1
|
Wu S, Lu Q, Xu L, Zhan S, Yang W, Ying Q, Yu H, Liu Y, Huang T. High-temperature pressure cooking on the quality of Basa (Pangasius bocourti) fish maw: Gelling, in vitro digestion and proteomic analysis. Food Chem 2025; 479:143826. [PMID: 40090195 DOI: 10.1016/j.foodchem.2025.143826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/02/2025] [Accepted: 03/08/2025] [Indexed: 03/18/2025]
Abstract
This study aims to evaluate the different processing methods, soaking-high-temperature pressure cooking (SHPC) and un-soaking-high-temperature pressure cooking (USHPC), on the quality of Basa (Pangasius bocourti) fish maw (BFM). Compared to traditionally cooked BFM, SHPC and USHPC treated BFM exhibited more severe disruption of collagen fibrils and network structure, significantly decreased texture, shear force and water holding capacity of BFM with the increase of HPC time, indicating that HPC could effectively reduce soaking time of BFM. Besides, as time HPC was 30 min, USHPC almost showed similar texture results to SHPC, and the former had the higher in vitro digestibility. Microstructural and proteomic analyses confirmed that SHPC displayed more exposed fibrous structures, with collagen fibers being more prone to be fragmentation and dissolution.
Collapse
Affiliation(s)
- Shiyu Wu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Qiuyu Lu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Lianying Xu
- Faculty of Food Science, Zhejiang Pharmaceutical University, Ningbo 315502, China
| | - Shengnan Zhan
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China.
| | - Wenge Yang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Qingfang Ying
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Haixia Yu
- Ocean Research Centre of Zhoushan, Zhejiang University, Zhoushan 31600, China
| | - Ying Liu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Tao Huang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
2
|
Gautam G, Mahanta CL. Enhancing the stability of tocotrienol nanoemulsion developed using ultrasonic treatment with amphiphilic starch nanoparticles serving as the matrix. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3654-3664. [PMID: 39822026 DOI: 10.1002/jsfa.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 12/25/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Octenylsuccinic anhydride (OSA) is one of the efficient compounds used in food industries as an emulsifier. The current study describes the augmentation of tocotrienol (T3) bioavailability by combining it with OSA and then converting it into a nanoemulsion. The creation of the nanoemulsions ASG-T3U10, ASG-T3U20 and ASG-T3U30 involved ultrasonication power at 300 W for 10, 20 and 30 cycles, respectively. RESULT The nanoemulsion particle sizes of ASG-T3U30, ASG-T3U20 and ASG-T3U10 ranged from 100 to 200, 200 to 300 and >300 nm (P < 0.05), respectively. ASG-T3U30 exhibited enhanced encapsulation efficiency and potential stability in a simulated gastrointestinal environment. A range of models such as zero order, Higuchi, Korsmeyer-Peppas, Peppas-Sahlin and Gompertz were utilized for the study of release kinetics. The models were found to be a good fit (R2 > 0.90) for the release of T3 in the gastrointestinal environment from an amphiphilic starch matrix. Storage stability tests showed that the emulsions were stable for 21 days of storage at 4 °C, but after 14 days, samples with particle diameters greater than 200 nm displayed the onset of Ostwald ripening. CONCLUSION The study showed that the stability of the nanoemulsion was effectively enhanced through increased ultrasonication cycles. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gitanjali Gautam
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, India
| | - Charu Lata Mahanta
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, India
| |
Collapse
|
3
|
Liu J, Mustapha WAW, Zhang X, Li H. Alkali-Induced Hydrolysis Facilitates the Encapsulation of Curcumin by Fish ( Cyprinus carpio L.) Scale Gelatin. Foods 2025; 14:1183. [PMID: 40238373 PMCID: PMC11989123 DOI: 10.3390/foods14071183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Curcumin-loaded alkali-induced fish scale gelatin (AFSG) was fabricated to evaluate its efficacy as a potential carrier for hydrophobic nutrients. In this study, the effect of the alkali hydrolysis period on the AFSG hydrolysate structure and corresponding curcumin loading efficiency have been elucidated. Results showed that alkali-induced degradation of gelatin yields different polymers with molecular weights (Mw) from 19319 to 3881 Da. Moderate alkali hydrolysis of fish scale gelatin exposes hydrophobic amino acids, enhancing hydrophobic interactions and increasing the proportion of these amino acids. This process also promotes a structural shift, favoring β-sheet formation while reducing α-helix content. Moreover, the curcumin loading efficiency of AFSG (2 h) (10.06 ± 0.27 μg/mL) was significantly higher than that of untreated gelatin (2.16 ± 0.39 μg/mL), while its excessive hydrolysis weakens hydrophobic interactions among hydrophobic amino acids, limiting their binding sites for curcumin. Fluorescence spectroscopy indicated that curcumin-induced fluorescence quenching in AFSG follows a static mechanism. Thus, the above results demonstrated AFSG's potential as an effective carrier for lipophilic nutrients with high encapsulation efficiency.
Collapse
Affiliation(s)
- Jia Liu
- Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 43600, Malaysia;
| | - Xiaoping Zhang
- Guizhou Fishery Research Institute, Guizhou Academy of Agricultural Science, Guiyang 550025, China;
| | - Haoxin Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 43600, Malaysia;
| |
Collapse
|
4
|
Yang X, Tan Z, Zhao W, Zheng Y, Ling S, Guo X, Dong X. Molecular interactions and gel network modulation in ionic polysaccharide-gelatin hydrogels for improved texture of skipjack tuna products. Food Chem 2025; 482:144002. [PMID: 40184742 DOI: 10.1016/j.foodchem.2025.144002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/09/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
The present study investigates the enhancement of skipjack tuna (Katsuwonus pelamis) texture by incorporating ionic polysaccharide-bovine bone gelatin (BBG) hydrogels. Three ionic polysaccharides, namely carboxymethyl chitosan (CMCS), konjac glucomannan (KGM), and oat β-glucan (OBG), were utilized in BBG-based hydrogels. And their effects on the rheological, structural, and protein properties of the composite gels were explored. Results showed that charge density influenced pore size, wall thickness, and cross-linking density in hydrogels. Structural analyses revealed that all polysaccharides promoted ordered rearrangements in protein secondary structure, increasing surface hydrophobicity and β-sheet content, with OBG having the pronounced effect by mediating gelation through enhanced hydrophobic interactions and hydrogen bonding. The incorporation of BBG + OBG-20 % hydrogels significantly enhanced water-holding capacity, and texture while reducing oral processing energy (p < 0.05). These findings provide insights for improving the texture of skipjack tuna products and demonstrate the potential application of polysaccharide-BBG hydrogels in enhancing the quality of fish products.
Collapse
Affiliation(s)
- Xiaoqing Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Weiping Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yunfang Zheng
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siqi Ling
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiaoming Guo
- Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
5
|
Khramova DS, Vityazev FV, Zueva NV, Chistiakova EA. Impact of pectin or xanthan addition to mashed potatoes gelled with κ-carrageenan on texture and rheology, oral processing behavior, bolus properties and in mouth starch digestibility. Int J Biol Macromol 2025; 308:142349. [PMID: 40120903 DOI: 10.1016/j.ijbiomac.2025.142349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 02/14/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Oral processing behavior affects starch bioavailability, but the impact of the oral phase on starch digestibility in potato dishes enriched with polysaccharides has not been clearly established. Therefore, pectin (1 %) or xanthan (1 %) were added to mushed potatoes (MP), which was gelled with κ-carrageenan (0.6 %), to produce the samples named MP-CarP MP-CarX, and MP-Car, respectively. Rheological, textural, sensory and electromyographic tests were conducted on the samples, along with bolus analysis. Both pectin and xanthan softened MP by 23 and 30 %, respectively, and reduced gel strength. The MP-CarP and MP-CarX were orally processed for shorter chewing times; however, their boluses exhibited a 20 % increase in cohesiveness. Chewing the MP-CarP highly enhanced salivation, resulting in a 45 % increase in bolus fragmentation, while the MP-CarX had the highest cohesiveness and lowest fragmentation. The variations in oral processing of MP with pectin or xanthan resulted in differing levels of starch hydrolysis and glucose release in the mouth. Chewing the MP-CarX resulted in lower levels of these processes, highlighting the importance of considering the oral phase of digestion when studying the hypoglycemic effects of polysaccharides. This is essential for developing new and effective approaches to improving glycemic control by incorporating fibers into commonly consumed starchy foods.
Collapse
Affiliation(s)
- Daria S Khramova
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia.
| | - Fedor V Vityazev
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia
| | - Natalya V Zueva
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia
| | - Elizaveta A Chistiakova
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia
| |
Collapse
|
6
|
Li L, Zhao Y, Mou A, Shen X, Liu Z, Luo Z. Influence of highland barley β-glucan on textural, structural, and rheological characteristics of corn starch. Int J Biol Macromol 2025; 307:141971. [PMID: 40081707 DOI: 10.1016/j.ijbiomac.2025.141971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Non-starch polysaccharides are added to grains as dietary fiber to enhance their processing characteristics. This study investigates the influence of highland barley β-glucan (HBBG) on the gelatinization, texture, rheological, structural, and retrogradation characteristics of corn starch (CS). The pasting analysis revealed that the trough, peak, and final viscosities of the CS gel were markedly decreased after HBBG addition. Rheological analysis indicated reduced viscosity, flow behavior, and elasticity of the gels following HBBG addition. Fourier Transform Infrared Spectroscopy (FTIR) displayed a red shift in wavenumber, suggesting increased hydrogen bonding interactions induced by HBBG. HBBG increased water holding in CS and reduced hardness by forming hydrogen bonds with the starch. Specifically, the hardness of CS containing 20 % HBBG decreased from 290.32 g to 66.1 g. X-ray diffraction indicated 7.98 and 8.58 % reductions in CS gels with 20 % HBBG after 24 h and 7 days of retrogradation, respectively. These findings offer valuable insights for the formulation of functional foods designed for elderly individuals.
Collapse
Affiliation(s)
- Liang Li
- Food Science College, Xizang Agriculture & Animal Husbandry University, Linzhi 860000, Xizang, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Xizang Characteristic Agricultural and Animal Husbandry Resources, Xizang Agriculture & Animal Husbandry University, Linzhi 860000, Xizang, China
| | - Yajie Zhao
- Food Science College, Xizang Agriculture & Animal Husbandry University, Linzhi 860000, Xizang, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Xizang Characteristic Agricultural and Animal Husbandry Resources, Xizang Agriculture & Animal Husbandry University, Linzhi 860000, Xizang, China
| | - Anqiong Mou
- Food Science College, Xizang Agriculture & Animal Husbandry University, Linzhi 860000, Xizang, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Xizang Characteristic Agricultural and Animal Husbandry Resources, Xizang Agriculture & Animal Husbandry University, Linzhi 860000, Xizang, China
| | - Xin Shen
- Food Science College, Xizang Agriculture & Animal Husbandry University, Linzhi 860000, Xizang, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Xizang Characteristic Agricultural and Animal Husbandry Resources, Xizang Agriculture & Animal Husbandry University, Linzhi 860000, Xizang, China
| | - Zhendong Liu
- Food Science College, Xizang Agriculture & Animal Husbandry University, Linzhi 860000, Xizang, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Xizang Characteristic Agricultural and Animal Husbandry Resources, Xizang Agriculture & Animal Husbandry University, Linzhi 860000, Xizang, China.
| | - Zhang Luo
- Food Science College, Xizang Agriculture & Animal Husbandry University, Linzhi 860000, Xizang, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Xizang Characteristic Agricultural and Animal Husbandry Resources, Xizang Agriculture & Animal Husbandry University, Linzhi 860000, Xizang, China
| |
Collapse
|
7
|
Gu S, Wang Z, Dong J, Bao Z, Zeng M, He Z, Chen Q, Chen J. Effect of molecular weight and distribution of bovine bone gelatin on the cross-linking gelation induced by transglutaminase. Int J Biol Macromol 2025; 294:139306. [PMID: 39753179 DOI: 10.1016/j.ijbiomac.2024.139306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
In this work, six bovine bone gelatin (type B) samples with varying molecular weight (MW) fractions, comprising α-chains, high- and low-MW fractions, were prepared using ethanol precipitation and pH adjustment. The influence of molecular weight distribution (MWD) on gelatin gel strength was examined, along with the effects of these different MW fractions on microbial transglutaminase (MTGase) cross-linking gelatin. The results showed that, without MTGase treatment, high-MW fractions acted as key fillers in the formation of gelatin gel networks, while α-chains and their aggregates played a central role. In contrast, the gelation ability of low-MW fractions was negligible. MTGase cross-linking significantly increased gel strength in both high- and low-MW samples. For instance, the gel strength of the high-MW sample enhanced from 874.4 g to 1425.9 g, while that of the low-MW sample rose from 186.4 g to 340.4 g. However, gelatin with an MWD featuring fewer high- and low-MW fractions and a higher proportion of α-chains and their aggregates, exhibited a significant decrease in gel strength, which declined from 740.8 g to 560.0 g. These findings emphasized the distinct impact of MW fractions on enzymatic gelation.
Collapse
Affiliation(s)
- Siyi Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Junli Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhan Bao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Wang K, Zhan S, Yang J, Lou Q, Huang T. Investigation of Emulsifying Properties and Stability of Fish Gelatin and Tea Saponin Complex Emulsion System. J Texture Stud 2025; 56:e70016. [PMID: 40176359 DOI: 10.1111/jtxs.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 04/04/2025]
Abstract
In this study, environmental stability, rheological properties, and structural characterization of co-stabilized emulsions using fish gelatin (FG) and tea saponin (TS) were investigated. The results demonstrated that the addition of TS significantly enhanced the emulsifying properties of FG, and the FG-TS0.1% emulsion had the smallest particle size. TS and FG co-stabilized emulsions provided resistance to salt and high temperatures. Optical microscopy and CLSM showed that the addition of TS made FG more effectively adsorb at the oil-water interface, leading to the formation of more uniform oil droplet sizes. Additionally, the addition of TS increased the viscosity of FG emulsions, which reduced emulsion flocculation. Results of intrinsic fluorescence, FTIR, and surface hydrophobicity revealed that the addition of TS altered the secondary structure of FG, enhancing surface hydrophobicity and improving emulsification. In conclusion, the moderate addition of TS significantly enhanced the emulsification and rheological properties of FG, suggesting new potential applications for FG in various industries.
Collapse
Affiliation(s)
- Kaixuan Wang
- College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Shengnan Zhan
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Jianyuan Yang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiaoming Lou
- College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Tao Huang
- College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Su XN, Khan MF, Xin-Ai, Liu DL, Liu XF, Zhao QL, Cheong KL, Zhong SY, Li R. Fabrication, modification, interaction mechanisms, and applications of fish gelatin: A comprehensive review. Int J Biol Macromol 2025; 288:138723. [PMID: 39672411 DOI: 10.1016/j.ijbiomac.2024.138723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Fish gelatin (FG) is an essential natural biopolymer isolated from aquatic sources and has been considered as a feasible substitute for mammalian gelatins. However, its inferior mechanical and gelling properties limit its applications. Consequently, FG has been modified using various methods. This review summarizes the extraction techniques (including traditional acid and alkaline methods, as well as newer technologies such as ultrasonic-assisted and microwave-assisted extraction), modification strategies (mechanical treatments, physical mixing with polysaccharides, utilization of the Hofmeister effect, chemical modifications, etc.), along with their mechanisms of action. Additionally, we discussed the applications of FG and its modified products. Furthermore, this review highlights the safety and prospects for FG and its derivatives. The mechanical properties and biological functions of FGs are enhanced after modification. Thus, modified FG composites exhibit diverse applications in areas such as foaming agents and emulsifiers, food packaging, three-dimensional printing, drug delivery systems and tissue engineering. This paper aims to provide comprehensive information for future research on FG with the intention of broadening its applicability within the industries of food, cosmetics, and pharmaceuticals. Nevertheless, the development of tough gels, aerogels, and stimuli-responsive hydrogels based on FG requires further investigation.
Collapse
Affiliation(s)
- Xian-Ni Su
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Muhammad Fahad Khan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Xin-Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| | - Dan-Lei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Xiao-Fei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Qiao-Li Zhao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| | - Sai-Yi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China.
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| |
Collapse
|
10
|
Wang Y, Zhang L, Cao G, Li Z, Du M. Effect of Heat Treatment on Gelatin Properties and the Construction of High Internal Phase Emulsions for 3D Printing. Foods 2024; 13:4009. [PMID: 39766952 PMCID: PMC11728344 DOI: 10.3390/foods13244009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
The effect of tilapia skin gelatin properties on the characteristics of high internal phase emulsions (HIPEs) and the quality of 3D printing remains unidentified. In this work, HIPEs were constructed by gelatin with various properties that were obtained by heat treatment. The results indicated that the gelatin undergoes degradation gradually with an increase in heating intensity. The highest values of intrinsic fluorescence intensity, surface hydrophobicity, and emulsification were obtained when the heating time was 5 h. The gel strength and hardness of gelatin hydrogels were negatively correlated with heat treatment temperature. HIPEs constructed by gelatin extracted at 70 °C demonstrated a suitable material for 3D printing. The storage modulus (G') and viscosity of HIPEs exhibited a similar tendency as the gel strength of gelatin. The microstructure of HIPEs revealed that gelatin established a gel network around oil droplets, and the higher G' of HIPEs corresponded to a more compact network structure. This study elucidated the correlation between the structure and properties of gelatin, offering essential insights for the formulation of HIPEs by natural gelatin, which is suitable for applications across several domains.
Collapse
Affiliation(s)
| | - Ling Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (G.C.); (Z.L.)
| | | | | | - Ming Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (G.C.); (Z.L.)
| |
Collapse
|
11
|
Li S, Mao X, Diao X, Yang K, Shan K, Li C. Effects of sodium tripolyphosphate on the quality and digestion properties of PSE pork. Food Chem 2024; 460:140558. [PMID: 39067389 DOI: 10.1016/j.foodchem.2024.140558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
This study aimed to examine the impact of sodium tripolyphosphate (STPP) on the quality and digestive characteristics of PSE pork. The results showed a notable decrease in cooking loss of PSE pork from 29.11% to 25.67% with increasing STPP concentration (P < 0.05). Additionally, the gastric digestibility of PSE pork decreased significantly from 52.01% to 45.81% (P < 0.05). The particle size of digesta decreased significantly after gastrointestinal digestion (P < 0.05). These changes were primarily due to the enhanced cross-linking of proteins through ionic interactions, hydrogen bonds and hydrophobic interactions, and resulted in the embedding of hydrophobic groups and endogenous fluorophores. Furthermore, denser network was formed. These findings give a new insight into considering the impact of STPP on meat nutrition when used to enhance texture and water holding capacity.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xinrui Mao
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xinyue Diao
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Kun Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Kai Shan
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
12
|
Günter E, Popeyko O, Vityazev F, Zueva N, Velskaya I, Popov S. Effect of Carrot Callus Cells on the Mechanical, Rheological, and Sensory Properties of Hydrogels Based on Xanthan and Konjac Gums. Gels 2024; 10:771. [PMID: 39727529 PMCID: PMC11728364 DOI: 10.3390/gels10120771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
The study aims to develop a plant-based food gel with a unique texture using callus cells and a mixture of xanthan (X) and konjac (K) gums. The effect of encapsulation of carrot callus cells (0.1 and 0.2 g/mL) on properties of X-K hydrogels was studied using the mechanical and rheological analysis with a one-way ANOVA and Student's t-test used for statistical analysis. Hedonic evaluation and textural features were obtained from 35 volunteers using a nine-point hedonic scale and a 100 mm visual analog scale with the Friedman's test and the Durbin post hoc test used for statistical analysis. Mechanical hardness, gumminess, and elasticity increased by 1.1-1.3 and 1.1-1.8 times as a result of encapsulation 0.1 and 0.2 g/mL cells, respectively. The addition of cells to the hydrogels resulted in an increase in the complex viscosity, strength, and number of linkages in the gel. The hydrogel samples received identical ratings for overall and consistency liking, as well as taste, aroma, and texture features. However, the callus cell-containing hydrogel had a graininess score that was 82% higher than the callus cell-free hydrogel. The obtained hydrogels based on gums and immobilized carrot callus cells with unique textures may be useful for the development of diverse food textures and the production of innovative functional foods.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergey Popov
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia; (E.G.)
| |
Collapse
|
13
|
Xu W, Bao Y, Zhou Y, Hong H, Gao R. Effect of protein oxidation on the structure and emulsifying properties of fish gelatin. Food Res Int 2024; 195:114963. [PMID: 39277235 DOI: 10.1016/j.foodres.2024.114963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
This study aimed to investigate the effect of oxidation on fish gelatin and its emulsifying properties. Fish gelatin was oxidized with varying concentrations of H2O2 (0-30 mM). Increased concentrations of the oxidant led to a decrease in amino acids in the gelatin, including glycine, lysine, and arginine. Additionally, the relative content of ordered secondary structure and triple helix fractions decreased. Zeta potential decreased, while particle size, surface hydrophobicity, and water contact angle increased. Regarding emulsifying behavior, oxidation promoted the adsorption of gelatin to the oil-water interface and reduced interfacial tension. With increased degrees of oxidation, the zeta potential and size of the emulsion droplets decreased. The oxidized gelatin exhibited better emulsifying activity but worse emulsifying stability. Based on these results, a mechanism for how oxidation affects the emulsifying properties of gelatin was proposed: the increase in gelatin's hydrophobicity and the decrease in triple helix structure induced by oxidation reduced the interfacial tension at the oil-water interface. This promoted protein adsorption at the oil-water interface, allowing the formation of smaller oil droplets and enhancing gelatin's emulsifying activity. However, the decrease in electrostatic repulsion between emulsion droplets and the decrease in solution viscosity increased the flocculation and aggregation of oil droplets, ultimately weakening the emulsifying stability of gelatin.
Collapse
Affiliation(s)
- Wanjun Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Yue Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
14
|
Wang Y, Cui Q, Wang X, Wu C, Xu X, Dong X, Pan J. The gelling properties of fish gelatin as improved by ultrasound-assisted phosphorylation. Food Chem 2024; 449:139214. [PMID: 38581790 DOI: 10.1016/j.foodchem.2024.139214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
This study investigated the effects of ultrasound-assisted phosphorylation on gelling properties of fish gelatin (FG). Ultrasound-assisted phosphorylation (UP) for 60, 90, and 120 min resulted in >6.54% increase of phosphorylation degree and decreased zeta potential of FG. Atomic force microscopy revealed that UP-FGs showed larger aggregates than P-FGs (normal phosphorylation FGs). Low frequent-NMR and microstructure analysis revealed that phosphorylation enhanced water-binding capability of FG and improved the gel networks. However, UP60 had the highest gel strength (340 g), gelling (17.96 °C) and melting (26.54 °C) temperature while UP90 and UP120 showed slightly lower of them. FTIR analysis indicated thatβ-sheet and triple helix content increased but random coil content decreased in phosphorylated FGs. Mass spectrometry demonstrated phosphate groups mainly bound to serine, threonine and tyrosine residues of FG and UP-FG exhibited more phosphorylation sites. The study showed that mild phosphorylation (UP60) could be applied to improve FG gel properties.
Collapse
Affiliation(s)
- Yong Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qinan Cui
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuqin Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Caiyun Wu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xianbing Xu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jinfeng Pan
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
Hu Y, Sun Y, Zhou C, Zeng X, Du L, Xia Q, Pan D, Wang W. Goose liver protein emulsion with enhanced interfacial stabilization by facile core-shell curcumin complexation. Int J Biol Macromol 2024; 274:133324. [PMID: 38908636 DOI: 10.1016/j.ijbiomac.2024.133324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
The role of facile curcumin dispersion and its hydrophobic complexation onto GLP, in the form of shell (GLPC-E), core (GLPE-C) and with synergy (GLP-ECE), on the protein interfacial and emulsion stabilization was investigated. Turbiscan instability index, microrheological elasticity, viscosity and solid-liquid balance values showed that the O/W emulsion stability was in the order of GLP-E < GLPC-E < GLPE-C < GLP-ECE. GLP-ECE also gave the most reduced D [4, 3] (8.11 ± 0.14 μm) with lowest indexes of flocculation (2.80 ± 0.05 %) and coalescence (2.83 ± 0.10 %) at day 5. Interfacial shear rheology suggested the GLP-curcumin complexation fortified the GLP interfacial gelling and then the efficiency as steric stabilizer, especially of core-shell complexation (14.2 mN/m) that showed the most sufficient in-plane protein interaction against strain. Dilatational elasticity and desorption observation revealed the synergistic curcumin complexation facilitated GLP unfolding and macromolecular association at O/W interface, as was also verified from SEM image and surface hydrophobicity (from 36.23 to 76.04). Overall, this study firstly reported the facile curcumin bi-physic dispersion and GLP complexation in improving the emulsion stabilizing efficiency of the protein by advancing its interfacial stabilization.
Collapse
Affiliation(s)
- Yangyang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science & Engineering, Ningbo University, Ningbo 315211, China.
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science & Engineering, Ningbo University, Ningbo 315211, China.
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu university, Chengdu, 610106, China
| |
Collapse
|
16
|
Li X, Li C, Liu Y, Han G, Lin C, Chen X, Mao J. Rheological and Structural Characterization of Carrageenans during Depolymerization Conducted by a Marine Bacterium Shewanella sp. LE8. Gels 2024; 10:502. [PMID: 39195031 DOI: 10.3390/gels10080502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Carrageenans were widely utilized as thickening and gelling agents in the food and cosmetic industries, and their oligosaccharides have been proven to possess enhanced physicochemical and biological properties. In this study, Shewanella sp. LE8 was utilized for the depolymerization of κ-, ι-, and λ-carrageenan under conditions of fermentation. During a 24-h fermentation at 28 °C, the apparent viscosity of κ-, ι-, and λ-carrageenan decreased by 53.12%, 84.10%, and 59.33%, respectively, accompanied by a decrease in storage modulus, and loss modulus. After a 72-h fermentation, the analysis of methylene blue and molecular weight distribution revealed that ι-carrageenan was extensively depolymerized into smaller polysaccharides by Shewanella sp. LE8, while exhibiting partial degradation on κ- and λ-carrageenan. However, the impact of Shewanella sp. LE8 on total sugars was found to be limited; nevertheless, a significant increase in reduced sugar content was observed. The ESIMS analysis results revealed that the purified components obtained through ι-carrageenan fermentation for 72 h were identified as tetrasaccharides, while the two purified components derived from λ-carrageenan fermentation consisted of a hexasaccharide and a tetrasaccharide, respectively. Overall, the present study first reported the depolymerization of ι-and λ-carrageenan by Shewanella and suggested that the Shewanella could be used to depolymerize multiple carrageenans, as well as complex polysaccharides derived from red algae, to further obtain their oligosaccharides.
Collapse
Affiliation(s)
- Xiong Li
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Chuyi Li
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yizhou Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Gang Han
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Congyu Lin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoli Chen
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jian Mao
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
17
|
Li X, Yao W, Hu C, Lin C, You L, Mao J. Comparative Analysis of Gracilaria chouae Polysaccharides Derived from Different Geographical Regions: Focusing on Their Chemical Composition, Rheological Properties, and Gel Characteristics. Gels 2024; 10:454. [PMID: 39057478 PMCID: PMC11275624 DOI: 10.3390/gels10070454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Polysaccharides derived from diverse sources exhibit distinct rheological and gel properties, exerting a profound impact on their applicability in the food industry. In this study, we collected five Gracilaria chouae samples from distinct geographical regions, namely Rizhao (RZ), Lianyungang (LYG), Ningde (ND), Beihai (BH), and a wild source from Beihai (BHW). We conducted analyses on the chemical composition, viscosity, and rheological properties, as well as gel properties, to investigate the influence of chemical composition on variations in gel properties. The results revealed that the total sugar, sulfate content, and monosaccharide composition of G. chouae polysaccharides exhibit similarity; however, their anhydrogalactose content varies within a range of 15.31% to 18.98%. The molecular weight distribution of G. chouae polysaccharides ranged from 1.85 to 2.09 × 103 kDa. The apparent viscosity of the LYG and BHW polysaccharides was relatively high, whereas that of RZ and ND was comparatively low. The gel strength displayed a similar trend. BHW and LYG exhibited solid-like behavior, while ND, RZ, and BH demonstrated liquid-like characteristics at low frequencies. The redundancy analysis (RDA) analysis revealed a positive correlation between the texture profile analysis (TPA) characteristics and anhydrogalactose. The study could provide recommendations for the diverse applications of G. chouae polysaccharides derived from different geographical regions.
Collapse
Affiliation(s)
- Xiong Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (J.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
| | - Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Cebin Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
| | - Congyu Lin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
| | - Jian Mao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (J.M.)
| |
Collapse
|
18
|
Kurt A, Toker OS, Akbulut M, Coklar H, Ozmen D, Ozcan Y, Hosseini SR, Saricaoglu FT, Demir G, Argun MS. Textural, rheological, and structural properties of turkey and chicken gelatins from mechanical deboning residues. Food Sci Nutr 2024; 12:4952-4965. [PMID: 39055181 PMCID: PMC11266880 DOI: 10.1002/fsn3.4143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 03/16/2024] [Indexed: 07/27/2024] Open
Abstract
Large amounts of collagen-rich by-products are generated in poultry processing. In particular, gelatin from the by-products of turkey processing is limited. Gelatin extraction from turkey and chicken MDRs (mechanically deboning residue) was the purpose of this study. Both materials were modified at the highest swelling pH for chemical denaturation of collagen and hot water extraction of gelatin was performed at the optimum temperature-time, which was determined to be pH 1.0 and 80°C-6 h, respectively. In these conditions, yields of 9.90% turkey gelatin (TG) and 13.85% chicken gelatin (CG) were produced. They demonstrated similar viscosity, gel strength, and lightness values of 72-73 g, 2.5-2.7 mPas, and 31, respectively. These results are close to those of bovine gelatin (BG). TG with 239.78 g Bloom exhibited higher strength than CG (225.27 g) and BG (220.00 g). The melting and gelation temperatures of CG and BG were 21 and 30°C, respectively, while those of TG were 19 and 28°C. Imino acids (proline + hydroxyproline) of TG (22.82%) were higher than those of CG (20.73%). Fourier transform infrared spectroscopy (FTIR) analysis revealed secondary structure and functional groups of CG and TG similar to those of BG. CG displayed a higher thermal transition temperature than BG, while TG exhibited the highest temperature sensitivity, according to the differential scanning calorimetry (DSC) analysis. In conclusion, TG showed higher potential for effective utilization with higher bloom and imino acids. Overall, turkey and chicken MDRs are a promising and potential alternative source to produce gelatin with comparable properties to bovine gelatin for intended food applications as well as for pharmaceutical and cosmetic fields.
Collapse
Affiliation(s)
- Abdullah Kurt
- Department of Food Engineering, Aksehir Faculty of Engineering and ArchitectureSelcuk UniversityKonyaTurkey
| | - Omer Said Toker
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Mehmet Akbulut
- Department of Food Engineering, Faculty of AgricultureSelcuk UniversityKonyaTurkey
| | - Hacer Coklar
- Department of Food Engineering, Faculty of AgricultureSelcuk UniversityKonyaTurkey
| | - Duygu Ozmen
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Yilmaz Ozcan
- Department of Food Engineering, Faculty of EngineeringKirklareli UniversityKirklareliTurkey
| | - Said Reza Hosseini
- Department of Food Engineering, Faculty of AgricultureSelcuk UniversityKonyaTurkey
| | - Furkan Turker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural SciencesBursa Technical UniversityBursaTurkey
| | - Guntac Demir
- Erpiliç Integrated Poultry Production Marketing and TradeBoluTurkey
| | - Mustafa Samil Argun
- Department of Food Engineering, Aksehir Faculty of Engineering and ArchitectureSelcuk UniversityKonyaTurkey
| |
Collapse
|
19
|
Hu Y, Zhou C, Zeng X, Xia Q, Sun Y, Pan D. Phosphate type dependent phosphorylation on the interfacial and emulsion stabilizing behaviors of goose liver protein: Perspective of protein charging. Colloids Surf B Biointerfaces 2024; 238:113872. [PMID: 38555762 DOI: 10.1016/j.colsurfb.2024.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Elucidation on the emulsifying behaviors of goose liver protein (GLP) from interfacial perspective was scarce when protein charging was altered. This work aimed to elucidate the role of phosphorylation on the interfacial associative interaction and then emulsion stabilizing properties of GLP using three structurally relevant phosphates of sodium trimetaphosphate (STMP), sodium tripolyphosphate (STPP) and sodium pyrophosphate (TSPP). A monotonic increment of protein charging treated from STMP, STPP to TSPP caused progressively increased particle de-aggregation, surface hydrophobicity and structural flexibility of GLP. Compared with STMP and TSPP, STPP phosphorylation rendered the most strengthened interfacial equilibrium pressure (11.98 ± 0.24 mN/m) due to sufficient unfolding but moderated charging character conveyed. Desorption curve and interfacial protein microstructure indicated that STPP phosphorylation caused the highest interfacial connectivity between proteins adsorbed onto the same droplet, as was also verified by interfacial elastic modulus (10.3 ± 0.21 mN/m). STPP treated GLP also yielded lowest droplet size (8.16 ± 0.10 μm), flocculation (8.18%) and Turbiscan stability index (8.78 ± 0.36) of emulsion but most improved microrheological properties. Overall, phosphorylation functioned itself in fortifying the intradroplet protein-protein interaction but restraining the interdroplet aggregation, and STPP phosphorylation endowed the protein with most enhanced interfacial stabilization and emulsifying efficiency.
Collapse
Affiliation(s)
- Yangyang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
20
|
Günter E, Popeyko O, Vityazev F, Popov S. Effect of Callus Cell Immobilization on the Textural and Rheological Properties, Loading, and Releasing of Grape Seed Extract from Pectin Hydrogels. Gels 2024; 10:273. [PMID: 38667692 PMCID: PMC11048760 DOI: 10.3390/gels10040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The purpose of the present study was to prepare pectin hydrogels with immobilized Lemna minor callus cells and to identify the effect of cell immobilization on the textural, rheological, and swelling properties; loading; and releasing of grape seed extract (GSE) from the hydrogels. Hardness, adhesiveness, elasticity, the strength of linkage, and complex viscosity decreased with increasing cell content in the hydrogels based on pectin with a degree of methyl esterification (DM) of 5.7% (TVC) and during incubation in gastrointestinal fluids. An increase in the rheological properties and fragility of pectin/callus hydrogels based on pectin with a DM of 33.0% (CP) was observed at a cell content of 0.4 g/mL. TVC-based pectin/callus beads increased their swelling in gastrointestinal fluids as cell content increased. TVC-based beads released GSE very slowly into simulated gastric and intestinal fluids, indicating controlled release. The GSE release rate in colonic fluid decreased with increasing cell content, which was associated with the accumulation of GSE in cells. CP-based beads released GSE completely in the intestinal fluid due to weak textural characteristics and rapid degradation within 10 min. Pectin/callus hydrogels have the ability to preserve GSE for a long time and may have great potential for the development of proanthocyanidin delivery systems due to their novel beneficial physicochemical and textural properties.
Collapse
Affiliation(s)
- Elena Günter
- Institute of Physiology of Federal Research Centre, Komi Science Centre, Urals Branch of the Russian Academy of Sciences, 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia; (O.P.); (F.V.)
| | | | | | - Sergey Popov
- Institute of Physiology of Federal Research Centre, Komi Science Centre, Urals Branch of the Russian Academy of Sciences, 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia; (O.P.); (F.V.)
| |
Collapse
|
21
|
Xu J, Zhang J, Wu P, Wang F, Tu Z, Wang H, Guo D. Effects of Maillard reaction of different monosaccharide-modified on some functional properties of fish gelatin. Food Res Int 2024; 182:114176. [PMID: 38519189 DOI: 10.1016/j.foodres.2024.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
In this work, the effects of Maillard reaction of different monosaccharide-modified fish gelatin were studied. The changes of gel properties, rheology and structure of fish gelatin before and after modification were compared and analyzed, and oil-in-woter emulsions were prepared. The results showed that the five-carbon monosaccharide had stronger modification ability than the six-carbon monosaccharide, which was mainly due to the different steric hindrance of the amino acids in the nuclear layer and the outer layer to the glycosylation reaction. With the progress of the Maillard reaction, the color of fish gelatin gradually became darker. The attachment of sugar chains inhibited the gelation process of fish gelatin, decreased the gelation rate, changed the secondary structure, increased the content of β-turn or α-helix, increased the degree of fluorescence quenching, and enhanced the emulsifying properties and emulsion stability. This study provides useful information for the preparation of different types of monosaccharide-modified proteins and emulsions.
Collapse
Affiliation(s)
- Jinghong Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Peihan Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Feifei Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Debin Guo
- Jiangxi Huangshanghuang Group Food Co., Ltd, Nanchang, Jiangxi 330001, China
| |
Collapse
|
22
|
Li H, Mustapha WAW, Liu J, Zhang X. Self-assembled nanoparticles of acid-induced fish ( Cyprinus carpio L.) scale gelatin: Structure, physicochemical properties, and application for loading curcumin. Food Chem X 2024; 21:101230. [PMID: 38426076 PMCID: PMC10901859 DOI: 10.1016/j.fochx.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
This work expands the functionality of fish scale gelatin (FSG) as a carrier of hydrophobic bioactive substances. The hydrophobicity of FSG was enhanced to promote its interaction with hydrophobic curcumin and to increase its bioavailability. This results in a remarkable increase in the curcumin loading capacity of acid-hydrolyzed FSG (HFSG) from 1.08 ± 0.08 μg/mg (0 h) to 9.15 ± 0.21 μg/mg (3 h). The amino acid composition indicated that acid hydrolysis effectively increased the ratio of hydrophobic amino acids of FSG. Acid hydrolysis facilitated the transformation of the α-helical conformation into a β-sheet structure. Hydrophobic interactions between HFSG and curcumin were strengthened by moderate acid hydrolysis. A sustained-release profile emerged for the curcumin-loaded HFSG during simulated gastrointestinal digestion, thereby improving the bioaccessibility and bioavailability of curcumin. These findings contribute to the application of acid hydrolysis in modifying FSG for enhanced hydrophobicity and curcumin loading capacity in the food industry.
Collapse
Affiliation(s)
- Haoxin Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Jia Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- School of Liquor & Food Engineering, Guizhou University, Guiyang 550025, China
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xiaoping Zhang
- Guizhou Fishery Research Institute, Guizhou Academy of Agricultural Science, Guiyang 550025, China
| |
Collapse
|
23
|
Xu J, Tu Z, Wang H, Hu Y, Wen P, Huang X, Wang S. Discrimination and characterization of different ultrafine grinding times on the flavor characteristic of fish gelatin using E-nose, HS-SPME-GC-MS and HS-GC-IMS. Food Chem 2024; 433:137299. [PMID: 37660600 DOI: 10.1016/j.foodchem.2023.137299] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Three different methods were used to identify and analyze the flavor of fish gelatin with different ultrafine grinding time (0, 2, 4 and 8 h). The results of electronic nose showed that overall flavor of the samples changed. HS-SPME-GC-MS identified 65 volatile compounds, including 18 aldehydes, 7 ketones, 7 alkanes, 11 alcohols, 8 esters, 7 phenols, and 7 acids. HS-GC-IMS identified 46 volatile compounds, including 21 aldehydes, 5 ketones, 5 alcohols, 6 esters, 7 acids, 1 ether, and 1 amine. The particle size analysis results indicate that the size distribution decreases from 918.97-1167.16 and 1388.81-1780.40 nm to 157.63-177.37 and 285.90-344.55 nm with the increased of grinding time. The SEM analysis results indicate that the change in flavor characteristics of FG is due to the different storage and release abilities of volatile compounds in FG with different particle sizes.
Collapse
Affiliation(s)
- Jinghong Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoliang Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Shu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
24
|
Gümüş T, Altan Kamer DD, Kaynarca GB. Investigating the potential of wine lees as a natural colorant and functional ingredient in jelly production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1357-1366. [PMID: 37776325 DOI: 10.1002/jsfa.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the potential of incorporating wine lees (WL), an inexpensive and widely available high-value winery waste product, into gelatin-based jellies to improve their technological and functional properties. We also aimed to evaluate the suitability of WL as a jelly colorant by comparing it with a commercial colorant. RESULTS Wine lees were characterized for their anthocyanin, phenolic, antioxidant, and mineral content. Subsequently, physicochemical, functional, textural, rheological, and thermal analyses were conducted on soft candies containing 21, 14, and 7 g kg-1 WL (labeled as WL30, WL20, and WL10, respectively). The total phenolic, anthocyanin, antioxidant, and cupric-reducing antioxidant capacity (CUPRAC) values of WL30 were determined as 57.80 ± 6.12 mg gallic acid equivalent per kilogram (GAE kg-1 ), 17.58 ± 0.36 mg malvidin-3-glucoside equivalent kg-1 , 0.04 ± 0.01 μg mL-1 , and 45.55 ± 1.00 mmol L-1 Trolox equivalent (TE), respectively. The control sample had the best rheological characteristics, including K', G', and n*, as well as the greatest hardness value, followed by WL30. However, during the storage period, WL30 exhibited superior color stability and retained higher levels of phenolic and anthocyanin components in comparison with the control sample. CONCLUSION Wine lees have the potential to be utilized as a natural colorant and alternative flavoring agent in jelly production. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tuncay Gümüş
- Department of Food Engineering, Faculty of Agriculture, Tekirdağ Namik Kemal University, Tekirdağ, Turkey
| | - Deniz Damla Altan Kamer
- Department of Food Engineering, Faculty of Agriculture, Tekirdağ Namik Kemal University, Tekirdağ, Turkey
| | - Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, Kirklareli, Turkey
| |
Collapse
|
25
|
Dushina E, Popov S, Zlobin A, Martinson E, Paderin N, Vityazev F, Belova K, Litvinets S. Effect of Homogenized Callus Tissue on the Rheological and Mechanical Properties of 3D-Printed Food. Gels 2024; 10:42. [PMID: 38247765 PMCID: PMC10815391 DOI: 10.3390/gels10010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The aim of the study was to develop ink enriched with a high content of lupine callus tissue (CT) suitable for 3D printing. Printable ink obtained using mashed potatoes (20 g/100 mL) and a 3% agar solution was used as the parent CT-free ink (CT0). Viscosity increased from 9.6 to 75.4 kPa·s during the cooling of the CT0 ink from 50 to 20 °C, while the viscosity of the ink with 80 g/100 mL of CT (CT80) increased from 0.9 to 5.6 kPa·s under the same conditions. The inclusion of CT was shown to decrease the hardness of 3D-printed food gel from 0.32 ± 0.03 to 0.21 ± 0.03 N. The storage modulus G' value was 7.9 times lower in CT80 samples than in CT0 samples. The values of fracture stress for CT80 and CT0 inks were 1621 ± 711 and 13,241 ± 2329 Pa, respectively. The loss tangent and the limiting strain did not differ in CT0 and CT80, although the value of the fracture strain was 1.6 times higher in the latter. Thus, the present study demonstrates that CT may be added to printing ink in order to enhance food with plant cell material and enable the 3D printing of specially shaped foods.
Collapse
Affiliation(s)
- Elena Dushina
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| | - Sergey Popov
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia; (N.P.); (F.V.)
| | - Andrey Zlobin
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| | - Ekaterina Martinson
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| | - Nikita Paderin
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia; (N.P.); (F.V.)
| | - Fedor Vityazev
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia; (N.P.); (F.V.)
| | - Kseniya Belova
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| | - Sergey Litvinets
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| |
Collapse
|
26
|
Zhou L, Meng FB, Li YC, Shi XD, Yang YW, Wang M. Effect of peach gum polysaccharide on the rheological and 3D printing properties of gelatin-based functional gummy candy. Int J Biol Macromol 2023; 253:127186. [PMID: 37802441 DOI: 10.1016/j.ijbiomac.2023.127186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Excellent 3D printing materials must exhibit good extrudability and supportability, but these two characteristics are often contradictory. In this study, peach gum polysaccharide (PGP) was added to gelatin to prepare a 3D-printed functional gummy candy encapsulating curcumin. Rheology tests indicated that adding PGP could effectively improve the apparent viscosity and thermal stability and consequently improve the 3D printability and supportability of the products. When PGP addition was 6 %, the printing accuracy was higher than 90 %. Texture and microstructure analysis further revealed that PGP addition promoting a dense gel structure formed and the water holding capacity and supportability of gel materials were enhanced. Furthermore, the in vitro gastrointestinal digestion tests showed that after 6 h of simulated gastrointestinal fluid digestion, the retention rate of curcumin was nearly 80 %. The above results indicated that the composite gel of PGP and gelatin is a good 3D printing base material for nutrient delivery.
Collapse
Affiliation(s)
- Li Zhou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, PR China.
| | - Xiao-Dong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, PR China
| | - Yi-Wen Yang
- Inner Mongolia Academy of Forestry Sciences, Hohhot 010010, PR China
| | - Meng Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
27
|
Wu S, Sun W, Yang Y, Jia R, Zhan S, Ou C, Huang T. Phosphorylated Fish Gelatin and the Quality of Jelly Gels: Gelling and Microbiomics Analysis. Foods 2023; 12:3682. [PMID: 37835334 PMCID: PMC10572387 DOI: 10.3390/foods12193682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Phosphorylated fish gelatin (PFG) exhibited preferable physical and chemical properties than fish gelatin (FG) in our previous study. To investigate the application values of PFG, the effects of different ratios (2:1, 1:1 and 1:2) of FG(PFG)/κ carrageenan (κC) on the quality of jelly gels (JGs) were investigated. The sensory quality of PFG:κC (1:2)/FG:κC (1:2) was found to be superior based on sensory evaluations, which was also verified with the results for texture, rheology, etc. Moreover, the structural changes in JGs were related to the introduction of phosphoric acid groups into the molecular chain of gelatin and the protein-polysaccharide interactions. According to the storage results, PFG jelly had better storage quality, higher hardness and chewiness values than those of FG jelly. High-throughput sequencing of JG microbial analysis showed that the addition of PFG changed the amount of microorganisms, microbial species abundance and the microbial composition of JGs, which were also closely related to the storage quality of JGs. In conclusion, the applications of PFG have promising potential to improve the quality of confectionery.
Collapse
Affiliation(s)
- Shiyu Wu
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
| | - Wanyi Sun
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
| | - Yihui Yang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
| | - Ru Jia
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
| | - Changrong Ou
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (S.W.); (W.S.); (Y.Y.); (R.J.); (S.Z.); (C.O.)
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| |
Collapse
|
28
|
Wang X, Han M, Zou L, Huang Z, Dong W, Fan J, Huang A. Preparation and characterization of Pickering emulsion with directionally embedded antimicrobial peptide MOp2 and its preservation effect on grass carp. Curr Res Food Sci 2023; 7:100569. [PMID: 37664003 PMCID: PMC10474363 DOI: 10.1016/j.crfs.2023.100569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
The peptide MOp2 obtained from Moringa oleifera seeds showed good antimicrobial activity. However, the stability of its activity has not yet been studied. In the present study, MOp2-loaded thiolated chitosan-stabilized (CMOp2) Pickering emulsion was prepared and applied to prolong the shelf life of grass carp. The encapsulation rate of MOp2 was 57.7% in CMOp2. In addition, the effects of different concentrations of CMOp2 solid particles and pH on droplet size, zeta optional and storage stability of Pickering emulsions were evaluated; the best condition for preparing Pickering emulsion through experiment was 1.75% CMOp2 solid particles at pH 9.5. Moreover, morphological observations and rheological analysis indicated that Pickering emulsions were considered a water-in-oil emulsion with typical non-Newtonian fluid characteristics. Furthermore, the prepared Pickering emulsion could significantly inhibit the growth of Escherichia coli and Staphylococcus aureus. Besides, Pickering emulsion effectively prevented spoilage of grass carp, and the Pickering emulsion-treated group reduced its pH, TVB-N and color values, inhibited microbial growth, and extended shelf life to 9 day at the storage of 4 °C. Overall, the present findings provide a reference for the application of MOp2-loaded Pickering emulsions in food preservation.
Collapse
Affiliation(s)
| | | | | | - Zhiyuan Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenming Dong
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jiangping Fan
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| |
Collapse
|
29
|
Su K, Sun W, Li Z, Huang T, Lou Q, Zhan S. Complex Modification Orders Alleviate the Gelling Weakening Behavior of High Microbial Transglutaminase (MTGase)-Catalyzed Fish Gelatin: Gelling and Structural Analysis. Foods 2023; 12:3027. [PMID: 37628026 PMCID: PMC10453174 DOI: 10.3390/foods12163027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
In this paper, the effects of different modification orders of microbial transglutaminase (MTGase) and contents of pectin (0.1-0.5%, w/v) on the gelling and structural properties of fish gelatin (FG) and the modification mechanism were studied. The results showed that the addition of pectin could overcome the phenomenon of high-MTGase-induced lower gelling strength of gelatin gels. At a low pectin content, the modification sequences had non-significant influence on the gelling properties of modified FG, but at a higher pectin content (0.5%, w/v), P0.5%-FG-TG had higher gel strength (751.99 ± 10.9 g) and hardness (14.91 ± 0.33 N) values than those of TG-FG-P0.5% (687.67 ± 20.98 g, 12.18 ± 0.45 N). Rheology analysis showed that the addition of pectin normally improved the gelation points and melting points of FG. The structural results showed that the fluorescence intensity of FG was decreased with the increase in pectin concentration. Fourier transform infrared spectroscopy analysis indicated that the MTGase and pectin complex modifications could influence the secondary structure of FG, but the influenced mechanisms were different. FG was firstly modified by MTGase, and then pectin (P-FG-TG) had the higher gelling and stability properties.
Collapse
Affiliation(s)
- Kaiyuan Su
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Wanyi Sun
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Zhang Li
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Qiaoming Lou
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Shengnan Zhan
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| |
Collapse
|
30
|
Popov S, Paderin N, Chistiakova E, Ptashkin D, Vityazev F, Markov PA, Erokhin KS. Effect of Chitosan on Rheological, Mechanical, and Adhesive Properties of Pectin-Calcium Gel. Mar Drugs 2023; 21:375. [PMID: 37504906 PMCID: PMC10381555 DOI: 10.3390/md21070375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
In the present study, chitosan was included in the pectin ionotropic gel to improve its mechanical and bioadhesive properties. Pectin-chitosan gels P-Ch0, P-Ch1, P-Ch2, and P-Ch3 of chitosan weight fractions of 0.00, 0.25, 0.50, and 0.75 were prepared and characterized by dynamic rheological tests, penetration tests, and serosal adhesion ex vivo assays. The storage modulus (G') and loss modulus (G″) values, gel hardness, and elasticity of P-Ch1 were significantly higher than those of P-Ch0 gel. However, a further increase in the content of chitosan in the gel significantly reduced these parameters. The inclusion of chitosan into the pectin gel led to a decrease in weight and an increase in hardness during incubation in Hanks' solution at pH 5.0, 7.4, and 8.0. The adhesion of P-Ch1 and P-Ch2 to rat intestinal serosa ex vivo was 1.3 and 1.7 times stronger, whereas that of P-Ch3 was similar to that of a P-Ch0 gel. Pre-incubation in Hanks' solution at pH 5.0 and 7.4 reduced the adhesivity of gels; however, the adhesivity of P-Ch1 and P-Ch2 exceeded that of P-Ch0 and P-Ch3. Thus, serosal adhesion combined with higher mechanical stability in a wide pH range appeared to be advantages of the inclusion of chitosan into pectin gel.
Collapse
Affiliation(s)
- Sergey Popov
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Nikita Paderin
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Elizaveta Chistiakova
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Dmitry Ptashkin
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Fedor Vityazev
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk", 167982 Syktyvkar, Russia
| | - Pavel A Markov
- The Federal State Budgetary Institution "National Medical Research Center of Rehabilitation and Balneologyk", 121099 Moscow, Russia
| | - Kirill S Erokhin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
31
|
Sokołowicz Z, Kačániová M, Dykiel M, Augustyńska-Prejsnar A, Topczewska J. Influence of Storage Packaging Type on the Microbiological and Sensory Quality of Free-Range Table Eggs. Animals (Basel) 2023; 13:1899. [PMID: 37370410 DOI: 10.3390/ani13121899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The studies aimed to assess the impact of packaging, storage time, and temperature on the microbiological quality as well as on the sensory quality and functional properties of chicken eggs. The study material consisted of eggs from laying hens kept under free-range conditions. The eggs packed in cardboard and plastic cartons were stored at 5 °C and 22 °C, respectively. The eggs were examined on the day of laying and on days 14 and 28 of storage. The microbiological quality of the shell and contents of the eggs and the foaming properties of the egg white stored in cardboard and plastic packaging as well as the sensory characteristics of the eggs stored in both types of packaging after hard-boiling were examined on all evaluation dates. The type of packaging in which the eggs were stored was shown to influence the microbiological quality of the egg contents. Eggs stored in plastic packaging, on days 14 and 28 of storage, contained more bacteria in egg contents than eggs stored in cardboard packaging (p < 0.05). The type of packaging in which the eggs were stored did not have an effect on the foaming properties of the egg white (p > 0.05) or on the sensory characteristics of the eggs after hard-boiling. Irrespective of the type of packaging, the foaming properties of the egg white and the sensory characteristics of the eggs after hard-boiling deteriorated with storage time. The effect of temperature on egg quality was found. Regardless of the type of packaging, eggs stored at 5 °C after hard-boiling had better yolk colour, smell, and texture than eggs stored at 22 °C (p < 0.05).
Collapse
Affiliation(s)
- Zofia Sokołowicz
- Department of Animal Production and Poultry Products Evaluation, University of Rzeszów, Zelwerowicza Street 4, 35-601 Rzeszów, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 949 76 Nitra, Slovakia
| | - Magdalena Dykiel
- Department of Food Production and Safety, State University of Applied Sciences in Krosno, Rynek 1, 38-400 Krosno, Poland
| | - Anna Augustyńska-Prejsnar
- Department of Animal Production and Poultry Products Evaluation, University of Rzeszów, Zelwerowicza Street 4, 35-601 Rzeszów, Poland
| | - Jadwiga Topczewska
- Department of Animal Production and Poultry Products Evaluation, University of Rzeszów, Zelwerowicza Street 4, 35-601 Rzeszów, Poland
| |
Collapse
|
32
|
Osanloo M, Eskandari Z, Zarenezhad E, Qasemi H, Nematollahi A. Studying the microbial, chemical, and sensory characteristics of shrimp coated with alginate sodium nanoparticles containing Zataria multiflora and Cuminum cyminum essential oils. Food Sci Nutr 2023; 11:2823-2837. [PMID: 37324854 PMCID: PMC10261822 DOI: 10.1002/fsn3.3261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 08/27/2024] Open
Abstract
Retardation of quality loss of seafood has been a new concept in recent years. This study's main objective was to evaluate the microbial, chemical, and sensory attributes of shrimp coated with alginate sodium nanoparticles containing Zataria multiflora and Cuminum cyminum essential oils (EOs) during refrigerated storage. At the end of storage time (15 days storage at 4°C), the pH, thiobarbituric acid reactive substances (TBARS), and total volatile basic nitrogen (TVBN) amounts in shrimps coated with the alginate nanoparticles were 7.62, 1.14 mg MDA/kg, and 117 mg/100 g which were significantly (p < .05) lower than the control groups. The count of all bacteria groups was also lower in this treatment, which was 2-2.74 Log CFU/mL on day 15 of cold storage. This combined treatment also obtained the highest sensory scores (around 7) and the lowest melanosis score (2.67) due to the effective delaying microbial and oxidation activities. Therefore, this edible coating could substantially retard microbial and chemical changes and improve the organoleptic properties of shrimp under refrigerated storage.
Collapse
Affiliation(s)
- Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in MedicineFasa University of Medical SciencesFasaIran
| | - Zahra Eskandari
- Student Research CommitteeFasa University of Medical SciencesFasaIran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Hajar Qasemi
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of HealthFasa University of Medical SciencesFasaIran
| |
Collapse
|
33
|
Popov S, Smirnov V, Khramova D, Paderin N, Chistiakova E, Ptashkin D, Vityazev F. Effect of Hogweed Pectin on Rheological, Mechanical, and Sensory Properties of Apple Pectin Hydrogel. Gels 2023; 9:gels9030225. [PMID: 36975674 PMCID: PMC10048469 DOI: 10.3390/gels9030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
This study aims to develop hydrogels from apple pectin (AP) and hogweed pectin (HP) in multiple ratios (4:0; 3:1; 2:2; 1:3; and 0:4) using ionotropic gelling with calcium gluconate. Rheological and textural analyses, electromyography, a sensory analysis, and the digestibility of the hydrogels were determined. Increasing the HP content in the mixed hydrogel increased its strength. The Young’s modulus and tangent after flow point values were higher for mixed hydrogels than for pure AP and HP hydrogels, suggesting a synergistic effect. The HP hydrogel increased the chewing duration, number of chews, and masticatory muscle activity. Pectin hydrogels received the same likeness scores and differed only in regard to perceived hardness and brittleness. The galacturonic acid was found predominantly in the incubation medium after the digestion of the pure AP hydrogel in simulated intestinal (SIF) and colonic (SCF) fluids. Galacturonic acid was slightly released from HP-containing hydrogels during chewing and treatment with simulated gastric fluid (SGF) and SIF, as well as in significant amounts during SCF treatment. Thus, new food hydrogels with new rheological, textural, and sensory properties can be obtained from a mixture of two low-methyl-esterified pectins (LMPs) with different structures.
Collapse
|
34
|
Guo Y, Liu C, Ma Y, Shen L, Gong Q, Hu Z, Wang Z, Liu X, Guo Z, Zhou L. Study on the Structure, Function, and Interface Characteristics of Soybean Protein Isolate by Industrial Phosphorylation. Foods 2023; 12:foods12051108. [PMID: 36900624 PMCID: PMC10000779 DOI: 10.3390/foods12051108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The impacts of industrial phosphorylation on the structural changes, microstructure, functional, and rheological features of soybean protein isolate (SPI) were spotlighted. The findings implied that the spatial structure and functional features of the SPI changed significantly after treatment with the two phosphates. Sodium hexametaphosphate (SHMP) promoted aggregation of SPI with a larger particle size; sodium tripolyphosphate (STP) modified SPI with smaller particle size. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) results showed insignificant alterations in the structure of SPI subunits. Fourier transform infrared (FTIR) and endogenous fluorescence noted a decline in α-helix quantity, an amplification in β-fold quantity, and an increase in protein stretching and disorder, indicating that phosphorylation treatment fluctuated the spatial structure of the SPI. Functional characterization studies showed that the solubility and emulsion properties of the SPI increased to varying degrees after phosphorylation, with a maximum solubility of 94.64% for SHMP-SPI and 97.09% for STP-SPI. Emulsifying activity index (EAI) and emulsifying steadiness index (ESI) results for STP-SPI were better than those for SHMP-SPI. Rheological results showed that the modulus of G' and G″ increased and the emulsion exhibited significant elastic behavior. This affords a theoretical core for expanding the industrial production applications of soybean isolates in the food and various industries.
Collapse
Affiliation(s)
- Yanan Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Caihua Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yitong Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lulu Shen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Gong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhaodong Hu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
35
|
Jia B, Chen J, Yang G, Bi J, Guo J, Shang K, Wang S, Wu Z, Zhang K. Improvement of solubility, gelation and emulsifying properties of myofibrillar protein from mantis shrimp (Oratosquilla oratoria) by phosphorylation modification under low ionic strength of KCl. Food Chem 2023; 403:134497. [DOI: 10.1016/j.foodchem.2022.134497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
|
36
|
Zhu J, Chen X, Huang T, Tian D, Gao R. Characterization and antioxidant properties of chitosan/ethyl-vanillin edible films produced via Schiff-base reaction. Food Sci Biotechnol 2023; 32:157-167. [PMID: 36647524 PMCID: PMC9839923 DOI: 10.1007/s10068-022-01178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 01/19/2023] Open
Abstract
In this paper, chitosan/ethyl-vanillin (CS-EV) Schiff-base edible films with CS and EV at different concentrations and ratios were successfully prepared. The optical barrier properties, water contact angle, mechanical performance, water vapor transmission, antioxidant properties, thermal properties, and morphological structure of the films were compared. The results suggested that the tensile strength (TS) attained a maximum value of 64.63 MPa at a concentration of 4% EV. Moreover, water diffusion was prevented through the compact structure of the CS-EV edible film. Additionally, the two sides of the CS-EV film show different textures due to their different hydrophilicity/hydrophobicity. In particular, the films of CS possessed superior thermal stability, while those of CS-EV exhibited higher antioxidant activity.
Collapse
Affiliation(s)
- Jianfei Zhu
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
- Chongqing Engineering Research Center for Processing, Storage & Transportation of Characterized Agro–Products, Chongqing, 400067 China
| | - Xiaomei Chen
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Tingting Huang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Dongling Tian
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Ruiping Gao
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
- Chongqing Engineering Research Center for Processing, Storage & Transportation of Characterized Agro–Products, Chongqing, 400067 China
| |
Collapse
|
37
|
Kang X, Guo W, Ding K, Zhan S, Lou Q, Huang T. Microwave processing technology influences the functional and structural properties of fish gelatin. J Texture Stud 2023; 54:127-135. [PMID: 36176227 DOI: 10.1111/jtxs.12727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
The objective of this study was to evaluate the effects of microwave processing technology (MPT, 240-800 W, 1 and 4 min) on the functional and structural properties of fish gelatin (FG). It showed that MPT could increase gel strength and texture properties of FG, especially for 240 W. MPT greatly increased emulsifying activity index (EAI) of FG, but decreased its emulsion stability index (ESI). Rheology results showed that MPT increased viscosity of FG, but decreased gelation times. Intrinsic fluorescence and Fourier transform infrared (FTIR) spectroscopy results indicated that MPT could unfold gelatin, contributing to the formation of H-bonds. Scanning electron microscopy (SEM) analysis revealed that low power and short time of MPT-treated gelatin gels had much more dense and less voids. This work provided guidance for the applications of MPT to improve the functional properties of FG, and the results show that MPT-treated FG can replace mammalian gelatin and meet the religious requirement.
Collapse
Affiliation(s)
- Xinzi Kang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Wenwen Guo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Keying Ding
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qiaoming Lou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.,Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
38
|
Yu N, Wang Y, Shao S, Li J, Li M, Zhu L, Ye Q, Huan W, Meng X. Functional properties of glutelin from Camellia oleifera seed cake: Improvement by alkali-assisted phosphorylation through changes in protein structure. Curr Res Food Sci 2023; 6:100438. [PMID: 36660303 PMCID: PMC9842863 DOI: 10.1016/j.crfs.2023.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
To explore the effect and its mechanism of alkali-assisted phosphorylation on the functional properties of Camellia Oleifera seeds cake glutelin (CSCG), CSCG was treated with different concentration of sodium trimetaphosphate (STMP, 1.0, 2.0, 3.0, 4.0, and 5%, w/v) in different pH environment (3.0, 5.0, 7.0, 9.0, and 11.0). The results showed that alkali assist improved the phosphorylation degree of CSCG, and the optimum pH value is 9.0. FT-IR and XPS confirmed the successful modification of phosphate groups on CSCG through covalent interaction. Alkali-assisted phosphorylation decreased the particle size and increased electronegativity of CSCG, as well as changed in its surface hydrophobicity, crystallinity, and intrinsic fluorescence. All these changes of protein structure triggered by alkali-assisted phosphorylation led to the improvement of water solubility, water/oil absorption capacity, emulsifying ability, foamability, and in vitro digestibility of CSCG. This work could provide a theoretical basis for industrial production of CSCG with excellent functional properties.
Collapse
Affiliation(s)
- Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yijue Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Shengxin Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Jie Li
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Mengren Li
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Lizhong Zhu
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Qin Ye
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310014, Zhejiang, China
| | - Weiwei Huan
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China,Corresponding author.
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China,Corresponding author.
| |
Collapse
|
39
|
He J, Zhang J, Xu Y, Ma Y, Guo X. The Structural and Functional Differences between Three Species of Fish Scale Gelatin and Pigskin Gelatin. Foods 2022; 11:foods11243960. [PMID: 36553702 PMCID: PMC9777772 DOI: 10.3390/foods11243960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
In this paper, gelatin was extracted from the scales of Coregonus peled, Carp and Bighead carp by the acid method, and the structure and functional properties of the obtained scale gelatin and food-grade pigskin gelatin (FG) were compared. The results showed that all gelatins exhibited relatively high protein (86.81-93.61%), and low lipid (0.13-0.39%) and ash (0.37-1.99%) contents. FG had the highest gel strength, probably because of its high proline content (11.96%) and high average molecular weight distribution. Low β-antiparallel was beneficial to the stability of emulsion, which led FG to have the best emulsifying property. The high content of hydrophobic amino acids may be one of the reasons for the superior foaming property of Bighead carp scales gelatin (BCG). The gel strength of Carp scales gelatin (CG) and BCG, the ESI of Coregonus peled scales gelatin (CPG) and the foaming property of BCG indicate that fish gelatin has the potential to be used in food industry as a substitute for pig skin gelatin.
Collapse
|
40
|
Wang H, Ouyang Z, Cheng Y, Zhu J, Yang Y, Ma L, Zhang Y. Structure maintainability of safflomin/betanin incorporated gelatin-chitooligosaccharide complexes based high internal phase emulsions and its combinational 3D printing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Hu Y, Du L, Sun Y, Zhou C, Pan D. Recent developments in phosphorylation modification on food proteins: Structure characterization, site identification and function. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Popov S, Smirnov V, Paderin N, Khramova D, Chistiakova E, Vityazev F, Golovchenko V. Enrichment of Agar Gel with Antioxidant Pectin from Fireweed: Mechanical and Rheological Properties, Simulated Digestibility, and Oral Processing. Gels 2022; 8:gels8110708. [PMID: 36354617 PMCID: PMC9689380 DOI: 10.3390/gels8110708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The aims of the study were to evaluate the influence of pectin isolated from fireweed (FP) on the mechanical and rheological properties of agar (A) gel, to investigate the release of phenolic compounds (PCs) and pectin from A-FP gels at simulated digestion in vitro, and to evaluate the oral processing and sensory properties of A-FP gels. The hardness of A-FP gels decreased gradually with the increase in the concentration of FP added (0.1, 0.4, and 1.6%). The hardness of A-FP1.6 gel was 41% lower than A gel. Rheological tests found A gel was a strong physical gel (storage modulus (G′) >>loss modulus (G″)), and the addition of FP up to 1.6% did not significantly change its G’. The G″ value decreased in A-FP gels compared to A gel. The release of galacturonic acid (GalA) was 3.4 ± 0.5, 0.5 ± 0.2, 2.4 ± 1.0, and 2.2 ± 0.7 mg/mL after digestion of A-FP1.6 gel in the oral in vivo phase (OP) and subsequent incubation in simulated gastric (SGF), intestinal (SIF), and colonic (SCF) fluids in vitro. The incubation medium after OP, SGF, and SIF digestion of A-FP1.6 contained 24−64 μg GAE/mL of PCs, while SCF contained 144 μg GAE/mL, supposing a predominant release of antioxidant activity from the gel in the colon. Chewing to readiness for swallowing A-FP gel required less time and fewer chews with less activity of the masseter and temporalis muscles. A-FP1.6 gel had a lower likeness score for taste and consistency and a similar score for appearance and aroma when compared with A gel. Thus, A-FP gels were weakened compared to A gel and required less time and muscle activity for oral processing. A-FP gel had antioxidant activity due to the PCs associated with pectin, while A gel had no antioxidant activity.
Collapse
|
43
|
Cui Y, Liu J, Han S, Li P, Luo D, Guo J. Physical Stability of Chestnut Lily Beverages (CLB): Effects of Shear Homogenization on Beverage Rheological Behavior, Particle Size, and Sensory Properties. Foods 2022. [PMCID: PMC9601390 DOI: 10.3390/foods11203188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The processing parameters have a crucial influence on the stability and sensory quality of beverages. The focus of this study is to observe the rheological behavior, particle size distribution, stability, color change, and sensory evaluation of chestnut lily beverages (CLB) at different rotational speeds (0~20,000 rpm) using a high-shear homogeneous disperser. The CLB system exhibited non-Newtonian shear-thinning behavior. As the homogenization speed increased (0~12,000 rpm), the viscosity increased (0.002~0.059 Pa.s). However, when the rotational speed shear continued to increase (12,000~20,000 rpm), the viscosity decreased slightly (0.035~0.027 Pa.s). Under all homogeneous conditions, the turbidity and precipitation fractions were the lowest when the rotational speed was 12,000 rpm: the sedimentation index was lowest at this point (2.87%), and the relative turbidity value of CLB was largest at this point (80.29%). The average beverage particle diameter and ascorbic acid content showed a downward trend at the homogenization speed from 0 to 20,000 rpm, whereas the total soluble solids (TSS) content followed the opposite trend. The results show that these physical properties can be correlated with different rotational speeds of homogenization. This study explained the effect of homogenization speed on CLB properties, which needs to be considered in beverage processing, where high-speed shear homogenization can serve as a promising technique.
Collapse
Affiliation(s)
- Yao Cui
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jianxue Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
- Correspondence:
| | - Sihai Han
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| | - Peiyan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| |
Collapse
|
44
|
Liu J, Cheng D, Zhang D, Han L, Gan Y, Zhang T, Yu Y. Incorporating ε-Polylysine Hydrochloride, Tea Polyphenols, Nisin, and Ascorbic Acid into Edible Coating Solutions: Effect on Quality and Shelf Life of Marinated Eggs. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
45
|
Thermal-assisted stirring as a new method for manufacturing o/w emulsions stabilized by gelatin-arginine complexes. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Cai Y, Chen B, Zeng D, Huang L, Xiao C, Zhao X, Zhao M, Zhao Q, Van der Meeren P. Rheology and stability of concentrated emulsions fabricated by insoluble soybean fiber with few combined-proteins: Influences of homogenization intensity. Food Chem 2022; 383:132428. [PMID: 35182872 DOI: 10.1016/j.foodchem.2022.132428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/04/2022]
Abstract
Insoluble soybean fiber with few proteins, which is extracted from defatted okara by homogeneous combined with alkali treatment, was used to prepare concentrated emulsions. Firstly, insoluble soybean fiber extracted under pH12 was used to fabricate concentrated emulsions containing various particle concentrations and oil volume fractions and the optimized condition was obtained. Subsequently, insoluble soybean fiber extracted under pH12 followed by different homogeneous strengths were utilized. Concentrated emulsions stabilized by insoluble soybean fiber that was subjected to stronger homogenization presented lower absolute values of the ζ-potential about -47.7 mV and average droplet sizes of 37.0 μm approximately. Moreover, these emulsions exhibited a higher viscosity and elastic modulus, thereby providing better stability and less pronounced environmental sensitivities towards either pH 5 or 100 mM NaCl. Overall, results revealed that insoluble soybean fiber with few protein, especially subjected to homogenization during fiber extraction, was well suited to fabricate concentrated emulsions.
Collapse
Affiliation(s)
- Yongjian Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Particle & Interfacial Technology Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, B-9000 Gent, Belgium
| | - Bifen Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Di Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuqiao Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiujie Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| | - Paul Van der Meeren
- Particle & Interfacial Technology Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, B-9000 Gent, Belgium
| |
Collapse
|
47
|
Zhao Q, Hong X, Fan L, Liu Y, Li J. Solubility and emulsifying properties of perilla protein isolate: Improvement by phosphorylation in the presence of sodium tripolyphosphate and sodium trimetaphosphate. Food Chem 2022; 382:132252. [DOI: 10.1016/j.foodchem.2022.132252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/09/2022] [Accepted: 01/23/2022] [Indexed: 11/04/2022]
|
48
|
Cheng Z, Zhang B, Qiao D, Yan X, Zhao S, Jia C, Niu M, Xu Y. Addition of κ-carrageenan increases the strength and chewiness of gelatin-based composite gel. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Cen S, Zhang L, Liu L, Lou Q, Wang C, Huang T. Phosphorylation modification on functional and structural properties of fish gelatin: The effects of phosphate contents. Food Chem 2022; 380:132209. [PMID: 35093657 DOI: 10.1016/j.foodchem.2022.132209] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/29/2021] [Accepted: 01/18/2022] [Indexed: 11/04/2022]
Abstract
The gel, rheological and structural properties of fish gelatin (FG) were investigated through phosphorylation with different ratios of sodium pyrophosphate (TSPP) (FG:TSPP = 40:0, 40:1, 40:2, 40:4, and 40:6). It showed that phosphorylation modification significantly increased gel strength, textural properties, emulsification, and emulsification stability of FG. The surface hydrophobicity and intrinsic fluorescence of phosphorylated FG were also significantly increased. Rheological results revealed that the apparent viscosity, melt/gel points, and gel strength of FG were increased by phosphorylation with TSPP, but shortened the gelation time. Low field nuclear magnetic resonance (LF-NMR) showed that phosphorylation reduced mobility of water in FG. FTIR results indicated that phosphorylation increased the β-sheet/β-turn contents but reduced the random coil contents. This study might provide a new guideline for the exploration of TSPP phosphorylation increased the functional properties of FG.
Collapse
Affiliation(s)
- Shijie Cen
- Department of Food Science and Engineering, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Lingyue Zhang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China; School of Life Sciences and Materials Chemistry, College of Science and Technology Ningbo University, Ningbo, Zhejiang 315800, China
| | - Liwei Liu
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.
| | - Qiaoming Lou
- Department of Food Science and Engineering, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Chengcheng Wang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Tao Huang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China.
| |
Collapse
|
50
|
Transglutaminase modified type A gelatin gel: the influence of intra-molecular and inter-molecular cross-linking on structure-properties. Food Chem 2022; 395:133578. [DOI: 10.1016/j.foodchem.2022.133578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
|