1
|
Kang MJ, Pegg RB, Kerr WL, Wells ML, Conner PJ, Suh JH. Metabolomic analysis combined with machine learning algorithms enables the evaluation of postharvest pecan color stability. Food Chem 2024; 461:140814. [PMID: 39151343 DOI: 10.1016/j.foodchem.2024.140814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Nut kernel color is a crucial quality indicator affecting the consumers first impression of the product. While growing evidence suggests that plant phenolics and their derivatives are linked to nut kernel color, the compounds (biomarkers) responsible for kernel color stability during storage remain elusive. Here, pathway-based metabolomics with machine learning algorithms were employed to identify key metabolites of postharvest pecan color stability. Metabolites in phenylpropanoid, flavonoid, and anthocyanin biosynthetic pathways were analyzed in the testa of nine pecan cultivars using liquid chromatography-mass spectrometry. With color measurements, different machine learning models were compared to find relevant biomarkers of pecan color phenotypes. Results revealed potential marker compounds that included flavonoid precursors and anthocyanidins as well as anthocyanins (e.g., peonidin, delphinidin-3-O-glucoside). Our findings provide a foundation for future research in the area, and will help select genes/proteins for the breeding of pecans with stable and desirable kernel color.
Collapse
Affiliation(s)
- Min Jeong Kang
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA
| | - Ronald B Pegg
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA
| | - William L Kerr
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA
| | - M Lenny Wells
- Department of Horticulture, College of Agricultural and Environmental Sciences, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - Patrick J Conner
- Department of Horticulture, College of Agricultural and Environmental Sciences, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - Joon Hyuk Suh
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Hosseininejad S, Moraga G, Hernando I. Valorizing Astringent 'Rojo Brillante' Persimmon Through the Development of Persimmon-Based Bars. Foods 2024; 13:3748. [PMID: 39682820 DOI: 10.3390/foods13233748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
This study developed a new energy bar using the astringent 'Rojo Brillante' variety of persimmons to address postharvest losses. The bar was formulated with dehydrated persimmons, walnuts, hazelnuts, and chia seeds to enhance their nutritional profile. The proximate composition was evaluated and the mechanical and optical properties, soluble tannins, carotenoids, and antioxidant activities were monitored during storage. In addition, in vitro gastrointestinal digestion was performed to determine the recovery index of the bioactive compounds. The results showed that the formulated energy bar contained higher levels of healthy fats, proteins, and fibers than other fruit energy bars. The mechanical properties of dehydrated persimmon effectively supported the consistency of the bar, eliminating the need for hydrocolloids or syrups. During storage, soluble tannin content decreased, mitigating astringency issues commonly found in persimmon products, whereas carotenoid levels and antioxidant activity remained stable. In vitro digestion analysis revealed a higher recovery index for soluble tannins (180.08%) than carotenoids (9.87%). This persimmon-based energy bar offers a sustainable and nutritious option for the snack industry, catering to consumer preferences for natural products while contributing to the reduction of agricultural waste.
Collapse
Affiliation(s)
- Sepideh Hosseininejad
- Instituto Universitario de Ingeniería de Alimentos-Food UPV, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Gemma Moraga
- Instituto Universitario de Ingeniería de Alimentos-Food UPV, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Isabel Hernando
- Instituto Universitario de Ingeniería de Alimentos-Food UPV, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| |
Collapse
|
3
|
Cui M, Mo R, Li Q, Wang R, Shen D, Tang F, Liu Y. Maturation-induced changes in phenolic forms and their antioxidant activities of walnuts: A dual view from kernel and pellicle. Food Chem X 2024; 23:101792. [PMID: 39286045 PMCID: PMC11403452 DOI: 10.1016/j.fochx.2024.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
The phenolic profiles and antioxidant activities during walnut maturation are not well understood. This study used UPLC-MS/MS to evaluate phenolic content in walnuts, including free, esterified, and bound forms, at different maturation stages. Findings showed that free phenolics were predominant, comprising 44.57 % in kernels and 56.54 % in pellicles. In vitro assays showed antioxidant capacity decreased with maturation, with IC50 values of 0.87-84.43 μg/mL in pellicles and 48.51-712.30 μg/mL in kernels. Most monomeric phenols decreased in concentration as the fruit ripened. OPLS-DA identified 5 and 8 maturity-sensitive phenolics (MSPs) in kernels and pellicles, respectively, with fold changes from 2.32 to 1664.72. Pearson correlation analysis showed a significant correlation between MSPs and antioxidant activity (r > 0.75, p < 0.05). Bioinformatics analysis elucidated three key metabolic pathways involved in these changes. This research provides insights into walnut phenolic composition, important for optimizing harvest practices and enhancing nutritional value.
Collapse
Affiliation(s)
- Maokai Cui
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Runhong Mo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Qingyang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Ruohui Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
- Weinan City Forestry Workstation, Weinan 714000, PR China
| | - Danyu Shen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Fubin Tang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| |
Collapse
|
4
|
Akca Y, Ozguven MM, Altas Z, Uygun T. A new approach for artificial pollination in walnut trees: AirPoll. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122123. [PMID: 39146648 DOI: 10.1016/j.jenvman.2024.122123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Pollination is the first step in the plant's fruit development. Therefore, fruit setting does not occur without pollination. Some problems encountered in natural pollination cause pollination not to be achieved as desired and cause significant losses in yield and fruit quality. Artificial pollination applications with drones are the best way to solve these problems. In this study, the AirPoll artificial pollination machine, which performs artificial pollination through the air using drone technology, was developed and the operating success of the machine was tested in walnut gardens. In the experiment gardens, female flowers on 18 branches of 5 trees each in the artificially pollinated area with a drone and in the control area were marked with colored strings. Control trees were selected from a distance that would not be possible to transport pollen with a drone. As a result of the study carried out in 2020 and 2021, the average fruit setting rate in trees pollinated by drone was determined as 94.61%. In control trees, 32.33% fruit setting was achieved. Thus, it was determined that the productivity increase in artificial pollination with AirPoll was 62.28%. In addition, in the study, Computational Fluid Dynamics (CFD) simulation analysis was performed using ANSYS Fluent 2024 R1 software to predict the downward air flow and pollen distribution in the walnut tree crown. The analysis was carried out in 680 iterations using drone propellers at a rotation speed of 4500 rpm, 4 m/s airflow and a k-w viscous model. In the analysis, it was observed that the pollen was distributed homogeneously with the determined height and the created artificial pollination environment. Based on the results obtained from the simulations, a convergence criterion of 5e-3 for continuity and 1e-6 for speed, k, w was determined. Considering all the results, the ease of use of the developed AirPoll artificial pollination machine and the successful results obtained in field trials reveal the effectiveness of the AirPoll artificial pollination machine.
Collapse
Affiliation(s)
- Yaşar Akca
- Tokat Gaziosmanpasa University, Department of Horticulture, Turkiye
| | - Mehmet Metin Ozguven
- Ankara University, Department of Agricultural Machinery and Technologies Engineering, Turkiye.
| | - Ziya Altas
- Konya Food and Agriculture University, Turkiye
| | - Tahsin Uygun
- Tokat Gaziosmanpasa University, Department of Biosystems Engineering, Turkiye
| |
Collapse
|
5
|
Liu H, Zhou H, Ye H, Gen F, Lei M, Li J, Wei W, Liu Z, Hou N, Zhao P. Integrated metabolomic and transcriptomic dynamic profiles of endopleura coloration during fruit maturation in three walnut cultivars. BMC PLANT BIOLOGY 2024; 24:109. [PMID: 38350847 PMCID: PMC10865529 DOI: 10.1186/s12870-024-04790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND The color of endopleura is a vital factor in determining the economic value and aesthetics appeal of nut. Walnuts (Juglans) are a key source of edible nuts, high in proteins, amino acids, lipids, carbohydrates. Walnut had a variety endopleura color as yellow, red, and purple. However, the regulation of walnut endopleura color remains little known. RESULTS To understand the process of coloration in endopleura, we performed the integrative analysis of transcriptomes and metabolomes at two developmental stages of walnut endopleura. We obtained total of 4,950 differentially expressed genes (DEGs) and 794 metabolites from walnut endopleura, which are involved in flavonoid and phenolic biosynthesis pathways. The enrichment analysis revealed that the cinnamic acid, coniferyl alcohol, naringenin, and naringenin-7-O-glucoside were important metabolites in the development process of walnut endopleura. Transcriptome and metabolome analyses revealed that the DEGs and differentially regulated metabolites (DRMs) were significantly enriched in flavonoid biosynthesis and phenolic metabolic pathways. Through co-expression analysis, CHS (chalcone synthase), CHI (chalcone isomerase), CCR (cinnamoyl CoA reductase), CAD (cinnamyl alcohol dehydrogenase), COMT (catechol-Omethyl transferase), and 4CL (4-coumaroyl: CoA-ligase) may be the key genes that potentially regulate walnut endopleura color in flavonoid biosynthesis and phenolic metabolic pathways. CONCLUSIONS This study illuminates the metabolic pathways and candidate genes that underlie the endopleura coloration in walnuts, lay the foundation for further study and provides insights into controlling nut's colour.
Collapse
Affiliation(s)
- Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, No. 229 Tabi Rd., Xi'an, 710069, China
| | - Huijuan Zhou
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, Shaanxi, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, No. 229 Tabi Rd., Xi'an, 710069, China
| | - Fangdong Gen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, No. 229 Tabi Rd., Xi'an, 710069, China
| | - Mengfan Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, No. 229 Tabi Rd., Xi'an, 710069, China
| | - Jinhan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, No. 229 Tabi Rd., Xi'an, 710069, China
| | - Wenjun Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, No. 229 Tabi Rd., Xi'an, 710069, China
| | - Zhanlin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, No. 229 Tabi Rd., Xi'an, 710069, China
| | - Na Hou
- Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang, 55005, China.
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, No. 229 Tabi Rd., Xi'an, 710069, China.
| |
Collapse
|
6
|
Ferrara E, Cice D, Piccolella S, Esposito A, Petriccione M, Pacifico S. 'Sorrento' and 'Tulare' Walnut Cultivars: Morphological Traits and Phytochemical Enhancement of Their Shell Waste. Molecules 2024; 29:805. [PMID: 38398557 PMCID: PMC10893203 DOI: 10.3390/molecules29040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Walnut processing generates considerable quantities of by-products that could be reprocessed into value-added products that have food and non-food applications. In this context, the aim of this study is to characterize the 'Sorrento' and 'Tulare' walnut cultivars using the UPOV guidelines and analyze the chemical composition and antioxidant activity of their shells. Insight into the chemical composition of the different granulometric fractions of walnut shell, obtained by sieving, was obtained following ultrasound-assisted extraction by Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS). The total phenolic, flavonoid, and tannin content and antiradical capacity, obtained by DPPH and ABTS assays, and the Fe(III) reducing power of the extracts were also evaluated. The UHPLC-HRMS analysis indicated the presence of thirty-two compounds ascribable to four major classes of specialized metabolites. Furthermore, the extraction efficiency of gallic acid, ellagic acid derivatives, as well as glansreginin A, increased with the decrease in shell matrix particle size in contrast to chlorogenic acids and flavonoid glycosides. This is the first study to highlight new knowledge on the chemical composition of walnut shells. The results obtained demonstrate the feasibility of recovering valuable bioactive components from agro-waste that may be further valorized.
Collapse
Affiliation(s)
- Elvira Ferrara
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.F.); (S.P.); (A.E.); (S.P.)
- CREA-Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Via Torrino 3, 81100 Caserta, Italy;
| | - Danilo Cice
- CREA-Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Via Torrino 3, 81100 Caserta, Italy;
| | - Simona Piccolella
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.F.); (S.P.); (A.E.); (S.P.)
| | - Assunta Esposito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.F.); (S.P.); (A.E.); (S.P.)
| | - Milena Petriccione
- CREA-Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Via Torrino 3, 81100 Caserta, Italy;
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.F.); (S.P.); (A.E.); (S.P.)
| |
Collapse
|
7
|
Qingyang L, Ruohui W, Shiman S, Danyu S, Runhong M, Yihua L. Comparison of different drying technologies for walnut ( Juglans regia L.) pellicles: Changes from phenolic composition, antioxidant activity to potential application. Food Chem X 2023; 20:101037. [PMID: 38144737 PMCID: PMC10739750 DOI: 10.1016/j.fochx.2023.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
The analysis of the phenolic profile in the walnut pellicle (WP) and its exploitability can help to promote the valorization of the industrial waste from walnut production. Three forms of 33 monomeric phenols in WPs were quantified based on our previously established LC-MS/MS method. The levels of protocatechuic acid and 4-hydroxybenzoic acid in the WPs were the highest, exceeding 400 μg/g. Antioxidant tests revealed that all three phenolic forms of WPs were effective antioxidants (IC50: 2.12-35.05 µg/mL). The findings also revealed that drying temperature had a substantial type-dependent effect on phenolics and their antioxidant ability in WPs. KEGG enrichment analysis found that drying method has the greatest impact on WPs phenols in six metabolic pathways. Besides, 11 active substances in WPs were identified by a compound-targeted activity screening approach, indicating that WPs could be used as a natural antioxidant source in the development of medical and nutraceutical products.
Collapse
Affiliation(s)
- Li Qingyang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Wang Ruohui
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Sun Shiman
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Shen Danyu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Mo Runhong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Liu Yihua
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| |
Collapse
|
8
|
Simon G, Bujdosó G, Cvetkovic M, Tevfik Alp O, Kithi L, Oláh R, Ficzek G, Végvári G. Responses of Persian walnut on foliar applications of different biostimulants. FRONTIERS IN PLANT SCIENCE 2023; 14:1263396. [PMID: 37915506 PMCID: PMC10616974 DOI: 10.3389/fpls.2023.1263396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
Biostimulants have different effects on plants. The aim of this paper is to determine responses of the 'Alsószentiváni 117' walnut cultivar on foliar applications of different biostimulants (Wuxal Ascofol, Kondisol, Alga K Plus). The nut traits (nut length, nut diameter, nut weight, kernel weight) and some phenolic compounds of the kernel were measured and detected. In 2020, during warmer early spring weather conditions under pistillate flowering receptivity, chlorogenic acid and quercetin content of kernels treated with Kondisol were higher than in control. All biostimulants influenced positive effects on catechin and rutin content, as well as treatments made with Wuxal Ascofol and Kondisol increased the juglon content of the kernel. In 2021, when the spring weather was typical for that period, only the Kondisol treatments had increasing effects on the catechin and chlorogenic acid content, than the control. The rutin and quercetin concentrations reached the highest value in this trial by Alga K Plus applications. The juglon content decreased in this year compared to the control. The pirocathecin, cinnamic acid, and gallic acid (except Wuxal Ascofol treatment in 2021) content decreased in all treatments in both observed years. Responses of woody fruit species on biostimulants applications depend on the weather conditions. Biostimulants had positive effects on the nut size characteristics in both observed years.
Collapse
Affiliation(s)
- Gergely Simon
- Department of Fruit Growing, Institute of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Géza Bujdosó
- Research Center of Fruit Growing, Institute of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Miljan Cvetkovic
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ozan Tevfik Alp
- Department of Fruit Growing, Institute of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Laurine Kithi
- Research Center of Fruit Growing, Institute of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Gitta Ficzek
- Department of Fruit Growing, Institute of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - György Végvári
- Faculty of Natural Sciences, Institute of Viticulture and Oenology, Eszterházy Károly Catholic University, Eger, Hungary
| |
Collapse
|
9
|
Quantitative conversion of free, acid-hydrolyzable, and bound ellagic acid in walnut kernels during baking. Food Chem 2023; 400:134070. [DOI: 10.1016/j.foodchem.2022.134070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022]
|
10
|
Wojdyło A, Turkiewicz IP, Tkacz K, Nowicka P, Bobak Ł. Nuts as functional foods: Variation of nutritional and phytochemical profiles and their in vitro bioactive properties. Food Chem X 2022; 15:100418. [PMID: 36211787 PMCID: PMC9532779 DOI: 10.1016/j.fochx.2022.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Nutritional, biological and in vitro anti-diabetic, -obesity, -cholinergic of nuts. Polymeric procyanidins dominant polyphenols. Oleanic and pomolic acids dominant triterpenes. Nuts are low in Cu, Zn, Mn, Na, but rich in K and Mg. All nuts showed high activity in inhibiting intestinal α-glucosidase.
The aim of the present study was to examine the nutritional (fat, fatty acids, minerals, sugars) and bioactive compounds (polyphenols, tocochromanols, triterpene) and their influence on in vitro anti-diabetic (pancreatic α-amylase and intestinal α-glucosidase), anti-obesity (pancreatic lipase) and anti-cholinergic (AChE and BuChE) inhibitory activity of 8 different popular nuts—pecan, pine, hazelnuts, pistachio, almonds, cashew, walnuts, and macadamia. The total content of phenolic compounds in nuts ranged from 432.9 (walnuts) to 5.9 (pistachio) mg/100 g. The dominant polyphenols are polymeric procyanidins (walnuts – 415.1 mg/100 g). Nuts are rich in tocochromanols (832.9–4377.5 μg/100 g), especially α- and γ-tocopherols. The highest content of α-tocopherol (vitamin E) was detected in hazelnuts and almonds (2551.0 and 2489.7 μg/100 g, respectively) while the lowest amounts were detected in macadamia, cashew and walnuts. The most abundant in nuts are oleanic and pomolic acids (35 and 22 % of total, respectively), while betulin, uvaol and erythrodiol are less characteristic triterpenes for nuts (<1%). Pine nuts are the nuts with the highest content of triterpene (690.3 mg/100 g). Pistachio and almonds are the richest in total fat (>45 %), but monounsaturated (17.5–79.3 %; hazelnuts, almonds, cashew, macadamia, pistachio and pecan) and polyunsaturated (7.5–69.3 %; pine, walnuts) are the dominant fatty acids. Moreover, nuts are low in Cu, Zn, Mn and Na content, but rich in K (464.5–1772.3 mg/100 g) and Mg (197.0–502.5 mg/100 g). Macadamia, walnuts and cashew are good sources of Se. Pistachio, almonds and cashew were characterized by the highest content of sugars, but the dominant sugar was saccharose (58.2–2399.3 mg/100 g). All nuts showed high activity in inhibiting intestinal α-glucosidase (>90 %), but lower ability to inhibit pancreatic α-amylase and pancreatic lipase activity. The activity in inhibiting acetyl- and butylcholinesterase was up to 30 %. As described above, all nuts contain various compounds that improve the nutritional value. Therefore they should be one of the important components of the daily human diet rich in functional foods.
Collapse
|
11
|
Jin F, Wang Y, Huang R, Li B, Zhou Y, Pei D. Phenolic extracts from colored-walnut pellicles: antioxidant efficiency in walnut oil preservation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2082466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Feng Jin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Yaping Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Ruimin Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Baoxin Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Ye Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| |
Collapse
|
12
|
Chen JH, Hou N, Xv X, Zhang D, Fan TQ, Zhang QX, Huang YJ. Flavonoid Synthesis and Metabolism During the Fruit Development in Hickory ( Carya cathayensis). FRONTIERS IN PLANT SCIENCE 2022; 13:896421. [PMID: 35615140 PMCID: PMC9125235 DOI: 10.3389/fpls.2022.896421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 06/02/2023]
Abstract
Hickory (Carya cathayensis) kernel is rich in powerful bioactive flavonoids, which can remove excess free radicals in the human body and play an important role in regulating the physiological metabolism of the plant. This study investigated the changes of flavonoids in hickory exocarp and embryo during development. In this study, 72 DEGs involved in the regulation of flavonoid biosynthesis in fruits were identified, and TT4, CCoAOMT1, UGT71D1, C4H, F3H, TT8, FLS1, and LDOX were identified as the core genes of flavonoid biosynthesis. A total of 144 flavonoid-related metabolites were detected by metabolite analysis. Transcriptome and metabolome analysis combined to construct the flavonoid biosynthesis regulatory pathway in the development stage of hickory fruit. Our results provide a theoretical basis for the exploration and regulation of functional genes related to flavonoid biosynthesis and metabolism in hickory and other plants and the breeding of new walnut varieties.
Collapse
Affiliation(s)
- Jia-Hui Chen
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Na Hou
- Guizhou Academy of Forestry, Guiyang, China
| | - Xv Xv
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Da Zhang
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Tong-Qiang Fan
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Qi-Xiang Zhang
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - You-Jun Huang
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
13
|
Żurek N, Pawłowska A, Pycia K, Grabek-Lejko D, Kapusta IT. Phenolic Profile and Antioxidant, Antibacterial, and Antiproliferative Activity of Juglans regia L. Male Flowers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092762. [PMID: 35566113 PMCID: PMC9101975 DOI: 10.3390/molecules27092762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
Juglans regia L., walnut, is a large, long-living tree, cultivated in temperate climates around the world. It is highly appreciated for its nutritional kernels and high-quality timber. Its barks, leaves, and husk are used as dyes and in folk medicine as herbal remedies for several diseases. From a biological and chemical standpoint, relatively little is known about the male flowers of the tree. Therefore, the aim of the study was to evaluate the phenolic profile as well as in vitro antioxidant, antimicrobial, and antiproliferative activity of male Juglans regia L. flowers. Phenolic content was determined by UPLC/PDA/MS/MS analyses; antioxidant activity was assessed by five different methods; antimicrobial activity was evaluated against the six most common pathogenic strains of Gram-positive and Gram-negative bacteria, and antiproliferative properties were assessed against six cell lines. Most of the analyses carried out in this study were performed for the first time for this raw material. J. regia flower extract was characterized by a strong ability to scavenge DPPH˙ free radicals, hydroxyl radicals, and chelating metal ions. Among the examined bacterial strains and neoplastic lines, the strongest antimicrobial activity was shown against S. aureus, L. monocytogenes, and B. cereus, and cytotoxic activity against breast cancer, glioblastoma, and astrocytoma cells. Male J. regia flowers have also been found to be a rich source of phenolic compounds. The content of polyphenols in the extract was 4369.73 mg/100 g d.w., and 24 compounds from the group of flavonoids, phenolic acids, and juglunosides were identified. Additionally, a strong correlation between the content of polyphenols and the antioxidant capacity and cytotoxic activity was observed. This is why the tested J. regia flowers are an excellent source of effective natural antioxidant, antibacterial, and chemopreventive compounds that have potential to be used in the pharmaceutical or food industries.
Collapse
Affiliation(s)
- Natalia Żurek
- Department Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland; (N.Ż.); (A.P.); (K.P.)
| | - Agata Pawłowska
- Department Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland; (N.Ż.); (A.P.); (K.P.)
| | - Karolina Pycia
- Department Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland; (N.Ż.); (A.P.); (K.P.)
| | - Dorota Grabek-Lejko
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland;
| | - Ireneusz Tomasz Kapusta
- Department Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland; (N.Ż.); (A.P.); (K.P.)
- Correspondence: ; Tel.: +48-17-785-5238
| |
Collapse
|
14
|
Wang P, Zhong L, Yang H, Zhu F, Hou X, Wu C, Zhang R, Cheng Y. Comparative analysis of antioxidant activities between dried and fresh walnut kernels by metabolomic approaches. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Determination of Phenolic Compounds in Walnut Kernel and Its Pellicle by Ultra-high-Performance Liquid Chromatography-Tandem Mass Spectrometry. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02069-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Chen PY, Chang HL, Ma M. Feeding Preference of Altica deserticola (Coleoptera: Chrysomelidae: Alticinae) for Leaves of Glycyrrhiza inflata and G. uralensis. AN ACAD BRAS CIENC 2021; 93:e20190267. [PMID: 34076084 DOI: 10.1590/0001-3765202120190267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/12/2020] [Indexed: 11/22/2022] Open
Abstract
A leaf-disc-test method was used under controlled laboratory conditions to determine the feeding preference of Altica deserticola Latreille (Coleoptera: Chrysomelidae) on leaves of two liquorice species, Glycyrrhiza inflata Batalin and G. uralensis Fisch. ex DC. Leaf hardness and thickness, cuticle thickness, and nitrogen and tannin contents were compared between the two liquorices to explore their feeding resistance to A. deserticola. The larvae ate only G. uralensis leaves, while the adults fed on the leaves of both species but preferred those of G. inflata. The leaf hardness and thickness and cuticle thickness, as well as the nitrogen, total tannins, tannin chemicals contents in leaves, were significantly greater in G. inflata than in G. uralensis. The larvae having smaller chewing mouthparts could not feed on hard leaves with thick cuticle on both sides. The thicker cuticle and harder texture of G. inflata blades may be important physical traits for effective defence against larval phytophagy, while the higher tannin content in its leaves may be an important chemical trait determining their feeding preference. The larger adults, having stronger mouthparts, could consume nitrogen-richer G. inflata leaves to obtain the energy needed for flight and reproduction.
Collapse
Affiliation(s)
- Peng You Chen
- Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Xinjiang 832003, the People's Republic of China
| | - Hong Lei Chang
- Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Xinjiang 832003, the People's Republic of China
| | - Miao Ma
- Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Xinjiang 832003, the People's Republic of China
| |
Collapse
|
17
|
Sheng F, Hu B, Jin Q, Wang J, Wu C, Luo Z. The Analysis of Phenolic Compounds in Walnut Husk and Pellicle by UPLC-Q-Orbitrap HRMS and HPLC. Molecules 2021; 26:3013. [PMID: 34069333 PMCID: PMC8158686 DOI: 10.3390/molecules26103013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
Husk and pellicle as the agri-food waste in the walnut-product industry are in soaring demand because of their rich polyphenol content. This study investigated the differential compounds related to walnut polyphenol between husk and pellicle during fruit development stage. By using ultra-high performance liquid chromatography-quadrupole-orbitrap (UHPLC-Q-Orbitrap), a total of 110 bioactive components, including hydrolysable tannins, flavonoids, phenolic acids and quinones, were tentatively identified, 33 of which were different between husk and pellicle. The trend of dynamic content of 16 polyphenols was clarified during walnut development stage by high-performance liquid chromatography (HPLC). This is the first time to comprehensive identification of phenolic compounds in walnut husk and pellicle, and our results indicated that the pellicle is a rich resource of polyphenols. The dynamic trend of some polyphenols was consistent with total phenols. The comprehensive characterization of walnut polyphenol and quantification of main phenolic compounds will be beneficial for understanding the potential application value of walnut and for exploiting its metabolism pathway.
Collapse
Affiliation(s)
- Fang Sheng
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China; (F.S.); (B.H.)
| | - Bangyan Hu
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China; (F.S.); (B.H.)
| | - Qiang Jin
- College of Plant Science, Tarim University, Alar 843300, China; (Q.J.); (J.W.); (C.W.)
| | - Jiangbo Wang
- College of Plant Science, Tarim University, Alar 843300, China; (Q.J.); (J.W.); (C.W.)
| | - Cuiyun Wu
- College of Plant Science, Tarim University, Alar 843300, China; (Q.J.); (J.W.); (C.W.)
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China; (F.S.); (B.H.)
| |
Collapse
|
18
|
Salamatullah AM, Alkaltham MS, Özcan MM, Uslu N, Hayat K. Effect of Maturing Stages on Bioactive Properties, Fatty Acid Compositions, and Phenolic Compounds of Peanut (Arachis hypogaea L.) Kernels Harvested at Different Harvest Times. J Oleo Sci 2021; 70:471-478. [PMID: 33692242 DOI: 10.5650/jos.ess20320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study investigated the effects of harvesting time on the physicochemical properties, antioxidant activity, fatty acid composition, and phenolic compounds of peanut kernels. The moisture content (air-dried basis) of peanut kernels was determined between 4.47% (September 15, 2019) and 7.93% (October 6, 2019), whereas the oil contents changed from 45.95% (October 6, 2019) to 49.25% (September 22, 2019). The total carotenoid, chlorophyll, and phenolic contents were low throughout the harvest, showing differences depending on the harvest time. Total phenolic content changed from 0.28 mg GAE/L (September 29, 2019) to 0.43 mg GAE/L (September 8, 2019), whereas the antioxidant activity varied from 4.42% (August 25, 2019) to 4.70% (September 1, 2019). The dominant fatty acids were palmitic, oleic, and linoleic acids, depending on the harvest time, followed by stearic, behenic, arachidic, and linolenic acids. The (+)-catechin content ranged from 2.17 mg/L (September 8, 2019) to 5.15 mg/L (September 1, 2019), whereas 1,2-dihydroxybenzene content changed between 2.67 mg/L (October 6, 2019) and 5.85 mg/L (September 29, 2019). The phenolic compound content fluctuated depending on the harvest time. The results showed that peanut kernel and oil had distinctive phenolic profiles and fatty acid contents. The findings of the present study may provide information for the best time to harvest peanut to achieve its maximum health benefits.
Collapse
Affiliation(s)
| | - Mohammed Saeed Alkaltham
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Mehmet Musa Özcan
- Department of Food Engineering, Faculty of Agriculture, Selcuk University
| | - Nurhan Uslu
- Department of Food Engineering, Faculty of Agriculture, Selcuk University
| | - Khizar Hayat
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| |
Collapse
|
19
|
Chang H, Chen P, Ma M. Feeding preference of Altica deserticola for leaves of Glycyrrhiza glabra and G. uralensis and its mechanism. Sci Rep 2020; 10:1534. [PMID: 32001773 PMCID: PMC6992774 DOI: 10.1038/s41598-020-58537-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/16/2020] [Indexed: 11/17/2022] Open
Abstract
Altica deserticola (Coleoptera: Chrysomelidae) is a monophagous insect that feeds on, and is thus a harmful pest of, liquorice. Both adults and larvae feed on leaves, causing serious damage to leaf blades. It will even lead to the extinction of liquorice, resulting in significant economic losses. Leaf-disc tests were used to determine the feeding preference of A. deserticola on leaves of Glycyrrhiza uralensis and G. glabra and explore the underlying mechanism of liquorice feeding resistance to A. deserticola by comparing leaf hardness and thickness, cuticle thickness, and nitrogen and tannin content in the two plants. The results showed that larvae and adults have the same feeding preferences, i.e., both preferably fed on G. uralensis, indicating a higher resistance in this species. The hardness, thickness, and the thickness of the stratum corneum of the leaves of G. glabra were significantly greater than those of G. uralensis. Nitrogen content was higher in G. uralensis, while total tannin, tannic acid, and catechin content were higher in G. glabra. The thick cuticle and hard texture of G. glabra leaves may be an important physical trait for effectively resisting A. deserticola feeding, while high tannin and low nitrogen content may also be important.
Collapse
Affiliation(s)
- Honglei Chang
- Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Xinjiang, 832003, The People's Republic of China
| | - Pengyou Chen
- Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Xinjiang, 832003, The People's Republic of China
| | - Miao Ma
- Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Xinjiang, 832003, The People's Republic of China.
| |
Collapse
|
20
|
Wu S, Ni Z, Wang R, Zhao B, Han Y, Zheng Y, Liu F, Gong Y, Tang F, Liu Y. The effects of cultivar and climate zone on phytochemical components of walnut (
Juglans regia
L
.
). Food Energy Secur 2020. [DOI: 10.1002/fes3.196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Shutian Wu
- Research Institute of Subtropical Forestry Chinese Academy of Forestry Fuyang China
- Nanjing Forestry University Nanjing China
| | - Zhanglin Ni
- Research Institute of Subtropical Forestry Chinese Academy of Forestry Fuyang China
| | - Ruohui Wang
- Research Institute of Subtropical Forestry Chinese Academy of Forestry Fuyang China
| | - Baojun Zhao
- Liaoning Institute of Economic Forestry Dalian China
| | - Yongxiang Han
- Research Institute of Subtropical Forestry Chinese Academy of Forestry Fuyang China
| | - Yuewen Zheng
- Research Institute of Subtropical Forestry Chinese Academy of Forestry Fuyang China
| | - Feng Liu
- Liaoning Institute of Economic Forestry Dalian China
| | - Yonghong Gong
- Liaoning Institute of Economic Forestry Dalian China
| | - Fubin Tang
- Research Institute of Subtropical Forestry Chinese Academy of Forestry Fuyang China
| | - Yihua Liu
- Research Institute of Subtropical Forestry Chinese Academy of Forestry Fuyang China
| |
Collapse
|
21
|
Changes in Antioxidant Activity, Profile, and Content of Polyphenols and Tocopherols in Common Hazel Seed ( Corylus avellana L.) Depending on Variety and Harvest Date. Molecules 2019; 25:molecules25010043. [PMID: 31877675 PMCID: PMC6983069 DOI: 10.3390/molecules25010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/25/2023] Open
Abstract
The aim of the study was to evaluate the influence of variety and the date of harvest of hazelnut seeds on their antioxidant potential and the profile and content of polyphenols and tocopherols. The research material included the hazelnut seeds of six varieties, harvested from July to September at equal 30-day intervals. Hazelnuts were analyzed for total fat content and antioxidant properties, whereby UPLC-PDA-ESI-MS analysis was used to determine the profile and content of polyphenols, and the HPLC method to determine the content of tocopherols. It was found that the content of fat and tocopherols in nuts increased with the ripening of the nuts. The highest fat content was found in walnut seeds of the Kataloński variety (September) and tocopherols in walnut seeds of the Olbrzym z Halle variety (177.67 mg/kg d.m.). In turn, antioxidant properties and total polyphenols content decreased with the later harvest date. The strongest antioxidant potential was found in the case of Cosford nuts harvested in July (66.93 mmol TE/100 g d.m.). These nuts were also characterized by the highest total polyphenol content (1704.9 mg/100 g d.m.). UPLC-MS analysis allowed the identification of 15 polyphenolic compounds such as phenolic acids, catechins and ellagic acid hexoside in nut seeds.
Collapse
|
22
|
Setiawan RD, Zakaria FR, Sitanggang AB, Prangdimurti E, Adawiyah DR, Erniati E. PENGARUH PERBEDAAN WAKTU PANEN TERHADAP KARAKTERISTIK KIMIA BIJI KECIPIR. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2019. [DOI: 10.6066/jtip.2019.30.2.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Pycia K, Kapusta I, Jaworska G. Impact of the Degree of Maturity of Walnuts ( Juglans regia L.) and Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols. Molecules 2019; 24:molecules24162936. [PMID: 31412665 PMCID: PMC6718977 DOI: 10.3390/molecules24162936] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to characterize the antioxidant properties; establish the profile of polyphenolic compounds and evaluate the content of tocopherols in walnuts of three varieties (Leopold; Apollo; Resovia) differing in the degree of maturity (harvest date). The profile of polyphenolic compounds was established by UPLC-PDA-ESI-MS. The content of tocopherols was determined by HPLC-FLD. It was found that the content of dry matter and fat increased and the antioxidant properties decreased with the maturation of nuts. Walnuts of the Leopold cultivar harvested in July exhibited the highest content of total polyphenol (2149.08 mg/100 g dry mass). In their polyphenolic profile; 26 compounds were identified; mainly belonging to the class of ellagitannins. The polyphenolic content decreased with the maturation of nuts. The total content of tocopherols in the tested nuts increased with ripening and ranged from 1.76 mg/100g (Apollo VII) to 18.30 mg/100g (Resovia IX)
Collapse
Affiliation(s)
- Karolina Pycia
- Department of Food Technology and Human Nutrition, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland.
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland
| | - Grażyna Jaworska
- Department of Food Technology and Human Nutrition, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland
| |
Collapse
|
24
|
Pycia K, Kapusta I, Jaworska G, Jankowska A. Antioxidant properties, profile of polyphenolic compounds and tocopherol content in various walnut (Juglans regia L.) varieties. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3184-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Identifying Antibacterial Compounds in Black Walnuts ( Juglans nigra) Using a Metabolomics Approach. Metabolites 2018; 8:metabo8040058. [PMID: 30274312 PMCID: PMC6316014 DOI: 10.3390/metabo8040058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/22/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Black walnut (Juglans nigra L.) is one of the most economically valuable hardwood species and a high value tree for edible nut production in the United States. Although consumption of black walnut has been linked to multiple health-promoting effects (e.g., antioxidant, antimicrobial, anti-inflammatory), the bioactive compounds have not been systematically characterized. In addition, the associations between different black walnut cultivars and their health-promoting compounds have not been well established. In this study, the kernels of twenty-two black walnut cultivars selected for nut production by the University of Missouri Center for Agroforestry (Columbia, MO, USA) were evaluated for their antibacterial activities using agar-well diffusion assay. Among the selected cultivars, four black walnut cultivars (i.e., Mystry, Surprise, D.34, and A.36) exhibited antibacterial activity against a Gram-positive bacterium (Staphylococcus aureus), whereas other cultivars showed no effect on the inhibition of this bacterium. The antibacterial compounds showing the strongest activity were isolated with bioassay-guided purification and identified using a metabolomics approach. Six antibacterial bioactive compounds responsible for antimicrobial activity were successfully identified. Glansreginin A, azelaic acid, quercetin, and eriodictyol-7-O-glucoside are novel antibacterial compounds identified in the kernels of black walnuts. The metabolomics approach provides a simple and cost-effective tool for bioactive compound identification.
Collapse
|