in modulating and improving the technological functionality of food proteins by conjugating them with polysaccharides, through the Maillard reaction. The present review article highlights the current approaches of protein-polysaccharide conjugate formation, their interfacial properties, and the behavior of protein-polysaccharide conjugate stabilized emulsions under various destabilization conditions, including long-term storage, heating and freeze-thawing treatments, acidic conditions, high ionic strength, and oxidation. Protein-polysaccharide conjugates are capable of forming a thick and cohesive macromolecular layer around oil droplets in food emulsions and stabilizing them against flocculation and coalescence under unfavorable conditions, through steric and electrostatic repulsion. The protein-polysaccharide conjugates could be therefore industrially used to design emulsion-based functional foods with high physicochemical stability.
Collapse
Affiliation(s)
- Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Zahra Zareie
- Department of Food Science and Technology, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fatemeh Alkobeisi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
27
|
Ren ST, Fu JJ, He FY, Chai TT, Yu-Ting L, Jin DL, Chen YW. Characteristics and antioxidant properties of Harpadon nehereus protein hydrolysate-xylose conjugates obtained from the Maillard reaction by ultrasound-assisted wet heating in a natural deep eutectic solvents system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2273-2282. [PMID: 36620949 DOI: 10.1002/jsfa.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Harpadon nehereus is a high-protein marine fish. A valuable way to add value to H. nehereus is to convert it into protein hydrolysate. The Maillard reaction is an effective way to improve the functional properties of peptides and proteins, which are affected by many factors such as reactant concentration, water activity, pH, temperature, and heating time. However, the traditional Maillard reaction method is inefficient. The purpose of this study was therefore to explore the effect of the ultrasound-assisted wet heating method on the Maillard reaction of H. nehereus protein hydrolysate (HNPH) in a new-type green solvent - a natural hypereutectic solvent (NADES). RESULTS Harpadon nehereus protein hydrolysate-xylose (Xy) conjugates were prepared via a Maillard reaction in a NADES system using an ultrasound-assisted wet heating method. The effects of different treatment conditions on the Maillard reaction were studied. The optimized glycation degree (DG) of HNPH-Xy conjugates was obtained with a water content of 10%, a reaction temperature of 80 °C, a reaction time of 35 min, and an ultrasonic power level of 300 W. Compared with HNPH, the structure of HNPH-Xy conjugates were significantly changed. Moreover, the functional properties and antioxidant activity of HNPH-Xy were all superior to the HNPH. CONCLUSIONS An ultrasound-assisted wet-heating Maillard reaction between HNPH and Xy in the NADES system could be a promising way to improve the functional properties of HNPH. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shao-Tian Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Fan-Yu He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Ting-Ting Chai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Liu Yu-Ting
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Dan-Li Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
28
|
Yang S, Zhang G, Chu H, Du P, Li A, Liu L, Li C. Changes in the functional properties of casein conjugates prepared by Maillard reaction with pectin or arabinogalactan. Food Res Int 2023; 165:112510. [PMID: 36869514 DOI: 10.1016/j.foodres.2023.112510] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The aim of this study was to prepare conjugates of casein (CA) with pectin (CP) or arabinogalactan (AG) by the Maillard reaction (wet-heating) and to investigate the effects of CP or AG on the structural and functional properties of casein. The results indicated that the highest grafting degree of CA with CP or AG was observed at 90 °C for 1.5 h or 1 h, respectively. Secondary structure showed that grafting with CP or AG reduced the α-helix level and increased the random coil level of CA. Glycosylation treatment of CA-CP and CA-AG exhibited lower surface hydrophobicity and higher absolute ζ-potential values, further significantly improving the functional properties of CA (e.g., solubility, foaming property, emulsifying property, thermal stability, and antioxidant activity). Accordingly, our results indicated that it is feasible for CP or AG to improve the functional properties of CA by the Maillard reaction.
Collapse
Affiliation(s)
- Siqi Yang
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guofang Zhang
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hong Chu
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peng Du
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Aili Li
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Libo Liu
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Chun Li
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Academy of Green Food Science, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
29
|
Garg SS, Gupta J. Guar gum-based nanoformulations: Implications for improving drug delivery. Int J Biol Macromol 2023; 229:476-485. [PMID: 36603711 DOI: 10.1016/j.ijbiomac.2022.12.271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
Poorly soluble drugs are reported to easily degrade in the gastrointestinal tract and contribute in limiting the effect of drug to its targeted site. Oral administration of drug is one of the prominent ways to deliver a drug, although, it experiences barriers like acidic pH, presence of microflora and enzymes in the gastrointestinal tract. Collectively all of these participate in the degradation of drug before it reaches its target site and thus, they impede the sustained effect of drug. A quest of choosing a polymer with good stability profile and releasing the drug to its targeted site is always been a challenge for the scientists worldwide. Many polymers have been reported to prevent the degradation of drug and one such naturally occurring biocompatible polymer is guar gum. Guar gum-based nanoformulations have been extensively used in past decades to achieve controlled drug release which defines its importance. The coating of guar gum over the drug improves the bioavailability of the drug and thus helps in minimizing the risk of drug degradation. This review intends to highlight the beneficial role of guar gum-based nanoformulations to improve drug delivery by ameliorating the bioavailibility.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| |
Collapse
|
30
|
Hosseini E, Alinejad H, Rousta E. Functional characterization of sodium caseinate conjugated with water-soluble bitter almond gum exudate. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
31
|
Kirtil E, Oztop MH. Mechanism of adsorption for design of role-specific polymeric surfactants. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Chen N, Fu Y, Wang ZX, Zhao XH. Casein Lactose-Glycation of the Maillard-Type Attenuates the Anti-Inflammatory Potential of Casein Hydrolysate to IEC-6 Cells with Lipopolysaccharide Stimulation. Nutrients 2022; 14:nu14235067. [PMID: 36501097 PMCID: PMC9741451 DOI: 10.3390/nu14235067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Abstract
During the thermal processing of dairy products, the Maillard reaction occurs between milk proteins and lactose, resulting in the formation of various products including glycated proteins. In this study, lactose-glycated casein was generated through the Maillard reaction between casein and lactose and then hydrolyzed by a trypsin preparation. The anti-inflammatory effect of the resultant glycated casein hydrolysate (GCH) was investigated using the lipopolysaccharide (LPS)-sitmulated rat intestinal epithelial (IEC-6) cells as a cell model and corresponding casein hydrolysate (CH) as a control. The results indicated that the preformed glycation enabled lactose conjugation to casein, which endowed GCH with a lactose content of 12.61 g/kg protein together with a lower activity than CH to enhance the viability value of the IEC-6 cells. The cells with LPS stimulation showed significant inflammatory responses, while a pre-treatment of the cells with GCH before LPS stimulation consistently led to a decreased secretion of three pro-inflammatory mediators, namely, IL-6, IL-1β and tumor necrosis factor-α (TNF-α) but an increased secretion of two anti-inflammatory mediators, including IL-10 and transforming growth factor-β (TGF-β), demonstrating the anti-inflammatory potential of GCH in LPS-stimulated cells. In addition, GCH up-regulated the expression of TLR4, p-p38, and p-p65 proteins in the stimulated cells, resulting in the suppression of NF-κB and MAPK signaling pathways. Collectively, GCH was mostly less efficient than CH to exert these assessed anti-inflammatory activities in the cells and more importantly, GCH also showed an ability to cause cell inflammation by promoting IL-6 secretion and up-regulating the expression of TLR4 and p-p65. The casein lactose-glycation of the Maillard-type was thereby concluded to attenuate the anti-inflammatory potential of the resultant casein hydrolysate. It is highlighted that the casein lactose-glycation of the Maillard-type might cause a negative impact on the bioactivity of casein in the intestine, because the glycated casein after digestion could release GCH with reduced anti-inflammatory activity.
Collapse
Affiliation(s)
- Na Chen
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical, Maoming 525000, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhen-Xing Wang
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical, Maoming 525000, China
| | - Xin-Huai Zhao
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical, Maoming 525000, China
- Correspondence: or ; Tel.: +86-668-2923716
| |
Collapse
|
33
|
Cricket protein conjugated with different degrees of polymerization saccharides by Maillard reaction as a novel functional ingredient. Food Chem 2022; 395:133594. [DOI: 10.1016/j.foodchem.2022.133594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/04/2022] [Accepted: 06/26/2022] [Indexed: 11/18/2022]
|
34
|
Ghani A, Tabibiazar M, Mahmoudzadeh M, Golchinfar Z, Homayouni Rad A. Evaluation of the effect of sage seed gum (
Salvia macrosiphon
) conjugation on physicochemical and antimicrobial properties of egg white protein. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ali Ghani
- Student Research Committee Tabriz University of Medical Science Tabriz Iran
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
| | - Mahnaz Tabibiazar
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
| | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Zahra Golchinfar
- Student Research Committee Tabriz University of Medical Science Tabriz Iran
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
| | - Aziz Homayouni Rad
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
| |
Collapse
|
35
|
Gao J, Shi Q, Ye Y, Wu Y, Chen H, Tong P. Effects of guar gum or xanthan gum addition in conjunction with pasteurization on liquid egg white. Food Chem 2022; 383:132378. [PMID: 35183963 DOI: 10.1016/j.foodchem.2022.132378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/13/2022] [Accepted: 02/05/2022] [Indexed: 11/04/2022]
Abstract
In this study, effects of varying levels of xanthan or guar gum (XG/GG, 0.05%, 0.1%, 0.2%, 0.4% and 0.8%, w/v) on the spatial structure and functional properties of egg white (EW) proteins under different pasteurization conditions of the liquid egg was evaluated. Results showed that XG could bury the aromatic ring residues and reduce the hydrophobicity of protein in EW, whereas GG could only increase the hydrophobicity. With 0.8% GG addition and pasteurization under 60℃/3.5 min, the emulsifying stability of EW was improved by nearly 100%, while with 0.8% XG addition the gel structure of EWwould become porousandloosen under each pasteurization condition. The hardness of EW gels was decreased by 90% when the concentration of XG was 0.4% or 0.8%. According to the results, the concentration of gums and the pasteurization parameters should be considered together when adding gums into the liquid egg products for pasteurization simultaneously.
Collapse
Affiliation(s)
- Jinyan Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang 330031, PR China
| | - Qiang Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang 330031, PR China
| | - Yu Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang 330031, PR China
| | - Yong Wu
- Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang 330047, PR China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang 330047, PR China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
36
|
Formation mechanism of high-viscosity gelatinous egg white among "Fenghuang Egg": Phenomenon, structure, and substance composition. Int J Biol Macromol 2022; 217:803-813. [PMID: 35902019 DOI: 10.1016/j.ijbiomac.2022.07.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/16/2023]
Abstract
"Fenghuang Egg" is a special egg product incubated for 12 days by fertilized hen eggs. Its egg white contains high-viscosity and excellent thermal gel strength. A comparative study on the differences in gel properties, structure, and substance composition between fresh egg white (FEW) and "Fenghuang egg" gelatinous egg white (GEW) was carried out. Experimental results showed GEW had better apparent viscosity, as well as the hardness, cohesiveness and water holding capacity (WHC) of thermal gel; the content and size of aggregate structure increased significantly in GEW, and a fibrous dense network composed of numerous spherical nanoparticles connected in series was formed after heating. In addition, it also discovered that more water molecules in GEW existed in the form of bound water. A total of 41 proteins changed significantly in FEW and GEW, Mucin 6 might be the main reason for the enhanced viscosity of GEW, and OVA might be the dominant protein differentiating the thermal gel properties between FEW and GEW. This study revealed that the differences in gel properties and structures between FEW and GEW were closely related to the content of highly glycosylated globular proteins, laying a theoretical foundation for the application of high-viscosity egg whites.
Collapse
|
37
|
Tan J, Yao Y, Wu N, Du H, Xu M, Liao M, Zhao Y, Tu Y. Color, physicochemical characteristics and antioxidant activities of preserved egg white pickled at different temperatures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Bakshi J, Mehra M, Grewal S, Dhingra D, Kumari S. Synthesis, characterization and evaluation of in vitro antimicrobial and anti-diabetic activity of berberine encapsulated in guar-acacia gum nanocomplexes. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, the anti-diabetic and antimicrobial properties of berberine were improved using non-ionic guar gum and ionic acacia gum as nanocarriers. Berberine loaded guar-acacia gum nanocomplexes were synthesized by employing ionic complexation method. The formulation was characterized by dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM) and evaluated for in vitro dissolution study, anti-diabetic activity and antimicrobial activity. The optimized berberine loaded guar-acacia gum nanocomplexes had a particle size of 290.2 nm as indicated by DLS and drug entrapment efficiency of 96.5%. Morphological analysis revealed that berberine nanocomplexes were spherical-shaped with a smooth surface and size in the range of 100–250 nm. Moreover, berberine loaded guar-acacia nanocomplexes showed good stability and controlled released property in vitro. Antimicrobial activity against bacterial strains and fungal strains demonstrated the higher antimicrobial potential of berberine loaded gum nanocomplexes than gum nanocomplexes (blank) and pure berberine as indicated by the greater zone of inhibition diameter. In vitro anti-diabetic assessment showed higher percentage inhibition of the α-amylase enzyme by berberine loaded gum nanocomplexes as compared to pure berberine and blank nanocomplexes. In conclusion, the improved biological potency of berberine upon encapsulation into gum nanocomplexes indicates that berberine loaded guar-acacia gum nanocomplexes can be used as a promising candidate against diabetes and pathogenic microorganisms in the near future.
Collapse
Affiliation(s)
- Jyoti Bakshi
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Meenakshi Mehra
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Sapna Grewal
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Dinesh Dhingra
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Santosh Kumari
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| |
Collapse
|
39
|
Tavasoli S, Maghsoudlou Y, Jafari SM, Tabarestani HS. Improving the emulsifying properties of sodium caseinate through conjugation with soybean soluble polysaccharides. Food Chem 2022; 377:131987. [PMID: 34998153 DOI: 10.1016/j.foodchem.2021.131987] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022]
Abstract
This study was conducted to investigate the impact on the techno-functionality over sodium caseinate (NaCS) when are conjugated with soluble soybean polysaccharides (SSPS). NaCS/SSPS conjugates were prepared through the Maillard reaction using dry heating. The formation of covalent binding between NaCS and SSPS and structural changes of NaCS during glycation were confirmed via SDS-PAGE and ATR-FTIR. A positive correlation was observed between the increase in the browning index of samples and Amadori compounds formation over time, based on the colorimetric results. Emulsions stabilization using conjugates with a higher NaCS/SSPS ratio led to a decreasing trend in the droplets' size and creaming index. Meanwhile, higher viscosity and shear-thinning behavior were observed in conjugate-based emulsions. Finally, conjugates prepared with the NaCS/SSPS ratio of 9/1 at an incubation time of 24 h presented a higher pH and thermal stability and better performance in emulsion stabilization in comparison with each of the biopolymers alone.
Collapse
Affiliation(s)
- Sedighe Tavasoli
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Yahya Maghsoudlou
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Hoda Shahiri Tabarestani
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
40
|
Yao X, Xu J, Adhikari B, Lv W, Chen H. Mooncake production waste: Nutritional value and comprehensive utilization of salted duck egg white. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinjun Yao
- College of Biological and Food Engineering Anhui Polytechnic University 241000 Wuhu Anhui China
| | - Jicheng Xu
- College of Biological and Food Engineering Anhui Polytechnic University 241000 Wuhu Anhui China
| | - Benu Adhikari
- School of Science RMIT University Melbourne VIC 3083 Australia
| | - Weiqiao Lv
- College of Engineering China Agricultural University 100083 Beijing China
| | - Huizhi Chen
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi, Jiangsu China
| |
Collapse
|
41
|
Liu L, Yin J, Richards MP. Role of Maillard Reaction Products as Antioxidants in Washed Cod and Washed Turkey Muscle Oxidized by Added Hemoglobin. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ling Liu
- The College of Food Science Shenyang Agricultural University, Shenyang Dongling Street No.120 Shenyang 110866 China
- Meat Science and Animal Biologics Discovery, 1933 Observatory Dr., Department of Animal and Dairy Sciences University of Wisconsin‐Madison Madison WI 53706 USA
| | - Jie Yin
- Meat Science and Animal Biologics Discovery, 1933 Observatory Dr., Department of Animal and Dairy Sciences University of Wisconsin‐Madison Madison WI 53706 USA
| | - Mark P. Richards
- Meat Science and Animal Biologics Discovery, 1933 Observatory Dr., Department of Animal and Dairy Sciences University of Wisconsin‐Madison Madison WI 53706 USA
| |
Collapse
|
42
|
Cao J, Yan H, Liu L. Optimized preparation and antioxidant activity of glucose-lysine Maillard reaction products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Zhao S, Huang Y, McClements DJ, Liu X, Wang P, Liu F. Improving pea protein functionality by combining high-pressure homogenization with an ultrasound-assisted Maillard reaction. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107441] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Response Surface Methodology for Optimization of L-Arabinose/Glycine Maillard Reaction through Microwave Heating. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1535296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
L-Arabinose is a low-calorie sweetener that inhibits sucrose absorption by inhibiting sucrase activity in the human intestinal tract. Response surface methodology (RSM) was applied to optimize the processing parameters of the L-arabinose/glycine Maillard reaction to improve the browning degree and antioxidant activity of Maillard reaction products (MRPs) through microwave heating. The effect of heating time, volume ratio of propylene glycol to double distilled water (ddH2O), and pH on MRPs was evaluated. A change in the volume ratio of propylene glycol to ddH2O, heating time, and pH was associated with a largely changed browning degree and reducing power of the MRPs. RSM predicated optimum conditions that under substrates of L-arabinose/glycine at a ratio of 2 : 1 (w/w) and concentration of 10% (w/v), a heating time of 7.44 min, volume ratio of propylene glycol to ddH2O 0.93, and pH 10.44 were optimum conditions for the Maillard reaction. The predicted data from the optimum reaction conditions coincided well with the experiment results. The main flavor of MRPs is roasted aroma, and the emulsifying ability of MRPs was 0.367 at 500 nm by microwave heating under the optimal Maillard reaction conditions. MRPs derived from L-arabinose and D-glucose had similar activities. However, a slightly greater activity was found with MRP derived from L-arabinose-glycine with a more volume. This study provided a new direction for the development of sweeteners in the future.
Collapse
|
45
|
Molecular structure and functional properties of glycinin conjugated to κ-carrageenan and guar gum: A comparative study. Food Chem 2022; 386:132810. [PMID: 35364496 DOI: 10.1016/j.foodchem.2022.132810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
Molecular structure and functional properties of glycinin conjugated to κ-carrageenan and guar gum using a dry-heating method were comparatively analyzed. Glycosylation was confirmed by analyzing the degree of grafting, protein subunit composition, infrared absorption profile, and changes in contents of protein secondary structures. K-carrageenan was proven to possess a greater susceptibility to be grafted to glycinin than guar gum due to its relatively low molecular weight and negatively charged characteristics. The improvement of solubility by glycosylation with guar gum near the isoelectric point of glycinin was better than that by glycosylation with κ-carrageenan. Glycinin glycosylated with both polysaccharides exhibited enhanced emulsifying activity and stability. The enhanced apparent viscosity, elastic modulus, and viscous modulus also demonstrated that glycosylation promoted the appearance of stable elastic network structure. In summary, glycosylation with these two polysaccharides conferred glycinin superior emulsifying and rheological properties, and κ-carrageenan exhibited a better performance compared to guar gum.
Collapse
|
46
|
Feng J, Berton-Carabin CC, Fogliano V, Schroën K. Maillard reaction products as functional components in oil-in-water emulsions: A review highlighting interfacial and antioxidant properties. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Li H, Pan Y, Li C, Yang Z, Rao J, Chen B. Design, synthesis and characterization of lysozyme-gentisic acid dual-functional conjugates with antibacterial/antioxidant activities. Food Chem 2022; 370:131032. [PMID: 34500294 DOI: 10.1016/j.foodchem.2021.131032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023]
Abstract
Both microbiological and chemical food spoilages remain to be the major challenges in the food industry's efforts to combat food waste and loss because of the lack of high efficacy food preservatives. In this study, dual-functional conjugates that simultaneously suppress both lipid oxidation and microorganism growth are fabricated by covalently conjugating natural antioxidant gentisic acid (GA) on native antibacterial lysozyme (Lys). The mixing ratio of Lys and GA determines the particle size, morphology, antioxidant activity, and antimicrobial performance of the ensuing conjugates. With more of GA being grafted, a drastic decrease in the net surface charge with the concomitant occurrence of aggregations are observed in the conjugates. The maximum antioxidant activity and antibacterial performance of the conjugates is achieved when Lys:GA molar ratio is 1:112. The findings could guide the rational design of future functional food ingredients that combine multiple natural bioactive compounds to effectively intervene food waste and loss.
Collapse
Affiliation(s)
- Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA
| | - Chun Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA.
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
48
|
Zhou N, Zhao Y, Yao Y, Wu N, Xu M, Du H, Wu J, Tu Y. Antioxidant Stress and Anti-Inflammatory Activities of Egg White Proteins and Their Derived Peptides: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5-20. [PMID: 34962122 DOI: 10.1021/acs.jafc.1c04742] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxidative stress and chronic inflammation are the common pathological bases of chronic diseases such as atherosclerosis, cancer, and cardiovascular diseases, but most of the treatment drugs for chronic diseases have side effects. There is an increasing interest to identify food-derived bioactive compounds that can mitigate the pathological pathways associated with oxidative stress and chronic inflammation. Egg white contain a variety of biologically active proteins, many of which have antioxidant and anti-inflammatory activities and usually show better activity after enzymatic hydrolysis. This review covers the antioxidative stress and anti-inflammatory activities of egg white proteins and their derived peptides and clarifies their mechanism of action in vivo and in vitro. In addition, the link between oxidative stress and inflammation as well as their markers are reviewed. It suggests the potential application of egg white proteins and their derived peptides and puts forward further research prospects.
Collapse
Affiliation(s)
- Na Zhou
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
49
|
Guar gum/carboxymethyl cellulose based antioxidant film incorporated with halloysite nanotubes and litchi shell waste extract for active packaging. Int J Biol Macromol 2022; 201:1-13. [PMID: 34998867 DOI: 10.1016/j.ijbiomac.2021.12.198] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/07/2021] [Accepted: 12/31/2021] [Indexed: 01/17/2023]
Abstract
The incorporation of bioactive extract from the food waste into biopolymers is a promising green approach to fabricate active films with antioxidant activity for food packaging. The present study developed bioactive antioxidant films based on guar gum/carboxymethyl cellulose incorporated with halloysite-nanotubes (HNT) and litchi shell extract (LSE). The effects of combining HNT and LSE on the physical, mechanical, and antioxidant properties of the films were analyzed. The results showed LSE caused a reduction in tensile strength; however, the elongation at break substantially improved from 29.93 to 62.12%. FTIR revealed covalent interaction and hydrogen bonding between guar gum/carboxymethyl cellulose and LSE. The XRD and SEM study confirmed interactions among the polymer matrix and LSE compounds. The addition of LSE to guar gum/carboxymethyl cellulose films notably increased the UV-light barrier properties. Moreover, the antioxidant activity of all GCH/LSE substantially improved from 9.46 to 91.52%, more than a ten-fold increase compared to composite neat GCH film. Finally, the oxidative stability of roasted peanuts packed in fabricated GCH/LSE sachets improved after 8 days. Guar gum/carboxymethyl cellulose containing LSE as an antioxidant agent could be applied as food packaging for low water activity oxygen-sensitive food.
Collapse
|
50
|
Meng Y, Chen D, Qiu N, Mine Y, Keast R, Meng S, Zhu C. Comparative N-glycoproteomic analysis of Tibetan and lowland chicken fertilized eggs: Implications on proteins biofunction and species evolution. J Food Biochem 2021; 46:e14006. [PMID: 34859904 DOI: 10.1111/jfbc.14006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
The characterization and functionality of protein glycosylation among different related species are of common interest. Herein, non-standard quantification and N-glycosylation enrichment technology combined with ultra-high liquid chromatography-tandem mass spectrometry were used to establish detailed N-glycoproteomics of fertilized eggs, and quantitatively compared between Tibetan and lowland chicken. A total of 396N-glycosites from 143 glycoproteins were found. Specifically, compared with lowland chicken egg white, 32N-glycosites of 22 glycoproteins were up-regulated and 57N-glycosites of 25 glycoproteins were down-regulated in Tibetan chicken egg white. Also, 137N-glycosites in 72 glycoproteins showed much higher-degree glycosylation and 36N-glycosites in 15 glycoproteins displayed lower-degree glycosylation in Tibetan chicken egg yolk than those in lowland chicken egg yolk. Through bioinformatic analysis, these varied glycoproteins were highly associated with antifreeze activity, hypoxia adaptation, coagulation cascade, and binding/immunity activities, which may be related to plateau hypoxia and cold stress. PRACTICAL APPLICATIONS: These findings provide a new insight on the role of biological egg N-glycoproteins related to environmental adaptation and evolution, which may be further applied in improving egg processing and human health, by developing biomolecules for food and medical industry.
Collapse
Affiliation(s)
- Yaqi Meng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Diao Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Ning Qiu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Russell Keast
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Sichong Meng
- Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Chunxia Zhu
- Center of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|