1
|
Ramatsetse KE, Ramashia SE, Mashau ME. Effect of partial mutton meat substitution with Bambara groundnut ( Vigna subterranea (L.) Verdc.) flour on physicochemical properties, lipid oxidation, and sensory acceptability of low-fat patties. Food Sci Nutr 2024; 12:4019-4037. [PMID: 38873485 PMCID: PMC11167189 DOI: 10.1002/fsn3.4059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/31/2023] [Accepted: 02/18/2024] [Indexed: 06/15/2024] Open
Abstract
Health concerns regarding fat consumption, as well as shifts in customer preference, have prompted substantial studies into low-fat products. This study examined the nutritional, color, functional, and antioxidant properties of Bambara groundnut (BGN) flour varieties (cream, brown, and red-coated) grains as well as their influence on the physicochemical properties, lipid oxidation, and sensory acceptability of low-fat mutton patties. The patties were formulated with 2.5%, 5%, 7.5%, and 10% of BGN flour for each variety, and 100% mutton patties were used as a control. The BGN flours showed significant (p < .05) differences in their nutritional composition (except for ash content), color, functional (excluding emulsion stability), and antioxidant properties. The increase in the percentage of substitution of BGN flours significantly increased the fiber (0.00% to 0.79%), ash (1.16% to 1.99%), and carbohydrates (2.14% to 1.99%) contents of the formulated mutton patties. However, moisture and protein contents decreased. The cooking yield of the formulated patties significantly increased with the increase in the percentage substitution of BGN flours (2.5%-10%), with values ranging from 76.39% to 86.80%, but the diameter reduction was limited. The increase in the inclusion of BGN flours significantly increased the lightness, hue angle, color difference, and whiteness of patties. Nevertheless, the redness, yellowness, chroma, and yellowness index of the patties decreased. The hardness and resilience of formulated patties significantly increased, with values varying from 16.41 to 17.66 N, and from 0.35 to 0.48 J/J, respectively, whereas the springiness, cohesiveness, and chewiness decreased. The lipid oxidation of formulated mutton patties significantly increased from Days 7 to 21, but was still less than that of the control sample within storage days. The sensory properties of formulated patties were not significantly different from the control sample and were above the acceptable score of five. All BGN varieties had positive effects on the mutton patties, more especially red, followed by brown, and cream, respectively. The inclusion of a 10% red BGN flour variety is highly recommended due to its significant impact on mutton patties. Nevertheless, different types of BGN varieties can each be used as additives in mutton patties without having detrimental effects on the quality parameters of the patties.
Collapse
Affiliation(s)
- Kgaogelo Edwin Ramatsetse
- Department of Food Science and Technology, Faculty of Science, Engineering and AgricultureUniversity of VendaThohoyandouSouth Africa
| | - Shonisani Eugenia Ramashia
- Department of Food Science and Technology, Faculty of Science, Engineering and AgricultureUniversity of VendaThohoyandouSouth Africa
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - Mpho Edward Mashau
- Department of Food Science and Technology, Faculty of Science, Engineering and AgricultureUniversity of VendaThohoyandouSouth Africa
| |
Collapse
|
2
|
Dubal ÍTP, Coradi PC, Dos Santos Bilhalva N, Biduski B, Lutz É, Mallmann CA, Anschau KF, Flores EMM. Monitoring of carbon dioxide and equilibrium moisture content for early detection of physicochemical and morphological changes in soybeans stored in vertical silos. Food Chem 2024; 436:137721. [PMID: 37864969 DOI: 10.1016/j.foodchem.2023.137721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
In the context of grain storage, impurities and soybeans defects in soybeans can significantly impact the equilibrium moisture content. This, cause moisture migration and heating of the stored product, leading to increased respiratory activity. Furthermore, temperature measurements within stored grain mass do not provide sufficient information for effective grain quality monitoring, primarily due to the grains excellent thermal insulating properties. To address this issue, we propose a different approach: monitoring the equilibrium moisture content and CO2 concentration as indicators of soybean respiration within the intergranular spaces of the stored grain mass. This study propose monitoring the CO2 concentration in the intergranular air along with environmental variables for early detection of physicochemical and morphological changes in soybeans stored in vertical silos using near infrared spectroscopy, X-ray diffraction and scanning electron microscopy. Thermogravimetry and spectrometry analyses revealed that the interrelationships among variables had a direct impact on soybean quality attributes. Specifically, the presence of soybeans with 5.2 % impurities led to an increased in respiration rates, resulting in a CO2 concentration of up to 5000 ppm and the consumption of up to 3.6 % of dry matter. Consequently, there were changes in the percentage of ash, proteins, fibers, and oils compositions. These findings highlight the potential for indirect assessments, enabling the prediction of physicochemical quality and contamination of soybeans stored in vertical silos through continuous monitoring of CO2 concentration and equilibrium moisture content.
Collapse
Affiliation(s)
- Ítala Thaisa Padilha Dubal
- Department Agricultural Engineering, Rural Sciences Center, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Paulo Carteri Coradi
- Department Agricultural Engineering, Rural Sciences Center, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil; Laboratory of Postharvest (LAPOS), Campus Cachoeira do Sul, Federal University of Santa Maria, 96506-322 Cachoeira do Sul, Rio Grande do Sul, Brazil.
| | - Nairiane Dos Santos Bilhalva
- Department Agricultural Engineering, Rural Sciences Center, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Bárbara Biduski
- Food Quality and Sensory Science Department, Teagasc Food Research Centre Ashtown, Dublin City D15 KN3K, Ireland
| | - Éverton Lutz
- Department Agricultural Engineering, Rural Sciences Center, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Carlos Augusto Mallmann
- Laboratory of Mycotoxicological Analyses (LAMIC), Federal University of Santa Maria, 97105-970, Santa Maria, Rio Grande do Sul, Brazil
| | - Kellen Francine Anschau
- Department of Chemical Engineering, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Erico Marlon Moraes Flores
- Department of Chemical Engineering, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Cai Y, Zhang Z, Yang Z, Fang Z, Chen S, Zhang X, Li W, Zhang Y, Zhang H, Sun Z, Zhang Y, Li Y, Liu L, Zhang W, Xue X. Performance of a superamphiphobic self-cleaning passive subambient daytime radiative cooling coating on grain and oil storage structures. Heliyon 2023; 9:e14599. [PMID: 37089341 PMCID: PMC10114159 DOI: 10.1016/j.heliyon.2023.e14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
The thermal performance of a novel exterior coating material for commonly used grain and food-grain oil structures was investigated. Grain structures included a concrete squat silo and a concrete warehouse while the edible oil structure was a concrete sided tank. The exterior coating provided excellent moisture runoff and solar reflectance properties and is best described as a superamphiphobic self-cleaning passive subambient daytime radiative cooling (SSC-PSDRC) coating. The coating exhibited a remarkable subambient daytime cooling effect in various structures in different climatic regions. Compared with the roof surface temperatures of a cool white-coated concrete grain silo and a gray carbon iron-based edible oil storage tank, those of the PSDRC coated top surfaces could be reduced by 37 °C and 33 °C, respectively. The roof surface temperature of a warehouse painted with a cool-white coating-with a solar reflectance of 0.9 and an emissivity of 0.85-and that of a warehouse with the roof installed with aluminised polymer waterproof membranes were 19 °C and 18 °C higher than that of the PSDRC warehouse, respectively. Consequently, the interior temperature of the wheat pile in the PSDRC grain silo was 10 °C lower than that in the control squat silo. With the inner loop flow temperature control system operating, the interior air temperatures of the PSDRC west-facing separate space were 6 °C and 3 °C higher than those of the cool-white coated and control west-facing separate spaces, respectively. Even after the application of PSDRC coating for only a few days, the interior air temperature of the PSDRC oil storage tank was reduced by 38 °C, and the interior temperature of the oil storage tank was reduced by 4 °C. Furthermore, in practical applications, the coating showed impressive superamphiphobic self-cleaning capabilities and super aging resistance. The wide applications of the coating would have far-reaching, global implications for maintaining grain and edible oil products, particularly in the sub-tropical climates.
Collapse
Affiliation(s)
- Yuanzhu Cai
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Zihan Zhang
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
- Department of Information and Art Design, Henan Forestry Vocational College, Luoyang, 471002, China
| | - Zhuo Yang
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Zhi Fang
- Zhangjiagang Grain Purchase and Sales Corporation, Zhangjiagang, 215600, China
| | - Shuping Chen
- School of Computer Science and Technology, Xinjiang Normal University, Urumqi, 830054, China
| | - Xiaolong Zhang
- Xinjiang Uygur Autonomous Region Grain Reserve Management Co., Ltd., Urumqi, 830015, China
| | - Wen Li
- School of Computer Science and Technology, Xinjiang Normal University, Urumqi, 830054, China
| | - Yinghua Zhang
- Xinjiang Uygur Autonomous Region Grain Reserve Management Co., Ltd., Urumqi, 830015, China
| | - Hongqiang Zhang
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Zhipeng Sun
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Yangang Zhang
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Yanwen Li
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Lianhua Liu
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Weidong Zhang
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
- Corresponding author.
| | - Xiao Xue
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
- Corresponding author.
| |
Collapse
|
4
|
Nutritional Comparison of Sacha Inchi (Plukenetia volubilis) Residue with Edible Seeds and Nuts in Taiwan: A Chromatographic and Spectroscopic Study. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:9825551. [PMID: 36245564 PMCID: PMC9553689 DOI: 10.1155/2022/9825551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022]
Abstract
Sacha inchi is a source of quality commercial oil in Taiwan. Oil extraction results in sacha inchi residue have not been utilized and not much investigated. Different edible seeds and nuts have different levels of nutrients. This study aims (a) to determine the oil, moisture, ash, protein, carbohydrate, type of fatty acid, resveratrol, and type of sugar in edible seeds and nuts, including sacha inchi residue, and (b) to determine the model to predict the five macronutrients using NIR spectroscopy. The samples used were candlenut, peanut, sesame, sunflower, sacha inchi residue, and black bean. Determination was conducted using NIR spectroscopy, NMR spectroscopy, LC-MS/MS, and HPLC-ELSD. NIR spectroscopy prediction results show that candlenut is rich in oil, and sacha inchi residue is rich in minerals, protein, and moisture. The correct prediction model for oil and moisture is principal component regression, while partial least squares are for ash, protein, and carbohydrates. NMR spectroscopy results showed that all samples were rich in polyunsaturated fatty acids. Sacha inchi residue is rich in omega 3. LC-MS/MS results showed that all samples contained resveratrol, and its highest level was found in sesame. HPLC-ELSD results showed eight types of sugars in the samples. High sucrose was found in sacha inchi residue, sunflower, sesame, and candlenut. The results are expected to provide information on nutrient levels in seeds and nuts to consumers and people who deal with nutrition. Also, results are expected to increase the economic value of sacha inchi residue as a source of diversification of food products in Taiwan.
Collapse
|
5
|
Razzak MA, Jeong MS, Kim MJ, Cho SJ. Unraveling the phase behavior of cricket protein isolate and alginate in aqueous solution. Food Chem 2022; 394:133527. [PMID: 35749882 DOI: 10.1016/j.foodchem.2022.133527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
The associative phase behavior of cricket protein isolate (CPI) and sodium alginate (AL) in aqueous solutions was explored using turbidimetry, methylene blue spectroscopy, zeta potentiometry, dynamic light scattering, and confocal microscopy as a function of pH, biopolymer ratio, total biopolymer concentration (CT), and ionic strength. When both biopolymers had net-negative charges, soluble complexes formed between pH 6.0 and 8.0, however when both biopolymers had opposing net charges, insoluble complexes formed as complex coacervates below pH 5.5, defined as pHφ1, followed by precipitates below another critical pH 3.0 (pHp). Increasing the CPI:AL weight ratio or CT facilitated complex formation, and the addition of salts (NaCl/KCl) had a salt-enhancement and salt-reduction impact at low and high salt concentrations, respectively. Ionic interactions between oppositely charged CPI and AL were mainly responsible for the formation of their insoluble complexes, while hydrogen bonding and hydrophobic interactions also played significant roles.
Collapse
Affiliation(s)
- Md Abdur Razzak
- Kangwon Institute of Inclusive Technology (KIIT), 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea; Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Min-Soo Jeong
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Min Jeong Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Seong-Jun Cho
- Kangwon Institute of Inclusive Technology (KIIT), 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea; Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea.
| |
Collapse
|
6
|
Falua KJ, Pokharel A, Babaei-Ghazvini A, Ai Y, Acharya B. Valorization of Starch to Biobased Materials: A Review. Polymers (Basel) 2022; 14:polym14112215. [PMID: 35683888 PMCID: PMC9183024 DOI: 10.3390/polym14112215] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Many concerns are being expressed about the biodegradability, biocompatibility, and long-term viability of polymer-based substances. This prompted the quest for an alternative source of material that could be utilized for various purposes. Starch is widely used as a thickener, emulsifier, and binder in many food and non-food sectors, but research focuses on increasing its application beyond these areas. Due to its biodegradability, low cost, renewability, and abundance, starch is considered a "green path" raw material for generating porous substances such as aerogels, biofoams, and bioplastics, which have sparked an academic interest. Existing research has focused on strategies for developing biomaterials from organic polymers (e.g., cellulose), but there has been little research on its polysaccharide counterpart (starch). This review paper highlighted the structure of starch, the context of amylose and amylopectin, and the extraction and modification of starch with their processes and limitations. Moreover, this paper describes nanofillers, intelligent pH-sensitive films, biofoams, aerogels of various types, bioplastics, and their precursors, including drying and manufacturing. The perspectives reveal the great potential of starch-based biomaterials in food, pharmaceuticals, biomedicine, and non-food applications.
Collapse
Affiliation(s)
- Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Department of Agricultural & Biosystems Engineering, University of Ilorin, Ilorin PMB 1515, Nigeria
| | - Anamol Pokharel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Correspondence:
| |
Collapse
|
7
|
Liu Z, Fu Y, Zhang J, Shen Q. Comparison on physicochemical properties of mung bean flour and isolated starch under different level of high static pressure. Cereal Chem 2021. [DOI: 10.1002/cche.10472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhenyu Liu
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Yongxia Fu
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Jing Zhang
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Qun Shen
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| |
Collapse
|
8
|
Duijsens D, Gwala S, Pallares AP, Pälchen K, Hendrickx M, Grauwet T. How postharvest variables in the pulse value chain affect nutrient digestibility and bioaccessibility. Compr Rev Food Sci Food Saf 2021; 20:5067-5096. [PMID: 34402573 DOI: 10.1111/1541-4337.12826] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 01/12/2023]
Abstract
Pulses are increasingly being put forward as part of healthy diets because they are rich in protein, (slowly digestible) starch, dietary fiber, minerals, and vitamins. In pulses, nutrients are bioencapsulated by a cell wall, which mostly survives cooking followed by mechanical disintegration (e.g., mastication). In this review, we describe how different steps in the postharvest pulse value chain affect starch and protein digestion and the mineral bioaccessibility of pulses by influencing both their nutritional composition and structural integrity. Processing conditions that influence structural characteristics, and thus potentially the starch and protein digestive properties of (fresh and hard-to-cook [HTC]) pulses, have been reported in literature and are summarized in this review. The effect of thermal treatment on the pulse microstructure seems highly dependent on pulse type-specific cell wall properties and postharvest storage, which requires further investigation. In contrast to starch and protein digestion, the bioaccessibility of minerals is not dependent on the integrity of the pulse (cellular) tissue, but is affected by the presence of mineral antinutrients (chelators). Although pulses have a high overall mineral content, the presence of mineral antinutrients makes them rather poorly accessible for absorption. The negative effect of HTC on mineral bioaccessibility cannot be counteracted by thermal processing. This review also summarizes lessons learned on the use of pulses for the preparation of foods, from the traditional use of raw-milled pulse flours, to purified pulse ingredients (e.g., protein), to more innovative pulse ingredients in which cellular arrangement and bioencapsulation of macronutrients are (partially) preserved.
Collapse
Affiliation(s)
- Dorine Duijsens
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Shannon Gwala
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Andrea Pallares Pallares
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Katharina Pälchen
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Marc Hendrickx
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Ma M, Xie Y, Wang C. Effect of anthocyanin‐rich extract from black soybean coat on wheat dough rheology and noodle texture. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mengyao Ma
- Provincal Key Laboratory for Transformation and Utilization of Cereal Resource Henan University of Technology Zhengzhou People's Republic of China
- College of Food Science and Engineering Henan University of Technology Zhengzhou People's Republic of China
| | - Yanli Xie
- Provincal Key Laboratory for Transformation and Utilization of Cereal Resource Henan University of Technology Zhengzhou People's Republic of China
- College of Food Science and Engineering Henan University of Technology Zhengzhou People's Republic of China
| | - Chen Wang
- Provincal Key Laboratory for Transformation and Utilization of Cereal Resource Henan University of Technology Zhengzhou People's Republic of China
- College of Food Science and Engineering Henan University of Technology Zhengzhou People's Republic of China
| |
Collapse
|
10
|
Cortez-Trejo MC, Mendoza S, Loarca-Piña G, Figueroa-Cárdenas JD. Physicochemical characterization of protein isolates of amaranth and common bean and a study of their compatibility with xanthan gum. Int J Biol Macromol 2020; 166:861-868. [PMID: 33157134 DOI: 10.1016/j.ijbiomac.2020.10.242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 11/27/2022]
Abstract
Vegetables are considered to be a sustainable source of promising biomaterials such as proteins and polysaccharides. In this study, four protein isolates (amaranth protein isolate API, amaranth globulin-rich protein isolate AGR, bean protein isolate BPI, and bean phaseolin-rich protein isolate BPR) were structurally characterized under different pH conditions (2-12) and their compatibility behavior with xanthan gum (XG) in aqueous medium was described. All protein isolates showed β turn and β sheet (78.24-81.11%), as the major secondary structures without statistically significant difference under the pH conditions surveyed. Protein isolates show solubility at pH ≤ 3 (40.4-85.1%) and pH ≥ 8 (57.6-99.9%) and surface hydrophobicity results suggest protein denaturation at pH ≤ 3. In the compatibility study, API/XG ratios between 1:1 and 5:1 at pH from 7 to 9 and the BPI/XG ratios from 1:1 to 20:1 at pH 7 form gels that do not require heating nor crosslinking agent addition. Zeta potential results, on the other hand, evidenced that formation of gels is driven by attractive electrostatic interaction of the charged regions of both biopolymers and intermolecular interactions such as hydrogen bonds.
Collapse
Affiliation(s)
- M C Cortez-Trejo
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Santiago de Querétaro, Querétaro, Mexico
| | - S Mendoza
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Santiago de Querétaro, Querétaro, Mexico.
| | - G Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Santiago de Querétaro, Querétaro, Mexico
| | - J D Figueroa-Cárdenas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, 76230 Querétaro, Querétaro, Mexico
| |
Collapse
|
11
|
Li P, Li Y, Wang L, Zhang H, Qi X, Qian H. Study on water absorption kinetics of black beans during soaking. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Timm NDS, Lang GH, Ramos AH, Pohndorf RS, Ferreira CD, Oliveira MD. Effects of drying methods and temperatures on protein, pasting, and thermal properties of white floury corn. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Newiton da Silva Timm
- Department of Agroindustry Science and Technology Federal University of Pelotas Pelotas Brazil
- Rural Sciences Center Federal University of Santa Maria Santa Maria Brazil
| | - Gustavo Heinrich Lang
- Department of Agroindustry Science and Technology Federal University of Pelotas Pelotas Brazil
| | - Adriano Hirsch Ramos
- Department of Agroindustry Science and Technology Federal University of Pelotas Pelotas Brazil
| | | | | | - Maurício de Oliveira
- Department of Agroindustry Science and Technology Federal University of Pelotas Pelotas Brazil
- Plant Science Department Rothamsted Research Harpenden UK
| |
Collapse
|
13
|
Gundogan R, Can Karaca A. Physicochemical and functional properties of proteins isolated from local beans of Turkey. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109609] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Argel NS, Ranalli N, Califano AN, Andrés SC. Influence of partial pork meat replacement by pulse flour on physicochemical and sensory characteristics of low-fat burgers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3932-3941. [PMID: 32329079 DOI: 10.1002/jsfa.10436] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/07/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Numerous non-meat ingredients, such as hydrocolloids, starches, and fibers, have been studied to improve texture characteristics and increase the ability to bind water in low-fat meat products. In this sense, pulses flours (lentil, chickpea, pea, and bean) were studied at two levels and various water:flour ratios to replace 10-44% pork meat in low-fat burgers and determine the effect on their sensory and technological properties (cooking yield, expressible liquid, diameter reduction, and color and texture profile). RESULTS All pork-meat burgers that included pulse flour showed higher cooking yields, lower diameter reductions, and expressible liquids than all-meat burgers, which displayed better oil and water retention. Higher water additions resulted in burgers with less hardness. Burgers with 80 g kg-1 lentil flour in all water/flour ratios presented the lowest total color difference (ΔE) compared with the commercial control. Burgers with the higher level of all pulse flour tested and medium water levels showed acceptable sensory scores. CONCLUSIONS Partial pork meat replacement by different legume flour (lentil, chickpea, pea, and bean), at levels of 80 and 150 g kg-1 and water/flour ratios of 1250, 1600, and 2000 g kg-1 resulted in low-fat burgers with adequate physicochemical characteristics. Moreover, the sensorial evaluation of the formulations with the maximum flour addition and intermediate water/flour ratio showed that they had good sensorial acceptability with no effect of flour type. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Natalia Soledad Argel
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET, CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Natalia Ranalli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET, CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Departamento Ingeniería Química, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alicia Noemí Califano
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET, CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Silvina Cecilia Andrés
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET, CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
15
|
Sopiwnyk E, Young G, Frohlich P, Borsuk Y, Lagassé S, Boyd L, Bourré L, Sarkar A, Dyck A, Malcolmson L. Effect of pulse flour storage on flour and bread baking properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Wang C, Xie Y. Interaction of Protein Isolate with Anthocyanin Extracted from Black Soybean and Its Effect on the Anthocyanin Stability. J Food Sci 2019; 84:3140-3146. [PMID: 31613008 DOI: 10.1111/1750-3841.14816] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/27/2019] [Accepted: 08/22/2019] [Indexed: 11/28/2022]
Abstract
The interactions between black soybean protein isolate (B-SPI) and cyanidin 3-O-glucoside (C3G), anthocyanin extracted from black soybean coat was investigated under neutral conditions. The fluorescence spectra showed that C3G had fluorescence quenching effects on B-SPI. Thermodynamic parameters showed that ∆G < 0, which demonstrated that the binding was a spontaneous reaction. Since ΔH > 0 and ΔS > 0, the interactions between C3G and B-SPI was mainly hydrophobic interactions. Fourier infrared spectroscopy results suggested that the contents of α-helix and β-sheet structure showed an increasing trend, whereas the β-angle content displayed a decreasing trend. The degradation of C3G followed first-order kinetics at 85 °C and 100 °C. After the interactions with B-SPI, the degradation rate constant was decreased and the half-life of C3G was prolonged from 70.25 ± 0.90 min to 175.64 ± 38.04 min at 85 °C, from 62.68 ± 1.1 min to 72.51 ± 2.5 min at 100 °C (p < 0.05). The results indicated that the interactions of B-SPI and C3G improved the thermal stability of C3G under heating conditions.
Collapse
Affiliation(s)
- Chen Wang
- School of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, Henan, 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, 450001, People's Republic of China
| | - Yanli Xie
- School of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, Henan, 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
17
|
Demito A, Ziegler V, Goebel JTS, Konopatzki EA, Coelho SRM, Elias MC. Effects of refrigeration on biochemical, digestibility, and technological parameters of carioca beans during storage. J Food Biochem 2019; 43:e12900. [PMID: 31353740 DOI: 10.1111/jfbc.12900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/01/2022]
Abstract
The objective of this study was to evaluate the effects of grain moisture, temperature, and storage time on biochemical, digestibility, and technological parameters of carioca beans. The grains were stored at 16.7% and 13.8% of moisture at 12, 20, 28, and 36°C for 240 days. It was observed that a reduction in the storage temperature maintained the germination and vigor of the grains. The temperature of 36°C causes between 3.81% and 4.52% reduction in weight of a thousand grains and significant darkening. Carioca beans stored at 36°C exhibited hard-to-cook (HTC) defect at 80 days and increases in hardness after 240 days. The best digestibility indexes of carioca beans were obtained with refrigerated storage. The refrigerated storage (12°C) provides the best preservability of the grains throughout the storage, verified by the parameters biochemical, digestibility, and technological parameters. PRACTICAL APPLICATIONS: Carioca beans are among the most consumed beans in Brazil and their quality for consumption is directly influenced by storage conditions that alter color, nutritional value, bioactive, and cooking properties. Thus, this study seeks to present a practical and viable solution for stockist of bean grains, so that they can store these grains for long periods, maintaining the quality standards for commercialization. In addition, this technology allows the stockist to identify the best time for commercialization of the carioca beans, which has high added value.
Collapse
Affiliation(s)
- Angélica Demito
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Valmor Ziegler
- Instituto Tecnológico em Alimentos para a Saúde (Itt Nutrifor), Universidade do Vale do Rio dos Sinos, São Leopoldo, Brasil
| | | | - Evandro André Konopatzki
- Centro de Ciências Exatas e Tecnológicas, Universidade Estadual do Oeste do Paraná, Cascavel, Brasil
| | | | - Moacir Cardoso Elias
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brasil
| |
Collapse
|
18
|
Valencia-Mejía E, Batista KA, Fernández JJA, Fernandes KF. Antihyperglycemic and hypoglycemic activity of naturally occurring peptides and protein hydrolysates from easy-to-cook and hard-to-cook beans (Phaseolus vulgaris L.). Food Res Int 2019; 121:238-246. [PMID: 31108745 DOI: 10.1016/j.foodres.2019.03.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/11/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
Abstract
The present study was undertaken to examine the antidiabetic potential of naturally occurring peptides and hydrolysate fractions from easy-to-cook (ETC) and hard-to-cook (HTC) beans. All fractions were tested regarding their in vitro inhibitory activities against α-amylase and α-glucosidase as well as in vivo anti-hyperglycemic and hypoglycemic effects. Results evidenced that the peptide fractions with the lowest molecular weight (<3 kDa) have the highest inhibitory activities, and a 16.9%-89.1% inhibition of α-amylase and 34.4%-89.2% inhibition of α-glucosidase were observed. Regarding the antihyperglycemic activity, the fraction ETCNO3-10 showed a better performance than the positive control (acarbose). In addition, results from hypoglycemic activity evidenced that the tested peptide fractions were able to decrease the glucose levels at the same extension of glibenclamide, maintaining a constant basal glucose level without a postprandial hyperglycemia peak. Finally, it is possible to suggest that the naturally occurring peptides and hydrolysate fractions obtained from ETC and HTC common beans could be used in functional food production or pharmaceutical formulations to prevent diabetes.
Collapse
Affiliation(s)
- Erika Valencia-Mejía
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Polímeros, CEP: 74009-970 Goiânia, GO, Brazil
| | - Karla A Batista
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Polímeros, CEP: 74009-970 Goiânia, GO, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, CEP: 74270-040 Goiânia, GO, Brazil.
| | - Juan Jose A Fernández
- Universidad Autónoma del Estado de Morelos, Facultad de Medicina-UAEM, Leñeros S/N, 62350 Cuernavaca, Morelos, Mexico
| | - Kátia F Fernandes
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Polímeros, CEP: 74009-970 Goiânia, GO, Brazil.
| |
Collapse
|