1
|
Dhar H, Verma S, Dogra S, Katoch S, Vij R, Singh G, Sharma M. Functional attributes of bioactive peptides of bovine milk origin and application of in silico approaches for peptide prediction and functional annotations. Crit Rev Food Sci Nutr 2024; 64:9432-9454. [PMID: 37218679 DOI: 10.1080/10408398.2023.2212803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bovine milk peptides are the protein fragments with diverse bioactive properties having antioxidant, anticarcinogenic, other therapeutic and nutraceutical potentials. These peptides are formed in milk by enzymatic hydrolysis, gastrointestinal digestion and fermentation processes. They have significant health impact with high potency and low toxicity making them a suitable natural alternative for preventing and managing diseases. Antibiotic resistance has increased the quest for better peptide candidates with antimicrobial effects. This article presents a comprehensive review on well documented antimicrobial, immunological, opioid, and anti-hypertensive activities of bovine milk peptides. It also covers the usage of computational biology tools and databases for prediction and analysis of the food-derived bioactive peptides. In silico analysis of amino acid sequences of Bos taurus milk proteins have been predicted to generate peptides with dipeptidyl peptidase IV inhibitory and ACE inhibitory properties, making them favorable candidates for developing blood sugar lowering drugs and anti-hypertensives. In addition to the prediction of new bioactive peptides, application of bioinformatics tools to predict novel functions of already known peptides is also discussed. Overall, this review focuses on the reported as well as predicted biologically active peptide of casein and whey proteins of bovine milk that can be utilized to develop therapeutic agents.
Collapse
Affiliation(s)
- Hena Dhar
- Department of Microbiology, School of Biosciences, RIMT University, Mandi Gobindgarh, India
| | - Subhash Verma
- Department of Veterinary Microbiology, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Sarita Dogra
- PGIMR, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shailja Katoch
- Department of Veterinary Microbiology, Sardar Vallabh Bhai Patel University of Agriculture and Technology, Meerut, India
| | - Rishika Vij
- Department of Veterinary Physiology & Biochemistry, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Geetanjali Singh
- Department of Veterinary Physiology & Biochemistry, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Mandeep Sharma
- Department of Veterinary Microbiology, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| |
Collapse
|
2
|
Liu W, Zhao M, Gan L, Sun B, He S, Liu Y, Liu L, Li W, Chen J, Liu Y, Zhang J, Xu J. PeposX-Exhaust: A lightweight and efficient tool for identification of short peptides. Food Chem X 2024; 22:101249. [PMID: 38440058 PMCID: PMC10910222 DOI: 10.1016/j.fochx.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/06/2024] Open
Abstract
Short peptides have become the focus of recent research due to their variable bioactivities, good digestibility and wide existences in food-derived protein hydrolysates. However, due to the high complexity of the samples, identifying short peptides still remains a challenge. In this work, a tool, named PeposX-Exhaust, was developed for short peptide identification. Through validation with known peptides, PeposX-Exhaust identified all the submitted spectra and the accuracy rate reached 75.36%, and the adjusted accuracy rate further reached 98.55% when with top 5 candidates considered. Compared with other tools, the accuracy rate by PeposX-Exhaust was at least 70% higher than two database-search tools and 15% higher than the other two de novo-sequencing tools, respectively. For further application, the numbers of short peptides identified from soybean, walnut, collagen and bonito protein hydrolysates reached 1145, 628, 746 and 681, respectively. This fully demonstrated the superiority of the tool in short peptide identification.
Collapse
Affiliation(s)
- Wanshun Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Mouming Zhao
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lishe Gan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Shiqi He
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Lei Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Wu Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Jing Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Jianan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jucai Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
3
|
Hu YY, Xiao S, Zhou GC, Chen X, Wang B, Wang JH. Bioactive peptides in dry-cured ham: A comprehensive review of preparation methods, metabolic stability, safety, health benefits, and regulatory frameworks. Food Res Int 2024; 186:114367. [PMID: 38729727 DOI: 10.1016/j.foodres.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Dry-cured hams contain abundant bioactive peptides with significant potential for the development of functional foods. However, the limited bioavailability of food-derived bioactive peptides has hindered their utilization in health food development. Moreover, there is insufficient regulatory information regarding bioactive peptides and related products globally. This review summarizes diverse bioactive peptides derived from dry-cured ham and by-products originating from various countries and regions. The bioactivity, preparation techniques, bioavailability, and metabolic stability of these bioactive peptides are described, as well as the legal and regulatory frameworks in various countries. The primary objectives of this review are to dig deeper into the functionality of dry-cured ham and provide theoretical support for the commercialization of bioactive peptides from food sources, especially the dry-cured ham.
Collapse
Affiliation(s)
- Yao-Yao Hu
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Xiao
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Gui-Cheng Zhou
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuan Chen
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Bo Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| | - Ji-Hui Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| |
Collapse
|
4
|
Zhu F, He S, Ni C, Wu Y, Wu H, Wen L. Study on the structure-activity relationship of rice immunopeptides based on molecular docking. Food Chem X 2024; 21:101158. [PMID: 38322762 PMCID: PMC10843992 DOI: 10.1016/j.fochx.2024.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 02/08/2024] Open
Abstract
Research on food-derived immunoregulatory peptides has attracted increasing attention of scientists worldwide. However, the structure-activity relationship of rice immunopeptides was not clearly. Herein, 114 rice immunopeptides were obtained by simulating the enzymatic hydrolysis of rice proteins and were further analyzed by NetMHCIipan-4.0. Subsequently, the molecular docking was used to simulate the binding of immunoreactive peptides to major histocompatibility complex class II (MHC-II) molecules. Results show that S, R, D, E, and T amino acid could easily form hydrogen bonds with MHC-II molecules, thus enhancing innate and adaptive immunity. Finally, glucose-modified rice immunopeptides were to investigate the binding of the peptides with MHC-II molecules after glycosylation modification; this provided a theoretical basis for the targeted modification of the generated immunopeptides. All in all, the present study provides a theoretical foundation to further utilize rice processing byproducts and other food products to enhance immunity.
Collapse
Affiliation(s)
- Fan Zhu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuwen He
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Ce Ni
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Ying Wu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hao Wu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
5
|
Wang Y, Tian X, Liu X, Zhang Y, Zhao K, Zhang K, Wang W. Effects of different cooking methods on physicochemical, textural properties of yak meat and its changes with intramuscular connective tissue during in vitro digestion. Food Chem 2023; 422:136188. [PMID: 37119597 DOI: 10.1016/j.foodchem.2023.136188] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/01/2023] [Accepted: 04/15/2023] [Indexed: 05/01/2023]
Abstract
The effects of vacuum cooking (VC), traditional cooking (TC), and high-pressure cooking (HPC) on the physicochemical properties and texture of yak meat and the digestibility of yak meat and intramuscular connective tissue (IMCT) were investigated. Compared with VC treatment, TC and HPC treatment significantly increased meat cooking loss and meat hardness (P < 0.05). Meanwhile, the carbonyl content of yak meat of TC and HPC was 3.73 nmol/mg protein, and the free sulfhydryl content was 7.93 nmol/mg protein, indicating that more protein was oxidized at higher temperatures. Oxidative aggregation of proteins caused by cooking reduced meat digestibility by about 25%. However, cooking reduced the undigested residue of IMCT and promoted its digestion. Principal component analysis showed that the physicochemical, texture, oxidation, and protein digestibility of TC and HPC meat were similar but significantly different from VC meat.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xinzhu Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixuan Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Latoch A, Głuchowski A, Czarniecka-Skubina E. Sous-Vide as an Alternative Method of Cooking to Improve the Quality of Meat: A Review. Foods 2023; 12:3110. [PMID: 37628109 PMCID: PMC10453940 DOI: 10.3390/foods12163110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Sous-vide (SV) is a method of cooking previously vacuum-packed raw materials under strictly controlled conditions of time and temperature. Over the past few years, scientific articles have explored the physical, biochemical, and microbiological properties of SV cooking. In this review, we provide a critical appraisal of SV as an alternative method of meat cooking, including the types of methods, types of SV meat products, and effects of SV parameters on the meat quality and the mechanisms of transformation taking place in meat during SV cooking. Based on the available data, it can be concluded that most research on the SV method refers to poultry. The yield of the process depends on the meat type and characteristics, and decreases with increasing temperature, while time duration does not have an impact. Appropriate temperatures in this method make it possible to control the changes in products and affect their sensory quality. Vacuum conditions are given a minor role, but they are important during storage. The limited number of studies on the approximate composition of SV meat products makes it challenging to draw summarizing conclusions on this subject. The SV method allows for a higher microbiological quality of stored meat than conventional methods. The literature suggests that the SV method of preparing beef, pork, and poultry has many advantages.
Collapse
Affiliation(s)
- Agnieszka Latoch
- Department of Animal Food Technology, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland;
| | - Artur Głuchowski
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| | - Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| |
Collapse
|
7
|
Du X, Jiang C, Wang S, Jing H, Mo L, Ma C, Wang H. Preparation, identification, and inhibitory mechanism of dipeptidyl peptidase IV inhibitory peptides from goat milk whey protein. J Food Sci 2023; 88:3577-3593. [PMID: 37458288 DOI: 10.1111/1750-3841.16694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023]
Abstract
This study explores potential hypoglycemic mechanisms by preparing and identifying novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from goat milk (GM) whey protein. Papain was used to hydrolyze the GM whey protein. After purification by ultrafiltration, the Sephadex column, and preparative RP-HPLC, the peptide inhibited DPP-IV, α-glucosidase, and α-amylase with IC50 of 0.34, 0.37, and 0.72 mg/mL, respectively. To further explore the inhibitory mechanism of peptides on DPP-IV, SPPEFLR, LDADGSY, YPVEPFT, and FNPTY were identified and synthesized for the first time, with IC50 values of 56.22, 52.16, 175.7, and 62.32 µM, respectively. Molecular docking and dynamics results show that SPPEFLR, LDADGSY, and FNPTY bind more tightly to the active pocket of DPP-IV, which was consistent with the in vitro activity. Furthermore, the first three N-terminals of SPPEFLR and FNPTY peptides exhibit proline characteristics and competitively inhibit DPP-IV. Notably, the first N-terminal leucine of LDADGSY may play a key role in inhibiting DPP-IV.
Collapse
Affiliation(s)
- Xiaojing Du
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chengyu Jiang
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shan Wang
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Huijuan Jing
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ling Mo
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chaoyang Ma
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxin Wang
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Li C, Bassey AP, Zhou G. Molecular Changes of Meat Proteins During Processing and Their Impact on Quality and Nutritional Values. Annu Rev Food Sci Technol 2023; 14:85-111. [PMID: 36972162 DOI: 10.1146/annurev-food-052720-124932] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Meats are rich in lipids and proteins, exposing them to rapid oxidative changes. Proteins are essential to the human diet, and changes in the structure and functional attributes can greatly influence the quality and nutritional value of meats. In this article, we review the molecular changes of proteins during processing, their impact on the nutritional value of fresh and processed meat, the digestibility and bioavailability of meat proteins, the risks associated with high meat intake, and the preventive strategies employed to mitigate these risks. This information provides new research directions to reduce or prevent oxidative processes that influence the quality and nutritional values of meat.
Collapse
Affiliation(s)
- Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Collaborative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China;
| |
Collapse
|
9
|
Bioactive peptides derived from fermented foods: Preparation and biological activities. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
10
|
Li F, Wu X, Liang Y, Wu W. Potential implications of oxidative modification on dietary protein nutritional value: A review. Compr Rev Food Sci Food Saf 2023; 22:714-751. [PMID: 36527316 DOI: 10.1111/1541-4337.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
During food processing and storage, proteins are sensitive to oxidative modification, changing the structural characteristics and functional properties. Recently, the impact of dietary protein oxidation on body health has drawn increasing attention. However, few reviews summarized and highlighted the impact of oxidative modification on the nutritional value of dietary proteins and related mechanisms. Therefore, this review seeks to give an updated discussion of the effects of oxidative modification on the structural characteristics and nutritional value of dietary proteins, and elucidate the interaction with gut microbiota, intestinal tissues, and organs. Additionally, the specific mechanisms related to pathological conditions are also characterized. Dietary protein oxidation during food processing and storage change protein structure, which further influences the in vitro digestion properties of proteins. In vivo research demonstrates that oxidized dietary proteins threaten body health via complicated pathways and affect the intestinal microenvironment via gut microbiota, metabolites, and intestinal morphology. This review highlights the influence of oxidative modification on the nutritional value of dietary proteins based on organs and the intestinal tract, and illustrates the necessity of appropriate experimental design for comprehensively exploring the health consequences of oxidized dietary proteins.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Ying Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| |
Collapse
|
11
|
Sharma S, Pradhan R, Manickavasagan A, Thimmanagari M, Dutta A. Corn distillers solubles as a novel bioresource of bioactive peptides with ACE and DPP IV inhibition activity: characterization, in silico evaluation, and molecular docking. Food Funct 2022; 13:8179-8203. [PMID: 35829682 DOI: 10.1039/d1fo04109f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the biological potential of underutilized and low-value corn distillers solubles, containing a unique unexplored blend of heat-treated corn and yeast proteins, from the bioethanol industries, by bioinformatic and biochemical approaches. Protein hydrolysates were produced by applying four commercially accessible proteases, among which alcalase provided the best results in terms of yield, degree of hydrolysis, molecular weight, number of proteins, bioactive peptides, and deactivation against anti-angiotensin I-converting enzyme (ACE) and anti-dipeptidyl peptidase IV (DPP IV). The optimal conditions to produce anti-ACE and anti-DPP IV peptides were using alcalase for 10.82 h and an enzyme : substrate ratio of 7.90 (%w/w), with inhibition values for ACE and DPP IV of 98.76 ± 1.28% and 34.99 ± 1.44%, respectively. Corn (α-zein) and yeast (glyceraldehyde-3-phosphate dehydrogenase) proteins were mainly suitable, upon enzymolysis, for the release of bioactive peptides. The peptides DPANLPWG, FDFFDNIN, WNGPPGVF, and TPPFHLPPP inhibited ACE more effectively as verified with binding energies of -11.3, -11.6, -10.5, and -11.6 kcal mol-1, respectively, as compared to captopril (-6.38 kcal mol-1). Compared with the binding energy of sitagliptin (-8.6 kcal mol-1), WNGPPGVF (-9.6 kcal mol-1), WPLPPFG (-9.8 kcal mol-1), LPPYLPS (-9.7 kcal mol-1), TPPFHLPPP (-10.1 kcal mol-1), and DPANLPWG peptides (-10.1 kcal mol-1) had greater inhibition potential against DPP IV. The peptides impeded ACE and DPP IV majorly via hydrophobic and hydrogen linkage interactions. The key amino acids TYR523, GLU384, and HIS353 were bound to the catalytic sites of ACE and GLN553, GLU206, PHE364, VAL303, and THR304 were bound to the DPP IV enzyme. The PHs can be used as ingredients in the feed or food industries with possible health advantages.
Collapse
Affiliation(s)
- Sonu Sharma
- School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | - Ranjan Pradhan
- School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1. .,Shrimp Canada, 67 Watson Rd. S (Unit-2), Guelph, Ontario, N1L 1 E3, Canada
| | | | - Mahendra Thimmanagari
- Food and Rural Affairs, Ontario Ministry of Agriculture, 1 Stone Road West, Guelph N1G 4Y1, Ontario, Canada
| | - Animesh Dutta
- School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
12
|
Peptidomic Characteristic of Peptides Generated in Dry-Cured Loins with Probiotic Strains of LAB during 360-Days Aging. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peptidomics refers to the comprehensive profiling of endogenous peptides obtained from biological sources. The formation of endogenous peptides is dependent on not only endogenous factors but also exogenous factors such as microbial proteases or process conditions, including fermentation. This study analyzed the probiotic strains of Lactobacillus rhamnosus LOCK900 (LOCK), Bifidobacterium animalis ssp. lactis BB-12 (BB12), and potential probiotic Lactobacillus acidophilus Bauer Ł0938 (BAUER) to assess their ability of fermentation and peptide production in dry-cured pork loin. The peptides obtained after in vitro digestion were characterized by liquid chromatography–tandem mass spectrometry. Based on the sequences identified, the degree of similarity or differences between the peptides was determined and presented graphically on the factor plane. The charts showed that the meat products aged for 180 and 270 days were the most diverse when BB12 or BAUER were used as starter cultures. Myosin and keratin were identified as the most likely precursors of bioactive peptides in products obtained using this strain of lactic acid bacteria (LAB). The knowledge acquired from this study may contribute to the design of functional meat products as the results revealed not only the peptidogenic potential of the LAB strains indicated on their beneficial effect on the bioactivity of peptides.
Collapse
|
13
|
Liu H, Li Q, Jiang S, Zhang M, Zhao D, Shan K, Li C. Exploring the underlying mechanisms on NaCl-induced reduction in digestibility of myoglobin. Food Chem 2022; 380:132183. [DOI: 10.1016/j.foodchem.2022.132183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
|
14
|
Du X, Jing H, Wang L, Huang X, Wang X, Wang H. Characterization of structure, physicochemical properties, and hypoglycemic activity of goat milk whey protein hydrolysate processed with different proteases. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Conventional and in silico approaches to select promising food-derived bioactive peptides: A review. Food Chem X 2022; 13:100183. [PMID: 35499000 PMCID: PMC9039911 DOI: 10.1016/j.fochx.2021.100183] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Seaweed and edible insects are considered new sources of bioactive peptides. Conventional approaches are necessary to validate the bioactivity of peptides. Bioinformatics tools accelerate the obtaining of bioactive peptides. The integrated approach is a promising strategy to obtain bioactive peptides.
The interest for food-derived bioactive peptides, either from common or unconventional sources, has increased due to their potential therapeutic effect against a wide range of diseases. The study of such bioactive peptides using conventional methods is a long journey, expensive and time-consuming. Hence, bioinformatic approaches, which can not only help to predict the formation of bioactive peptides from any known protein source, but also to analyze the protein structure/function relationship, have gained a new meaning in this scientific field. Therefore, this review aims to provides an overview of conventional characterization methods and the most recent advances in the field of in silico approaches for predicting and screening promising food-derived bioactive peptides.
Collapse
|
16
|
Trends in In Silico Approaches to the Prediction of Biologically Active Peptides in Meat and Meat Products as an Important Factor for Preventing Food-Related Chronic Diseases. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The increasing awareness of modern consumers regarding the nutritional and health value of food has changed their preferences, as well their requirements, for food products, including meat and meat products. Expanding the knowledge on the impact of food on human health is currently one of the most important research areas for scientists worldwide, and it is also of interest to consumers who want to consciously compose their daily diets. New research methods, such as in silico techniques, offer solutions to these new challenges. These research methods are preferred over food evaluation, e.g., from meat, because of their advantages, such as low costs, shorter analysis times, and general availability (e.g., online databases), and are often used to design in vitro and, subsequently, in vivo tests. This review focuses on the possible use of in silico computerized methods to assess the potential of food as a source of these health-relevant biomolecules by using examples from the literature on meat and meat products. This review also provides information and important suggestions for analyzing peptides in terms of assessing their best sources, and screening those resistant to digestive factors and that show biological activity. The information provided in this review could contribute to the development of new sources of foods as biomolecules important for preventing or treating food-related chronic diseases, such as obesity, hypertension, and diabetes.
Collapse
|
17
|
Mobasheri A, Mahmoudian A, Kalvaityte U, Uzieliene I, Larder CE, Iskandar MM, Kubow S, Hamdan PC, de Almeida CS, Favazzo LJ, van Loon LJ, Emans PJ, Plapler PG, Zuscik MJ. A White Paper on Collagen Hydrolyzates and Ultrahydrolyzates: Potential Supplements to Support Joint Health in Osteoarthritis? Curr Rheumatol Rep 2021; 23:78. [PMID: 34716494 PMCID: PMC8556166 DOI: 10.1007/s11926-021-01042-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Osteoarthritis (OA) is the most common forms of arthritis in the general population, accounting for more pain and functional disability than any other musculoskeletal disease. There are currently no approved disease modifying drugs for OA. In the absence of effective pharmacotherapy, many patients with OA turn to nutritional supplements and nutraceuticals, including collagen derivatives. Collagen hydrolyzates and ultrahydrolyzates are terms used to describe collagens that have been broken down into small peptides and amino acids in the presence of collagenases and high pressure. RECENT FINDINGS This article reviews the relevant literature and serves as a White Paper on collagen hydrolyzates and ultrahydrolyzates as emerging supplements often advertised to support joint health in OA. Collagen hydrolyzates have demonstrated some evidence of efficacy in a handful of small scale clinical trials, but their ability to treat and reverse advanced joint disease remains highly speculative, as is the case for other nutritional supplements. The aim of this White Paper is to stimulate research and development of collagen-based supplements for patients with OA and other musculoskeletal diseases at academic and industrial levels. This White Paper does not make any treatment recommendations for OA patients in the clinical context, but simply aims to highlight opportunities for scientific innovation and interdisciplinary collaboration, which are crucial for the development of novel products and nutritional interventions based on the best available and published evidence.
Collapse
Affiliation(s)
- Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, Vilnius, Lithuania
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 Guangdong China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| | - Armaghan Mahmoudian
- Department of Clinical Sciences Lund, Orthopaedics, and Skeletal Biology, Clinical Epidemiology Unit, Lund University, Lund, Sweden
| | - Ursule Kalvaityte
- Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, Vilnius, Lithuania
| | - Christina E. Larder
- School of Human Nutrition, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, QC, H9X 3V9 Canada
| | - Michèle M. Iskandar
- School of Human Nutrition, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, QC, H9X 3V9 Canada
| | - Stan Kubow
- School of Human Nutrition, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, QC, H9X 3V9 Canada
| | - Paulo Cesar Hamdan
- Hospital Universitário Clementino Fraga Filho, Department of Traumatolgy and Orthopedics of Medical Faculty of Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | | | - Lacey J. Favazzo
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Luc J.C. van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Pieter J. Emans
- Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Pérola G. Plapler
- Divisão de Medicina Física, Instituto de Ortopedia e Traumatologia do Hospital das Clinicas da Faculdade de Medicina da, Universidade de São Paulo (FMUSP), São Paulo, SP Brazil
| | - Michael J. Zuscik
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
18
|
Peyron MA, Sayd T, Sicard J, Mirade PS, Pinguet J, Chambon C, Santé-Lhoutellier V. Deciphering the protein digestion of meat products for the elderly by in vitro food oral processing and gastric dynamic digestion, peptidome analysis and modeling. Food Funct 2021; 12:7283-7297. [PMID: 34169307 DOI: 10.1039/d1fo00969a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The elderly population will increase sharply in the future, along with an emerging range of specific nutritional needs that include adapted food. We aimed to develop a workflow to study the fate of a food, objectify the bioavailability of nutrients in the case of the digestive physiology of the elderly, and model the fate of proteins in the stomach. Pork frankfurters were subjected to in vitro normal and deficient mastication and gastric digestion, mimicking adult and elderly food oral and digestive processing. Swallowable food boluses were characterized for granulometric and rheological properties. Biochemical analyses were conducted on the bolus and on the digesta. Macronutrients, label-free peptide quantification and identification were performed, and modeling was applied to protein digestion kinetics. After deficient mastication, the food bolus was harder with more large particles, lower free iron release and more protein oxidation. The amount of peptides released in the stomach progressively increased, but to a lower extent for the elderly digestive condition and irrespective of masticatory efficiency. 592 peptides were identified from 67 proteins. Different trajectories were observed for adult and elderly digestive conditions, and two groups of meat proteins were identified based on the rate of hydrolysis. Designing suitable foods requires in vitro tools to evaluate the possible benefit for the elderly. Besides the well-known notion of Food Oral Processing (FOP), our work broadens the concept by extending oral activity to digestion when working in a nutritional context. This new concept is named Food Oral and Digestive Processing, FODP.
Collapse
Affiliation(s)
- M-A Peyron
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Non-thermal processing has an impact on the digestibility of the muscle proteins. Crit Rev Food Sci Nutr 2021; 62:7773-7800. [PMID: 33939555 DOI: 10.1080/10408398.2021.1918629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Muscle proteins undergo several processes before being ready in a final consumable form. All these processes affect the digestibility of muscle proteins and subsequent release of amino acids and peptides during digestion in the human gut. The present review examines the effects of different processing techniques, such as curing, drying, ripening, comminution, aging, and marination on the digestibility of muscle proteins. The review also examines how the source of muscle proteins alters the gastrointestinal protein digestion. Processing techniques affect the structural and functional properties of muscle proteins and can affect their digestibility negatively or positively depending on the processing conditions. Some of these techniques, such as aging and mincing, can induce favorable changes in muscle proteins, such as partial unfolding or exposure of cleavage sites, and increase susceptibility to hydrolysis by digestive enzymes whereas others, such as drying and marination, can induce unfavorable changes, such as severe cross-linking, protein aggregation, oxidation induced changes or increased disulfide (S-S) bond content, thereby decreasing proteolysis. The underlying mechanisms have been discussed in detail and the conclusions drawn in the light of existing knowledge provide information with potential industrial importance.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, Srinagar, India
| |
Collapse
|
20
|
Skrzypczak K, Fornal E, Domagała D, Gustaw W, Jabłońska-Ryś E, Sławińska A, Radzki W, Kononiuk A, Waśko A. Use of α-Lactalbumin and Caseinoglycomacropeptide as Biopeptide Precursors and as Functional Additives in Milk Beverages Fermented by L. helveticus. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8822161. [PMID: 33954168 PMCID: PMC8060077 DOI: 10.1155/2021/8822161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/28/2021] [Accepted: 04/01/2021] [Indexed: 01/14/2023]
Abstract
The objective of this investigation was to verify whether biologically active peptides (BAPs) could be obtained from water solutions of α-lactalbumin (α-la) and caseinoglycomacropeptide (CGMP) through an application of the new Lactobacillus helveticus strains. Also, the aim of this research was to determine the influence of addition of the analyzed protein preparations to milk subjected to fermentation by tested bacterial strains on the physicochemical properties of obtained milk beverages. The results indicate that CGMP is a more preferable source for the production of BAPs by the test bacteria than α-la. The antihypertensive and ACE inhibitory effects were the most widespread bioactivities among the detected BAPs. α-la containing fermented milk beverages had higher values of springiness, gumminess, chewiness, and resilience than analogous products containing CGMP, while CGMP-supplemented fermented products exhibited higher values of the hardness parameter. The highest values of hardness (0.416 ± 0.05 N) were recorded for beverages fermented by DSMZ containing the addition of CGMP, while the lowest value of this parameter (0.186 ± 0.06 N) was noted for products containing α-la and fermented by B734. Moreover, CGMP-containing fermented products were characterized by a generally higher value of the proteolysis index (PI) than analogous variants containing α-la. The use of analyzed strains and the selected protein preparations has a positive effect on the texture of fermented milk beverages and might contribute to an increase in the health-promoting potential of such products.
Collapse
Affiliation(s)
- Katarzyna Skrzypczak
- Department of Plant Food Technology and Gastronomy, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland
| | - Dorota Domagała
- Department of Applied Mathematics and Computer Science, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland
| | - Waldemar Gustaw
- Department of Plant Food Technology and Gastronomy, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Ewa Jabłońska-Ryś
- Department of Plant Food Technology and Gastronomy, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Aneta Sławińska
- Department of Plant Food Technology and Gastronomy, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Wojciech Radzki
- Department of Plant Food Technology and Gastronomy, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Anna Kononiuk
- Department of Meat Technology and Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| |
Collapse
|
21
|
Lee S, Choi YS, Jo K, Yong HI, Jeong HG, Jung S. Improvement of meat protein digestibility in infants and the elderly. Food Chem 2021; 356:129707. [PMID: 33873143 DOI: 10.1016/j.foodchem.2021.129707] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 01/11/2023]
Abstract
Meat is a valuable protein source with a balanced composition of essential amino acids and various nutrients. This review aims to identify methods to improve digestion of meat proteins, as well as evaluate the digestive characteristics of infants and the elderly. Immature digestive conditions in infants, including a high gastric pH and low protease concentration, can hinder protein digestion, thus resulting in inhibited growth and development. Likewise, gastrointestinal (GI) tract aging and chronic health problems, including tooth loss and atrophic gastritis, can lead to reduction in protein digestion and absorption in the elderly compared with those in young adults. Moderate heating and several non-thermal technologies, such as aging, enzymatic hydrolysis, ultrasound, high-pressure processing, and pulsed electric field can alter protein structure and improve protein digestion in individuals with low digestive capacity.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, South Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, South Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
22
|
Barati M, Javanmardi F, Mousavi Jazayeri SMH, Jabbari M, Rahmani J, Barati F, Nickho H, Davoodi SH, Roshanravan N, Mousavi Khaneghah A. Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Compr Rev Food Sci Food Saf 2020; 19:1488-1520. [PMID: 33337080 DOI: 10.1111/1541-4337.12578] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Due to the digestible refractory and absorbable structures of bioactive peptides (BPs), they could induce notable biological impacts on the living organism. In this regard, the current study was devoted to providing an overview regarding the available methods for BPs generation by the aid of a systematic review conducted on the published articles up to April 2019. In this context, the PubMed and Scopus databases were screened to retrieve the related publications. According to the results, although the characterization of BPs mainly has been performed using enzymatic and microbial in-vitro methods, they cannot be considered as suitable techniques for further stimulation of digestion in the gastrointestinal tract. Therefore, new approaches for both in-vivo and in-silico methods for BPs identification should be developed to overcome the obstacles that belonged to the current methods. The purpose of this review was to compile the recent analytical methods applied for studying various aspects of food-derived biopeptides, and emphasizing generation at in vitro, in vivo, and in silico.
Collapse
Affiliation(s)
- Meisam Barati
- Student Research Committee, Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Jabbari
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Rahmani
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Barati
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Department of Clinical Nutrition and Dietetic, National Institute and Faculty of Nutrition and Food Technology; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
23
|
Aminopeptidase N inhibitory peptides derived from hen eggs: Virtual screening, inhibitory activity, and action mechanisms. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Comparison of the in vitro protein digestibility of Protaetia brevitarsis larvae and beef loin before and after defatting. Food Chem 2020; 338:128073. [PMID: 32950872 DOI: 10.1016/j.foodchem.2020.128073] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
Protein digestibility of Protaetia brevitarsis larvae before and after defatting by hexane was compared with that of beef loin in an in vitro digestion model. Larvae had higher crude protein content and 10% trichloroacetic acid (10% TCA)-soluble α-amino groups than beef. Decreases in the levels of total free sulfhydryl groups and 10% TCA-soluble α-amino groups were detected in larvae and beef after defatting (P < 0.05). Surface hydrophobicity increased after defatting in both larvae and beef, (P < 0.05) and tryptophan fluorescence intensity decreased in defatted larvae but increased in defatted beef. Levels of proteins digested into sizes under 3 and 10 kDa in larvae were higher than those in beef (P < 0.05), and defatting did not induce an effect in larvae. Therefore, in the aspect of high protein content and digestibility, larvae of P. brevitarsis can be a potential substitute of animal proteins.
Collapse
|
25
|
Fang M, Xiong S, Jiang Y, Yin T, Hu Y, Liu R, You J. In Vitro Pepsin Digestion Characteristics of Silver Carp ( Hypophthalmichthys molitrix) Surimi Gels with Different Degrees of Cross-Linking Induced by Setting Time and Microbial Transglutaminase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8413-8430. [PMID: 32663001 DOI: 10.1021/acs.jafc.0c03014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surimi gels are favored for their abundant proteins and unique taste. In this study, the pepsin digestion behaviors of surimi gels with different degrees of cross-linking induced by microbial transglutaminase (MTGase) and different setting times were investigated. For gels without (CK group) and with (TG group) MTGase, the slowest digestion rate (tM/2 = 20.13 and 79.19 min for CK and TG group, respectively), the least amino acid concentration (5.32 and 3.73 μmol/mL for CK and TG group, respectively), and the peptide amounts (1355 and 1788 for CK and TG group, respectively) were obtained at a moderate setting time (1-4 h) with the finest microstructure. However, the excessive setting time (8-12 h) formed an inhomogenous network, which accelerated the hydrolysis of gel proteins (tM/2 = 9.40 and 52.33 min for CK and TG group, respectively) and produced more amino acids (6.63 and 5.15 μmol/mL for CK and TG group, respectively) and peptide amounts (1644 and 2143 for CK and TG group, respectively). The above results also demonstrated that the presence of MTGase strengthened the compactness of gels as well as slowed down the digestion process with the release of less amino acids but more peptides. A large proportion of unique peptides were from the tail domain of myosin heavy chain. The discrepancy in bioactive peptides between different gels might be reduced in the subsequent intestinal digestion according to the in silico methods, demonstrating the diminished difference in the gastrointestinal digestion process in the aspect of releasing functional peptides. This study provides the theoretical basis and guideline in the field of gelation food digestion and surimi food industry to produce healthier surimi-based food.
Collapse
Affiliation(s)
- Mengxue Fang
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Shanbai Xiong
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Yue Jiang
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Tao Yin
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Yang Hu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Ru Liu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Juan You
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| |
Collapse
|
26
|
Barati M, Javanmardi F, Jabbari M, Mokari-Yamchi A, Farahmand F, Eş I, Farhadnejad H, Davoodi SH, Mousavi Khaneghah A. An in silico model to predict and estimate digestion-resistant and bioactive peptide content of dairy products: A primarily study of a time-saving and affordable method for practical research purposes. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Gallego M, Mauri L, Aristoy MC, Toldrá F, Mora L. Antioxidant peptides profile in dry-cured ham as affected by gastrointestinal digestion. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103956] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Sharma P, Kaur H, Kehinde BA, Chhikara N, Sharma D, Panghal A. Food-Derived Anticancer Peptides: A Review. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10063-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
|
30
|
Boléa G, Ginies C, Vallier MJ, Dufour C. Lipid protection by polyphenol-rich apple matrices is modulated by pH and pepsin in in vitro gastric digestion. Food Funct 2020; 10:3942-3954. [PMID: 31199415 DOI: 10.1039/c9fo00705a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lipid oxidation takes place in the gastric tract after the ingestion of a Western diet rich in ω-6 polyunsaturated fatty acids (PUFA) and red meat (heme iron). The incorporation of oxidation products such as 4-hydroxy-2-nonenal (4-HNE) into low-density lipoproteins is further correlated to endothelial dysfunction. Gastric postprandial stress could thus be reduced by antioxidant phytomicronutrients. The aim of this study was to investigate dietary lipid oxidation and its inhibition by apple polyphenols under different matrix forms (fresh fruit, puree, extract) under in vitro gastric digestion conditions. A deep insight was given into the two factors pH and pepsin governing the metmyoglobin-initiated lipid oxidation of sunflower oil-in-water emulsions simulating the physical state of dietary lipids. Our results first showed that pepsin accelerated lipid oxidation at pH 5 through the formation of a micro-metmyoglobin form likely displaying a higher accessibility to lipids. Spectroscopic studies further highlighted the formation of a reversible unfolded metmyoglobin form at pH 3 which was shown to be more pro-oxidant in the absence of pepsin. At nutritional levels, the three apple matrices inhibited less efficiently the accumulation of lipid-derived conjugated dienes and 4-HNE at pH 5 when pepsin was present whereas at pH 3 the opposite was true. High initial bioaccessibilities of monomeric phenolic compounds were evidenced for both puree (57-74%) and the phenolic extract (79-96%) compared to fresh apple (1-14%) supporting their greater antioxidant capacity. By contrast, the bioaccessibility of dimer B2 was low for all matrices suggesting non-covalent binding to apple pectins.
Collapse
Affiliation(s)
- Gaëtan Boléa
- UMR408 SQPOV "Safety and Quality of Plant Products", INRA, University of Avignon, F-84000 Avignon, France. and EA4278 LaPEC "Laboratory of Cardiovascular Pharm-ecology", University of Avignon, F-84000 Avignon, France
| | - Christian Ginies
- UMR408 SQPOV "Safety and Quality of Plant Products", INRA, University of Avignon, F-84000 Avignon, France.
| | - Marie-José Vallier
- UMR408 SQPOV "Safety and Quality of Plant Products", INRA, University of Avignon, F-84000 Avignon, France.
| | - Claire Dufour
- UMR408 SQPOV "Safety and Quality of Plant Products", INRA, University of Avignon, F-84000 Avignon, France.
| |
Collapse
|
31
|
Zhao W, Zhang D, Yu Z, Ding L, Liu J. Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV identified from hen eggs. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103649] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
32
|
Pepe G, Basilicata MG, Carrizzo A, Adesso S, Ostacolo C, Sala M, Sommella E, Ruocco M, Cascioferro S, Ambrosio M, Pisanti S, Di Sarno V, Bertamino A, Marzocco S, Vecchione C, Campiglia P. β-Lactoglobulin Heptapeptide Reduces Oxidative Stress in Intestinal Epithelial Cells and Angiotensin II-Induced Vasoconstriction on Mouse Mesenteric Arteries by Induction of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Translocation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1616239. [PMID: 31814866 PMCID: PMC6877959 DOI: 10.1155/2019/1616239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/18/2019] [Accepted: 10/08/2019] [Indexed: 01/06/2023]
Abstract
Peptides derived from buffalo dairy products possess multiple healthy properties that cannot be exerted as long as they are encrypted in parent proteins. To evaluate the biological activities of encrypted peptide sequences from buffalo ricotta cheese, we performed a simulated gastrointestinal (GI) digestion. Chemical and pharmacological characterization of the digest led to the identification of a novel peptide endowed with antioxidant and antihypertensive action. The GI digest was fractionated by Semiprep-HPLC, and fractions were tested against reactive oxygen species (ROS) release in an H2O2-treated intestinal epithelial cell line. UHPLC-PDA-MS/MS analysis revealed the presence of an abundant β-lactoglobulin peptide (BRP2) in the most active fraction. Pharmacological characterization of BRP2 highlighted its antioxidant activity, involving ROS reduction, nuclear factor erythroid 2-related factor 2 (Nrf2) activation, and cytoprotective enzyme expression. The bioavailability of BRP2 was evaluated in intestinal transport studies through a Caco-2 cell monolayer. Equal bidirectional transport and linear permeability indicate that BRP2 was absorbed mainly through passive diffusion. In addition to its local effects, the BRP2 administration on mouse mesenteric arteries was able to reduce the angiotensin II-induced vasoconstriction by the Nrf2 nuclear translocation, the reduction of the active form of Ras-related C3 botulinum toxin substrate 1 (Rac1), and the NADPH oxidase activity. These data further highlight the role of buffalo ricotta cheese-derived peptides against oxidative stress-related diseases and suggest their health-promoting potential.
Collapse
Affiliation(s)
- Giacomo Pepe
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Manuela Giovanna Basilicata
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, Italy
| | | | - Simona Adesso
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Naples Federico II, NA, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | - Marco Ruocco
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, PA, Italy
| | | | - Simona Pisanti
- Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | | | | | | | - Carmine Vecchione
- IRCCS Neuromed, Loc. Camerelle, Pozzilli, Italy
- Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- European Biomedical Research Institute of Salerno, SA, Italy
| |
Collapse
|
33
|
Kęska P, Stadnik J, Bąk O, Borowski P. Meat Proteins as Dipeptidyl Peptidase IV Inhibitors and Glucose Uptake Stimulating Peptides for the Management of a Type 2 Diabetes Mellitus In Silico Study. Nutrients 2019; 11:nu11102537. [PMID: 31640215 PMCID: PMC6836043 DOI: 10.3390/nu11102537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is a non-communicable disease entity currently constituting one of the most significant health problems. The development of effective therapeutic strategies for the prevention and/or treatment of diabetes mellitus based on the selection of methods to restore and maintain blood glucose homeostasis is still in progress. Among the different courses of action, inhibition of dipeptidyl peptidase IV (DPP-IV) can improve blood glucose control in diabetic patients. Pharmacological therapy offering synthetic drugs is commonly used. In addition to medication, dietary intervention may be effective in combating metabolic disturbances caused by diabetes mellitus. Food proteins as a source of biologically active sequences are a potential source of anti-diabetic peptides (DPP-IV inhibitors and glucose uptake stimulating peptides). This study showed that in silico pork meat proteins digested with gastrointestinal enzymes are a potential source of bioactive peptides with a high potential to control blood glucose levels in patients with type 2 diabetes mellitus. Analysis revealed that the sequences released during in silico digestion were small dipeptides (with an average weight of 270.07 g mol-1), and most were poorly soluble in water. The selected electron properties of the peptides with the highest bioactivity index (i.e., GF, MW, MF, PF, PW) were described using the DFT method. The contribution of hydrophobic amino acids, in particular Phe and Trp, in forming the anti-diabetic properties of peptides released from pork meat was emphasized.
Collapse
Affiliation(s)
- Paulina Kęska
- Department of Animal Raw Materials Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Joanna Stadnik
- Department of Animal Raw Materials Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Olga Bąk
- Faculty of Chemistry, Marie Curie-Sklodowska University in Lublin, 3 Marie Curie-Sklodowska Sq., 20-031 Lublin, Poland.
| | - Piotr Borowski
- Faculty of Chemistry, Marie Curie-Sklodowska University in Lublin, 3 Marie Curie-Sklodowska Sq., 20-031 Lublin, Poland.
| |
Collapse
|
34
|
Gong X, Morton JD, Bhat ZF, Mason SL, Bekhit AEA. Comparative efficacy of actinidin from green and gold kiwi fruit extract onin vitrosimulated protein digestion of beefSemitendinosusand its myofibrillar protein fraction. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xi Gong
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Lincoln 7647 Christchurch New Zealand
| | - James D. Morton
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Lincoln 7647 Christchurch New Zealand
| | - Zuhaib F. Bhat
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Lincoln 7647 Christchurch New Zealand
| | - Susan L. Mason
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Lincoln 7647 Christchurch New Zealand
| | - Alaa El‐Din A. Bekhit
- Department of Food Sciences University of Otago P.O. Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
35
|
Bhat ZF, Morton JD, Mason SL, Jayawardena SR, Bekhit AEDA. Pulsed electric field: A new way to improve digestibility of cooked beef. Meat Sci 2019; 155:79-84. [DOI: 10.1016/j.meatsci.2019.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/23/2022]
|
36
|
Martini S, Conte A, Tagliazucchi D. Comparative peptidomic profile and bioactivities of cooked beef, pork, chicken and turkey meat after in vitro gastro-intestinal digestion. J Proteomics 2019; 208:103500. [PMID: 31454557 DOI: 10.1016/j.jprot.2019.103500] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/18/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
This study was designed to investigate the potential contribution of bioactive peptides to the biological activities related to the consumption of pork, beef, chicken and turkey meat following in vitro gastro-intestinal digestion. After extraction of the peptidic fractions from digested samples, the bioactivities were evaluated by in vitro antioxidant activity as well as angiotensin-converting enzyme (ACE) and dipeptidyl peptidase-IV (DPP-IV) inhibition assays. Pork and turkey meat appeared to be the best sources of antioxidant peptides. Pork was found to be the best source of DPP-IV-inhibitory peptides whereas chicken meat supplied peptides with the highest ACE-inhibitory activity. The comprehensive analysis of the peptidomic profile of digested samples was performed by nano-LC-ESI-QTOF MS/MS analysis. A total of 217, 214, 257 and 248 peptides were identified in digested pork, beef, chicken and turkey meat, respectively. Chicken and turkey meat showed the highest similarity in peptide sequences with 202 common peptides. Sixty-two peptides matched with sequences with previously demonstrated biological activity. In particular, 35 peptides showed ACE-inhibitory activity and 23 DPP-IV inhibitory activity. Twenty-two bioactive peptides were commonly released from the different types of meat. The relative amount of identified bioactive peptides were positively correlated to the biological activities of the different digested meats. BIOLOGICAL SIGNIFICANCE: The present study describes for the first time a comprehensive peptide profile of four types of meat after in vitro gastro-intestinal digestion. The peptide inventory was used to identify 62 bioactive peptides with ACE- and DPPIV-inhibitory and antioxidant activities. The bioactivity analysis revealed interesting and significant differences between the studied meats. The originality of this work lay in the description of intrinsic differences in physiological functions after the ingestion of meat proteins from different species. In a context in which the current research scene relates meat consumption to the onset of chronic pathologies, this peptide profiling and bioactivity analysis shed light on the possible health benefits of peptides released from meat proteins. In fact, this paper represents a sort of detailed peptide list that may help to predict which peptides could be generated after meat intake and detectable at gastro-intestinal level. It also provides a thorough investigation of novel biological activities associated to meat protein hydrolysates, giving a new positive aspect to meat consumption.
Collapse
Affiliation(s)
- Serena Martini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2 - Pad. Besta, 42100 Reggio Emilia, Italy
| | - Angela Conte
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2 - Pad. Besta, 42100 Reggio Emilia, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2 - Pad. Besta, 42100 Reggio Emilia, Italy.
| |
Collapse
|
37
|
Panyayai T, Ngamphiw C, Tongsima S, Mhuantong W, Limsripraphan W, Choowongkomon K, Sawatdichaikul O. FeptideDB: A web application for new bioactive peptides from food protein. Heliyon 2019; 5:e02076. [PMID: 31372542 PMCID: PMC6656964 DOI: 10.1016/j.heliyon.2019.e02076] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Bioactive peptides derived from food are important sources for alternative medicine and possess therapeutic activity. Several biochemical methods have been achieved to isolate bioactive peptides from food, which are tedious and time consuming. In silico methods are an alternative process to reduce cost and time with respect to bioactive peptide production. In this paper, FeptideDB was used to collect bioactive peptide (BP) data from both published research articles and available bioactive peptide databases. FeptideDB was developed to assist in forecasting bioactive peptides from food by combining peptide cleavage tools and database matching. Furthermore, this application was able to predict the potential of cleaved peptides from 'enzyme digestion module' to identify new ACE (angiotensin converting enzyme) inhibitors using an automatic molecular docking approach. RESULTS The FeptideDB web application contains tools for generating all possible peptides cleaved from input protein by various available enzymes. This database was also used for analysis and visualization to assist in bioactive peptide discovery. One module of FeptideDB has the ability to create 3-dimensional peptide structures to further predict inhibitors for the target protein, ACE (angiotensin converting enzyme). CONCLUSIONS FeptideDB is freely available to researchers who are interested in exploring bioactive peptides. The FeptideDB interface is easy to use, allowing users to rapidly retrieve data based on desired search criteria. FeptideDB is freely available at http://www4g.biotec.or.th/FeptideDB/. Ultimately, FeptideDB is a computational aid for assessing peptide bioactivities.
Collapse
Affiliation(s)
- Thitima Panyayai
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, 50 Ngam Wong Wan Rd, Bangkok, Chatuchak, 10900, Thailand
- Department of Research and Development, Betagro Science Center Co. Ltd., Klong Luang, Pathumthani, 12120, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wachira Limsripraphan
- Department of Computer Engineering, Faculty of Industrial Technology, Pibulsongkram Rajabhat University, 156 Mu 5 Plaichumpol Sub-district, Muang District, Phitsanulok, 65000, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam, Wong Wan Rd, Bangkok, Chatuchak, 10900, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Orathai Sawatdichaikul
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
38
|
Kandemir-Cavas C, Pérez-Sanchez H, Mert-Ozupek N, Cavas L. In Silico Analysis of Bioactive Peptides in Invasive Sea Grass Halophila stipulacea. Cells 2019; 8:cells8060557. [PMID: 31181665 PMCID: PMC6628230 DOI: 10.3390/cells8060557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Halophila stipulacea is a well-known invasive marine sea grass in the Mediterranean Sea. Having been introduced into the Mediterranean Sea via the Suez Channel, it is considered a Lessepsian migrant. Although, unlike other invasive marine seaweeds, it has not demonstrated serious negative impacts on indigenous species, it does have remarkable invasive properties. The present in-silico study reveals the biotechnological features of H. stipulacea by showing bioactive peptides from its rubisc/o protein. These are features such as antioxidant and hypolipideamic activities, dipeptidyl peptidase-IV and angiotensin converting enzyme inhibitions. The reported data open up new applications for such bioactive peptides in the field of pharmacy, medicine and also the food industry.
Collapse
Affiliation(s)
- Cagin Kandemir-Cavas
- Department of Computer Science, Faculty of Science, Dokuz Eylül University, İzmir 35390, Turkey.
| | - Horacio Pérez-Sanchez
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain.
| | | | - Levent Cavas
- Department of Chemistry, Faculty of Science, Dokuz Eylül University, İzmir 35390, Turkey.
| |
Collapse
|
39
|
Pulsed electric field improved protein digestion of beef during in-vitro gastrointestinal simulation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Mora L, Gallego M, Toldrá F. ACEI-Inhibitory Peptides Naturally Generated in Meat and Meat Products and Their Health Relevance. Nutrients 2018; 10:E1259. [PMID: 30205453 PMCID: PMC6164540 DOI: 10.3390/nu10091259] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 12/31/2022] Open
Abstract
Meat and meat products have been described as a very good source of angiotensin I converting enzyme (ACEI)-inhibitory peptides. The generation of bioactive peptides can occur through the action of endogenous muscular enzymes during processing, gastrointestinal digestion, or by using commercial enzymes in laboratory or industry under controlled conditions. Studies of bioavailability are necessary in order to prove the positive health effect of bioactive peptides in the body as they should resist gastrointestinal digestion, cross the intestinal barrier, and reach blood stream and target organs. However, in order to better understand their effect, interactions, and bioavailability, it is necessary to consider food matrix interactions and continue the development of quantitative methodologies in order to obtain more data that will enable advances in the field of bioactive peptides and the determination of their influence on health.
Collapse
Affiliation(s)
- Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Marta Gallego
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|