1
|
Bushra SMR, Safuan S, Abu Bakar R, Lima MA, Abubakar BD, Nurul AA. Structural elucidation and anti-asthmatic effects of semi-crystalline polysaccharides from Lignosus rhinocerotis (Cooke) Ryvarden. Int J Biol Macromol 2025; 299:140103. [PMID: 39842582 DOI: 10.1016/j.ijbiomac.2025.140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/15/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Asthma is a chronic respiratory disease characterized by airway inflammation. Lignosus rhinocerotis (LR), a medicinal mushroom rich in polysaccharide, has been traditionally used to treat various diseases, including asthma. This study aimed to fractionate, characterize and evaluate the anti-asthmatic effects of polysaccharides from LR (LRP). LRP was isolated and characterized using high-performance liquid chromatography (HPLC), x-ray diffraction analysis (XRD), fourier transform infrared spectrometry (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. In an OVA-induced asthma model, BALB/c mice were sensitized, challenged, and intranasally treated with LRP. Experimental findings demonstrated that LRP exhibits a semi-crystalline nature with predicted structure of → 4)-α-D-Glcp-(1 → and → 3)-β-D-Glcp-(1→. LRP significantly reduced eosinophilia, Th2 cytokines, and IgE levels. Histological analysis revealed LRP's ability to decrease epithelial damage and epithelial and smooth muscle thickness in lung. Reductions in inflammatory cell infiltration, mucus production, and transforming growth factor (TGF)-β1 expression were observed, although not statistically significant. Gene expression analysis indicated that LRP significantly downregulated the inducible nitric oxide synthase (iNOS) expression. This study highlights a detailed structural analysis of LRP and its potential as an alternative for the management of asthma. Further research is needed to elucidate the precise mechanisms of action and optimize its therapeutic application.
Collapse
Affiliation(s)
| | - Sabreena Safuan
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ruzilawati Abu Bakar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | | | - Bishir Daku Abubakar
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; Department of Human Physiology, Faculty of Basic Medical Sciences, Federal University, Dutse, Nigeria
| | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
2
|
Zeng J, Meng N, Song Y, Fan X, Jiang X, Cong P, Liu Y, Xue C, Xu J. Insight into the mechanism of Maillard reaction and lipids mutually contribute to the flavor release of squid fillets during the drying process. Food Chem 2025; 468:142435. [PMID: 39674014 DOI: 10.1016/j.foodchem.2024.142435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Dried squid fillet is a popular seafood product with a unique flavor. However, its flavor release mechanism is unclear. In this study, volatile compounds (VOCs) were dynamically monitored in thawed squid (TS), salted squid (SS) and dried squid for 6 h (D6) and 24 h (D24). Subsequently, the Maillard reaction (MR) substrate, lipid oxidation index, free fatty acids and lipid profiles were detected. The results showed that the number of VOCs increased from 11 in TS (114.26 μg/kg) to 19 in D24 (1257.89 μg/kg). Besides, MR between glucose/ribose and amino acids (methionine, arginine, etc.) contributed to 3-methyl-butanal, methional and 2,3-butanedione. Meanwhile, lipid oxidation index, lipidomics and correlation analysis indicated that lipids (phosphatidylcholines and triglycerides) containing polyunsaturated fatty acids (C18:2, C20:4, C20:5 and C22:6) were precursors of 3-methyl-butanal, nonanal, heptanal, dodecane and tetradecane. Briefly, lipid hydrolysis, oxidation and MR mutually contributed to the flavor during the drying process of squid fillets.
Collapse
Affiliation(s)
- Junpeng Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Xiaoming Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China.
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| |
Collapse
|
3
|
Mei X, Xia J, Li W, Wu Y, Cheng H, Chen S, Ye X, Chen J. Glycan degradation in Polygonati Rhizoma: Effects of traditional 'nine steaming and nine basking' on low molecular weight Fructans and polysaccharides. Food Chem X 2025; 25:102131. [PMID: 39850053 PMCID: PMC11754683 DOI: 10.1016/j.fochx.2024.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025] Open
Abstract
The traditional "nine steaming and nine basking" method for processing Polygonati Rhizoma has been practiced in China for over two millennia. However, research on its impact on glycans, particularly low molecular weight fructans, is limited. Therefore, dynamic changes in glycans were analyzed based on the two common species, Polygonatum filipes and Polygonatum cyrtonema. Results revealed the significant degradation of low molecular weight fructans within the first three processing cycles, with complete degradation by the seventh cycle, suggesting that the traditional technique may be excessive. Molecular weight analysis indicated the aggregation, degradation, and reaggregation of polysaccharides, with a notable decrease in fructose and an increase in galactose. This suggested that fructans were the primary constituents before processing, while galactans prevailed afterward. No significant differences in carbohydrate changes were found between the two species. This study enhances our understanding of the traditional processing mechanisms and promotes the efficient utilization of Polygonati Rhizoma.
Collapse
Affiliation(s)
- Xingyu Mei
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Jiabei Xia
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Wenqing Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Yufen Wu
- Ninghai County Forestry Specialty Technology Promotion Station, Ningbo 315600, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| |
Collapse
|
4
|
IJdema F, Lievens S, Smets R, Poma G, Van Der Borght M, Lievens B, De Smet J. Modulating the fatty acid composition of black soldier fly larvae via substrate fermentation. Animal 2025; 19:101383. [PMID: 39721552 DOI: 10.1016/j.animal.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Black soldier fly larvae (BSFL, Hermetia illucens) contain high amounts of proteins and essential amino acids and are therefore an appropriate feed source. However, they lack essential fatty acids (FAs), specifically ω-3 and ω-6, making them a less desirable feed choice for aquaculture. The aim of this study was to increase the ω-3 and ω-6 FA concentrations in BSFL by manipulating the FA composition in their rearing substrate. Specifically, the potential of substrate fermentation using the ω-3 and ω-6 FA-producing fungus Mortierella alpina was assessed. Fermentation of two agricultural side streams (wheat bran (WB) and WB with distiller's dried grains with solubles (DDGS)) increased substrate total crude fat concentration by 2.1 - 4.6%, as well as the concentration of several essential FAs, including the ω-6 FAs arachidonic acid (from less than 0.2 mg/g fat to a maximum of 44.2 mg/g fat) and gamma-linolenic acid (from less than 1.2 mg/g fat to a maximum of 45.8 mg/g fat and the ω-3 FA eicosapentaenoic acid (EPA) (from less than 0.7 mg/g fat to a maximum of 49.9 mg/g fat). Rearing BSFL on feeds from such fermented substrates resulted in similar changes in larval FA composition, specifically a higher concentration of EPA (from less than 0.2 mg/g fat to a maximum of 26.6 mg/g fat in the larvae fed on fermented diets), however, larval growth was reduced. Feeds made from fermented substrates were prone to stickiness and dehydration, possibly limiting larval movement and feeding, thereby affecting larval growth. Furthermore, proximate analysis of the substrates revealed sugar depletion after fermentation, which could be detrimental for larval growth and illustrate important attention points going forward. This study shows that fermentation of agricultural side streams WB and a mixture of WB with DDGS with Mortierella alpina alters their FA profile, increasing their ω-3 and ω-6 FA concentrations and that of BSFL fed with those substrates. Therefore, these results suggest that BSFL with tailor-made FA profiles for a specific application could be successfully produced.
Collapse
Affiliation(s)
- F IJdema
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium; CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - S Lievens
- CSCE Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - R Smets
- CSCE Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - G Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - M Van Der Borght
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium; CSCE Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - B Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - J De Smet
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium.
| |
Collapse
|
5
|
Reyes-Oliveras A, Ellis AE, Sheldon RD, Haab B. Metabolomics and 13C labelled glucose tracing to identify carbon incorporation into aberrant cell membrane glycans in cancer. Commun Biol 2024; 7:1576. [PMID: 39592729 PMCID: PMC11599571 DOI: 10.1038/s42003-024-07277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Cell membrane glycans contribute to immune recognition, signaling, and cellular adhesion and migration, and altered membrane glycosylation is a feature of cancer cells that contributes to cancer progression. The uptake and metabolism of glucose and other nutrients essential for glycan synthesis could underlie altered membrane glycosylation, but the relationship between shifts in nutrient metabolism and the effects on glycans have not been directly examined. We developed a method that combines stable isotope tracing with metabolomics to enable direct observations of glucose allocation to nucleotide sugars and cell-membrane glycans. We compared the glucose allocation to membrane glycans of two pancreatic cancer cell lines that are genetically identical but have differing energy requirements. The 8988-S cells had higher glucose allocation to membrane glycans and intracellular pathways relating to glycan synthesis, but the 8988-T cells had higher glucose uptake and commitment of glucose to non-glycosylation pathways. The cell lines differed in the requirements of glucose for energy production, resulting in differences in glucose bioavailability for glycan synthesis. The workflow demonstrated here enables studies on the effects of metabolic shifts on the commitment of nutrients to cell-membrane glycans. The results suggest that cell-membrane glycans are remodeled through shifts in glucose commitment to non-glycosylation pathways.
Collapse
Affiliation(s)
- Alfredo Reyes-Oliveras
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Abigail E Ellis
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Brian Haab
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA.
| |
Collapse
|
6
|
Liu X, Heinzle J, Tian Y, Salas E, Kwatcho Kengdo S, Borken W, Schindlbacher A, Wanek W. Long-term soil warming changes the profile of primary metabolites in fine roots of Norway spruce in a temperate montane forest. PLANT, CELL & ENVIRONMENT 2024; 47:4212-4226. [PMID: 38935880 DOI: 10.1111/pce.15019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Climate warming poses major threats to temperate forests, but the response of tree root metabolism has largely remained unclear. We examined the impact of long-term soil warming (>14 years, +4°C) on the fine root metabolome across three seasons for 2 years in an old spruce forest, using a liquid chromatography-mass spectrometry platform for primary metabolite analysis. A total of 44 primary metabolites were identified in roots (19 amino acids, 12 organic acids and 13 sugars). Warming increased the concentration of total amino acids and of total sugars by 15% and 21%, respectively, but not organic acids. We found that soil warming and sampling date, along with their interaction, directly influenced the primary metabolite profiles. Specifically, in warming plots, concentrations of arginine, glycine, lysine, threonine, tryptophan, mannose, ribose, fructose, glucose and oxaloacetic acid increased by 51.4%, 19.9%, 21.5%, 19.3%, 22.1%, 23.0%, 38.0%, 40.7%, 19.8% and 16.7%, respectively. Rather than being driven by single compounds, changes in metabolite profiles reflected a general up- or downregulation of most metabolic pathway network. This emphasises the importance of metabolomics approaches in investigating root metabolic pathways and understanding the effects of climate change on tree root metabolism.
Collapse
Affiliation(s)
- Xiaofei Liu
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
- Key Laboratory of Humid Subtropical Eco-Geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jakob Heinzle
- Department of Forest Ecology and Soils, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Ye Tian
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Erika Salas
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Steve Kwatcho Kengdo
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (Bayceer), University of Bayreuth, Bayreuth, Germany
| | - Werner Borken
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (Bayceer), University of Bayreuth, Bayreuth, Germany
| | - Andreas Schindlbacher
- Department of Forest Ecology and Soils, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Ma X, Li C, Zhang J, Xin J, Mosongo I, Yang J, Hu K. Monosaccharide composition analysis by 2D quantitative gsHSQC i. Carbohydr Res 2024; 541:109168. [PMID: 38833821 DOI: 10.1016/j.carres.2024.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
The physicochemical properties and biological activities of polysaccharides depend on their structures. Monosaccharide composition analysis is indispensable for the structural characterization of polysaccharides and is helpful in the quality control of polysaccharide preparation. Here, using a model mixture and tamarind seed polysaccharide as examples, we demonstrated that a quantitative 2D NMR method, gsHSQCi (three gradient-selective Heteronuclear Single Quantum Coherence spectra acquired with incremented repetition times, i = 1, 2, 3) can directly quantify a variety of monosaccharides in solution with adequate precision and accuracy, requiring no derivatization, postprocessing steps and column separation. Both anomeric and non-anomeric signals of monosaccharides can be utilized for content determination. More accurate quantification of fructose in a mixture containing nine monosaccharides is obtained, which is difficult to achieve by quantitative 1D 1HNMR and the common PMP-HPLC method (high-performance liquid chromatography through pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone) due to the peak overlapping and the poor derivatization efficiency, respectively. The results also revealed that Na[Fe(EDTA)] can serve as a proper relaxation-enhancing agent for saccharide samples to save experimental time. We expect that this approach can be applied as an alternative to analyzing the monosaccharide composition and be helpful in interpreting the structure of polysaccharides.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Caihong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Junyin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiang Xin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Isidore Mosongo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Kaifeng Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
8
|
Wang W, Fu Y, Xu J, Gao X, Fu X, Wang L. Optimization of hydrolysis conditions of alginate based on high performance liquid chromatography. Heliyon 2024; 10:e29738. [PMID: 38699043 PMCID: PMC11064077 DOI: 10.1016/j.heliyon.2024.e29738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Alginate is the most abundant polysaccharide compound in brown algae, which is widely used in various fields. At present, the determination of the content of alginate is mostly carried out using sulfuric acid and trifluoroacetic acid hydrolysis followed by the determination of the content, but the results are not satisfactory, and there are problems such as low hydrolysis degree and low recovery rate. Therefore, in this study, based on the optimization of high performance liquid chromatographic conditions for pre-column derivatization of 1-phenyl-3-methyl-5-pyrazolone (PMP), the hydrolysis effects of sulfuric acid, trifluoroacetic acid (TFA), oxalic acid, and formic acid were compared and the hydrolysis conditions were optimized. The results showed that formic acid was the best hydrolyzing acid. The optimal hydrolysis conditions were 95 % formic acid at 110 °C for 10 h. The hydrolysis effect was stable, with high recovery and low destruction of monosaccharides, which made it possible to introduce formic acid into the subsequent polysaccharide hydrolysis. The pre-column derivatization high performance liquid chromatography method established in this study was accurate and reliable, and the hydrolysis acid with better effect was screened, which provided a theoretical basis for the subsequent determination of alginate content.
Collapse
Affiliation(s)
| | | | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| |
Collapse
|
9
|
Cheng Y, Wimalasiri PM, Tian B, Watrelot AA. Influence of Grape Flesh on the Retention and Composition of Polyphenols from Skins and Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38597640 DOI: 10.1021/acs.jafc.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
This study examined the impact of grape flesh polysaccharide, protein, and amino acid contents on polyphenol retention from skins and seeds in Pinot noir (Vitis vinifera) and cold-hardy interspecific cultivars Marquette and Frontenac (Vitis spp.). After isolating grape tissues (skin, seed, and flesh), they were soaked either individually or combined with other tissues in a wine-like solution for up to 7 days. Findings revealed that flesh significantly reduces the concentration of condensed tannin, and mono- and diglucoside forms of anthocyanins in the supernatants, due to its rich content in polysaccharides and proteins. Frontenac skin and flesh tissues were the main sources of soluble proteins, amino acids, and soluble polysaccharides. Surprisingly, Marquette exhibited a higher retention of skin tannin than Pinot noir, likely due to its smaller tannin molecular mass, and a potential competitive effect with anthocyanins for the binding sites of flesh.
Collapse
Affiliation(s)
- Yiliang Cheng
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, Iowa 50011, United States
| | - Pradeep M Wimalasiri
- Department of Wine Food & Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Bin Tian
- Department of Wine Food & Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Aude A Watrelot
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, Iowa 50011, United States
| |
Collapse
|
10
|
Huang XF, Xue Y, Yong L, Wang TT, Luo P, Qing LS. Chemical derivatization strategies for enhancing the HPLC analytical performance of natural active triterpenoids. J Pharm Anal 2024; 14:295-307. [PMID: 38618252 PMCID: PMC11010456 DOI: 10.1016/j.jpha.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 04/16/2024] Open
Abstract
Triterpenoids widely exist in nature, displaying a variety of pharmacological activities. Determining triterpenoids in different matrices, especially in biological samples holds great significance. High-performance liquid chromatography (HPLC) has become the predominant method for triterpenoids analysis due to its exceptional analytical performance. However, due to the structural similarities among botanical samples, achieving effective separation of each triterpenoid proves challenging, necessitating significant improvements in analytical methods. Additionally, triterpenoids are characterized by a lack of ultraviolet (UV) absorption groups and chromophores, along with low ionization efficiency in mass spectrometry. Consequently, routine HPLC analysis suffers from poor sensitivity. Chemical derivatization emerges as an indispensable technique in HPLC analysis to enhance its performance. Considering the structural characteristics of triterpenoids, various derivatization reagents such as acid chlorides, rhodamines, isocyanates, sulfonic esters, and amines have been employed for the derivatization analysis of triterpenoids. This review comprehensively summarized the research progress made in derivatization strategies for HPLC detection of triterpenoids. Moreover, the limitations and challenges encountered in previous studies are discussed, and future research directions are proposed to develop more effective derivatization methods.
Collapse
Affiliation(s)
- Xiao-Feng Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Xue
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Li Yong
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Tian-Tian Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| | - Lin-Sen Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
11
|
Yuan Y, Chu D, Fan J, Cui Z, Wang R, Zhang H, You X, Li Y, Wang X. Production of antifungal iturins from vegetable straw: A combined chemical-bacterial process. BIORESOURCE TECHNOLOGY 2023; 378:129010. [PMID: 37011842 DOI: 10.1016/j.biortech.2023.129010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
A combined chemical-bacterial process was developed to convert vegetable straw waste to high value antifungal iturins. Straws from three widely cultivated vegetable (cucumber, tomato and pepper) were evaluated as feedstocks for iturin production. Microwave assisted hydrolysis with very dilute acid (0.2% w/w H2SO4) achieved efficient reducing sugar recovery. The high glucose concentration in non-detoxified hydrolysate from pepper straw facilitated the optimal growth of Bacillus amyloliquefaciens strain Cas02 and stimulated the production of iturin. The fermentation parameters were optimised to enhance the iturin production efficiency. The obtained fermentation extract was further purified using macroporous adsorption resin, resulting in an iturin-rich extract that exhibited strong antifungal activity against Alternaria alternata with an IC50 of 176.44 μg/mL. Each iturin homologue was identified using NMR. Overall, 1.58 g iturin-rich extract containing 164.06 mg/g iturins was obtained from 100 g pepper straw, illustrating the great potential of valorising pepper straw via this process.
Collapse
Affiliation(s)
- Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Depeng Chu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jiajun Fan
- Green Chemistry Centre of Excellence, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Zhenzhen Cui
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Rui Wang
- Enshi Tobacco Science and Technology Center, Enshi 445000, China
| | - Han Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaoqiang Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
12
|
Liu H, Zhao Y, Chen L, Du J, Guo H, Wang B. A Novel Method for the Pre-Column Derivatization of Saccharides from Polygonatum cyrtonema Hua. by Integrating Lambert-Beer Law and Response Surface Methodology. Molecules 2023; 28:molecules28052186. [PMID: 36903433 PMCID: PMC10004654 DOI: 10.3390/molecules28052186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Traditional Chinese medicine (TCM) safety and effectiveness can be ensured by establishing a suitable quality assessment system. This work aims to develop a pre-column derivatization HPLC method for Polygonatum cyrtonema Hua. quality control. In this study, 1-(4'-cyanophenyl)-3-methyl-5-pyrazolone (CPMP) was synthesized and reacted with monosaccharides derived from P. cyrtonema polysaccharides (PCPs), followed by HPLC separation. According to the Lambert-Beer law, CPMP has the highest molar extinction coefficient of all synthetic chemosensors. A satisfactory separation effect was obtained under a detection wavelength of 278 nm using a carbon-8 column and gradient elution over 14 min, with a flow rate of 1 mL per minute. Glucose (Glc), galactose (Gal), and mannose (Man) make up the majority of the monosaccharide components in PCPs, and their molar ratios are 1.73:0.58:1. The confirmed HPLC method has outstanding precision and accuracy, establishing a quality control method for PCPs. Additionally, the CPMP showed a visual improvement from colorless to orange after the detection of reducing sugars, allowing for further visual analysis.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yuanyuan Zhao
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Leijing Chen
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Jiao Du
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Hongyan Guo
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Correspondence: (H.G.); (B.W.)
| | - Bin Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
- Institute of Pharmaceutical Chemistry, Anhui Academy of Chinese Medicine, Hefei 230038, China
- Correspondence: (H.G.); (B.W.)
| |
Collapse
|
13
|
Zhang Y, Zhang W, Hou J, He J, Li K, Li Y, Xu D. Determination of sugars and sugar alcohols in infant formula by high performance liquid chromatography with evaporative light-scattering detector. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1217:123621. [PMID: 36746090 DOI: 10.1016/j.jchromb.2023.123621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
A method was established for the simultaneous determination of five sugars (fructose, glucose, sucrose, lactose, maltose) and five sugar alcohols (erythritol, xylitol, sorbitol, mannitol, maltitol) in infant formula by high performance liquid chromatography-evaporative light scattering detector. After the samples were extracted with acetonitrile-water solution, precipitated by acetic acid, and purified with solid phase extraction cartridge, ALLChrom Rocksil Carbohydrate ES column was adopted for separation, and isocratic elution was conducted at the flow rate of 1.0 mL/min with acetonitrile-0.04 % ammonia solution as the mobile phase. The analytes were detected by an evaporative light-scattering detector, and quantified by external standard method. The linear ranges of the 10 components were 0.04-4.0 g/L with the correlation coefficients greater than 0.999, and the limits of quantification (S/N = 10) of the method were 0.08-0.4 g/100 g. The relative standard deviation of the lactose parallel samples reached 1.29 %, and the recoveries of the other 9 components ranged from 80.4 % to 99.4 % with the relative standard deviation of 2.8 %-7.1 %. The method performs well in sensitivity and separation, which is suitable for the simultaneous quantitative determination of sugars and sugar alcohols in infant formula.
Collapse
Affiliation(s)
- Yaqin Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, 126 Fuchun Road, Hangzhou 310016, P. R. China
| | - Wenhua Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, 126 Fuchun Road, Hangzhou 310016, P. R. China; Technical Center of Hangzhou Customs, Hangzhou 310016, P. R. China.
| | - Jianbo Hou
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, 126 Fuchun Road, Hangzhou 310016, P. R. China; Technical Center of Hangzhou Customs, Hangzhou 310016, P. R. China
| | - Jianmin He
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, 126 Fuchun Road, Hangzhou 310016, P. R. China
| | - Ke Li
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, 126 Fuchun Road, Hangzhou 310016, P. R. China; Technical Center of Hangzhou Customs, Hangzhou 310016, P. R. China
| | - Yi Li
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, 126 Fuchun Road, Hangzhou 310016, P. R. China; Technical Center of Hangzhou Customs, Hangzhou 310016, P. R. China
| | - Dunming Xu
- Technical Center of Xiamen Customs, Xiamen 361026, P. R. China
| |
Collapse
|
14
|
Head-to-Head Comparison of High-Performance Liquid Chromatography versus Nuclear Magnetic Resonance for the Quantitative Analysis of Carbohydrates in Yiqi Fumai Lyophilized Injection. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020765. [PMID: 36677822 PMCID: PMC9860785 DOI: 10.3390/molecules28020765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Carbohydrate analysis can be used as a standard analysis for quality control of industries of plants, foods and pharmaceuticals. Quantitative 1H NMR spectroscopy (qNMR) is an excellent alternative to chromatography-based mixture analysis. However, the application of qNMR in sugar analysis has rarely been reported. In this study, the performance of qNMR in sugar analysis was investigated and compared with the results from HPLC analysis. A head-to-head comparison of qNMR (internal and external standard methods) versus HPLC (PMP pre-column derivatization HPLC, HPLC-RID and HPLC-ELSD) based on quantitative analysis of four carbohydrates (fructose, glucose, sucrose and maltose) in Yiqi Fumai lyophilized injection (YQFM) is presented. Both assays showed similar performance characteristics, including linearity range, accuracy, precision and recovery, and analysis times of less than 30 min/sample. After methodological validation, both qNMR and HPLC have good accuracy, precision and stability. Indeed, the qNMR method is simple, sensitive and rapid in quantifying the four sugars. By analysis of variance (ANOVA) for sugar content with HPLC and qNMR methods, we demonstrated that the two analytical methods had no significant difference and could be used interchangeably for the quantitative analysis of carbohydrates.
Collapse
|
15
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Wang W, Yin Y, Gunasekaran S. Oxygen-terminated few-layered Ti3C2Tx MXene nanosheets as peroxidase-mimic nanozyme for colorimetric detection of kanamycin. Biosens Bioelectron 2022; 218:114774. [DOI: 10.1016/j.bios.2022.114774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/21/2022]
|
17
|
Gong Y, Luo W, Chen H, Ren B, Hu W, Li L. Systematical Ingredient Investigations of Ficus tikoua Bur. Fruit and Immunoregulatory and Antioxidant Effects of Different Fractions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206880. [PMID: 36296474 PMCID: PMC9608957 DOI: 10.3390/molecules27206880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022]
Abstract
Although the fruit of Ficus tikoua Bur. has been consumed by montanic people in China for centuries, its chemical and biological composition was still unclear. A series of comprehensive investigations on its chemical constituents and bioactivities were carried out for the first time. As a result, six compounds were isolated and identified as the main components in this fruit. GC-MS analysis of the lipid components demonstrated that Ficus tikoua Bur. fruit contains some wholesome constituents such as fatty acids, vitamins, triterpenoids, and phytosterols. The fatty acids are mainly composed of linolenic acid (61.27%) and linoleic acid (22.79%). Furthermore, this fruit contains a relative high content of crude protein (9.41 ± 0.03%), total amino acids (9.28%), and total polyphenols (0.86 ± 0.01 g/100 g). The analysis of monosaccharide composition showed that the total polysaccharide mainly consists of glucose, glucuronic acid, xylose, arabinose, mannose, galactose, galacturonic acid, and rhamnose. The polysaccharide, polyphenol, water, ethanol, and flavonoid extracts exhibited prominent antioxidant activity determined by ABTS, DPPH, and FRAPS methods. Meanwhile, the total polysaccharide exhibited significant immunomodulatory effect by enhancing the release of cytokines and expression of iNOS and COX-2 in RAW264.7 cells, significantly decreasing the expression of c-Jun and p65 proteins in the cytoplasm; increasing the translocation of c-Jun and p65 to the nucleus; and regulating the phosphorylation level of Akt, PI3K, and PDK1 in the PI3K/AKT signaling pathway. This study proved that the fruit of F. tikoua is a reliable source of functional food.
Collapse
Affiliation(s)
- Yu Gong
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Luo
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hulan Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Ren
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- Correspondence: (W.H.); (L.L.)
| | - Limei Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (W.H.); (L.L.)
| |
Collapse
|
18
|
Macroalgal-Derived Alginate Soil Amendments for Water Retention, Nutrient Release Rate Reduction, and Soil pH Control. Gels 2022; 8:gels8090548. [PMID: 36135260 PMCID: PMC9498892 DOI: 10.3390/gels8090548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
There is a need to develop sustainably sourced products that can address the needs for improved water retention in soils, slow the release rate of fertilizers (to prevent leaching and downstream eutrophication), and control soil pH for use in agriculture. This article investigates the use of industrial kelp solid waste extracted alginate (IW) slurries to produce soil amendment beads, potentially improving soil water retention, acting as slow-release fertilizers (SRFs), and combined with limestone controls soil pH levels. Alginate extracted from the IW was determined to have a lower guluronic (G) to mannuronic (M) acid ratio than pure laboratory-grade (LG) alginate (0.36 vs. 0.53). Hydrogels produced from the IW alginate achieved significantly higher equilibrium swelling ratios (1 wt% IW = 1.80) than LG hydrogels with similar concentrations (1 wt% LG = 0.61). Hydrogel beads were impregnated with ammonium nitrate and potassium chloride to produce potential SRFs. The release rates of K+ and NO3− nutrients from the produced SRFs into deionised water were decreased by one order of magnitude compared to pure salts. The nutrient release rates of the IW-based SRFs were shown to be similar to SRFs produced from LG alginate. Hydrogel beads were impregnated with limestone, and it was determined that the alginate-based hydrogels could significantly decrease the nutrient release rate. Using industrial kelp solid waste extracted alginate slurries shows potential for soil amendments production. This report emphasises, for the first time, the use of a crude alginate product in soil amendment formation. Further, it demonstrates slower release rates and soil pH control.
Collapse
|
19
|
|
20
|
Xiao M, Lim-Ho Kong B, Zhang Y, Yang Y, Lu J, Lee HK, Cao F, Shaw PC. Anti-influenza mechanism of phenolic phytochemicals from Canarium album (Lour.) DC. leaf extract. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115175. [PMID: 35306041 DOI: 10.1016/j.jep.2022.115175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Canarium album (Lour.) DC. belongs to the Burseraceae family. Its leaf, named as Ganlanye (GLY), was recorded to treat warm disease symptoms via clearing lung heat and toxicants in medical classics. Its aqueous extract had anti-influenza activity in our previous phenotypic screening. However, its active components and mechanism were not identified. AIM We aim to isolate the anti-influenza phytochemicals from GLY extract and explore its anti-flu mechanism. MATERIAL AND METHODS Influenza A virus infected MDCK cells were used to test the compounds and fractions. Structural analyses of new compounds were performed via NMR calculation with the combination of DP4plus probability method and computed electronic circular dichroism (ECD). Hemagglutination inhibitory assay and neuraminidase inhibitory assay were performed to find the target protein. Molecular docking and recombinant virus were used to confirm the action site of the three new canaroleosides. RESULTS Three new phenolic glycosides, canaroleosides A-C (1-3), and three known flavonoids (4-6), were isolated from the GLY aqueous extract and their anti-influenza virus mechanism was revealed. The absolute configurations of 1-3 were determined by ECD method, with the structure of the 2,5-dihydroxybenzoic acid moiety in 1 assigned by NMR calculation. Compound 1 was found to suppress both hemagglutinin and neuraminidase activities. Compounds 2, 3 4 and 6 inhibited neuraminidase, while compound 5 inhibited hemagglutinin. 1-3 could interact with Arg152 of the viral neuraminidase based on the result of molecular docking and reverse genetics. CONCLUSION Six phytochemicals were isolated from GLY aqueous extract and found to inhibit influenza A strains. They were found to interact with hemagglutinin or neuraminidase and canaroleosides 1-3 could interact with Arg152 of the viral neuraminidase. This study provided more evidence on the anti-influenza effect of Ganlan and laid the foundation for further generation of potent NA inhibitors.
Collapse
Affiliation(s)
- Mengjie Xiao
- School of Life Sciences, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Bobby Lim-Ho Kong
- School of Life Sciences, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Yahui Zhang
- College of Pharmaceutical Sciences, Hebei University, Baoding, 077000, China
| | - Yinhua Yang
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Jiaqi Lu
- School of Life Sciences, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Hung-Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Fei Cao
- College of Pharmaceutical Sciences, Hebei University, Baoding, 077000, China.
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, 999077, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, 999077, Hong Kong, China; Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, 999077, Hong Kong, China.
| |
Collapse
|
21
|
Gan Q, Wang X, Cao M, Zheng S, Ma Y, Huang Q. NF-κB and AMPK-Nrf2 pathways support the protective effect of polysaccharides from Polygonatum cyrtonema Hua in lipopolysaccharide-induced acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115153. [PMID: 35240239 DOI: 10.1016/j.jep.2022.115153] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/05/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The raw and honey-processed P. cyrtonema recorded in ancient classics of Chinese medicine as having the effect of moisturizing the lungs and relieving coughs, and it has also been proved to have therapeutic effects on lung diseases in modern research. Polysaccharides are the main components with biological activities in raw and honey-processed P. cyrtonema, but there is no research for their lung-protective effect. AIM OF STUDY This study aimed to investigate the protective effect and the possible mechanism of polysaccharides from raw and honey-processed P. cyrtonema in LPS-induced acute lung injury in mice. MATERIALS AND METHODS Polysaccharides, PCP and HPCP, were respectively separated and extracted from raw and honey-processed P. cyrtonema, and the molecular weight, monosaccharide composition and other basic chemical characteristics were analyzed by HPGCP, HPLC, FI-IR, and NMR. The model of ALI mice was established by intratracheal instillation of LPS. Moreover, the protective effects of PCP and HPCP for ALI mice were evaluated by detecting the wet-to-dry ratio and histopathology in the lungs, the content of inflammatory factors TNF-α, IL-6, IL-1β in BLAF, and the content of MPO and SOD in lung tissue. In addition, the lung-protective mechanism of PCP and HPCP was explored by detecting the levels of some proteins and mRNA related to inflammation and oxidative stress pathways. RESULTS PCP and HPCP with molecular weights of 8.842 × 103 and 5.521 × 103Da were mainly composed of three monosaccharides. Moreover, it is found that fructose and galactose were mainly β-D, and glucose was α-D. Both PCP and HPCP could significantly improve lung injury, reduce the level of inflammatory factors in BALF and the level of MPO in lung tissue, and increase the level of SOD. In addition, PCR and WB indicated that PCP and HPCP at least inhibited pulmonary inflammation through the NF-κB pathway, and reduced the occurrence of pulmonary oxidative stress through the AMPK-Nrf2 pathway. CONCLUSIONS Polysaccharides from raw and honey-processed P. cyrtonema had a protective effect in LPS-induced lung injury in mice. This effect may be related to the antioxidant and anti-inflammatory activities of PCP and HPCP in the lungs through the NF-κB pathway and AMPK-Nrf2 pathway. And HPCP seems to perform more than PCP.
Collapse
Affiliation(s)
- Qingxia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Xi Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Mayijie Cao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Song Zheng
- Sichuan Kaimei Chinese Medicine Co., Ltd, No.155, Section 1, Fuxing Road, Longmatan District, Luzhou, 646000, China.
| | - Yuntong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
22
|
Wu M, Shen Y, Ming Y, Shi Z, Shi Z, Liu D, Li G, Ma T. Characterization of a polysaccharide hydrogel with high elasticity produced by a mutant strain Sphingomonas sanxanigenens NX03. Carbohydr Polym 2022; 280:119030. [PMID: 35027132 DOI: 10.1016/j.carbpol.2021.119030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/02/2022]
Abstract
Microbial polysaccharides as renewable bioproducts have attracted lots of attention in various industries. Hesan (Highly elastic Sanxan), an exopolysaccharide produced by a plasma mutagenic strain Sphingomonas sanxanigenens NX03, was characterized. It possessed the same monosaccharide composition as the original polysaccharide Sanxan produced from wild-type strain NX02, but significantly reduced acetyl and glyceryl contents. Textural analysis showed the springiness and cohesiveness of Hesan gel was much higher than Sanxan gel, and rheological behaviors indicated it possessed a lower loss factor, and its conformational transition temperatures at different concentrations were obviously lower than Sanxan gel and high-acyl gellan gel, which suggested that Hesan gel was highly elastic and temperature-sensitive. Additionally, Hesan gel could be efficiently produced through micro-aerobic static culture in shallow (10.46 ± 0.30 g/L) and deep liquids (3.21 ± 0.32 g/L), which was significantly different from the fermentation of other water-soluble polysaccharides. In short, this study characterizes a new mutant strain and its polysaccharide products.
Collapse
Affiliation(s)
- Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaqi Shen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Yue Ming
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Zhuangzhuang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhong Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Dakun Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
23
|
Development and Validation of HPLC-DAD Method with Pre-Column PMP Derivatization for Monomeric Profile Analysis of Polysaccharides from Agro-Industrial Wastes. Polymers (Basel) 2022; 14:polym14030544. [PMID: 35160536 PMCID: PMC8838364 DOI: 10.3390/polym14030544] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 01/19/2023] Open
Abstract
The instrumental analysis of complex mixtures of sugars often requires derivatization to enhance the method’s selectivity and sensitivity. 1-Phenyl-3-methyl-5-pyrazolone (PMP) is a common sugar derivatization agent used in high-performance liquid chromatography (HPLC). Although many C18 column applications for PMP–sugar derivative analysis have been developed, their transferability is not straightforward due to variations in column chemistry and preparation technology. The aim of this study was to develop and validate an application for Zorbax Extend C18 columns for the analysis of 8 neutral and 2 acidic sugars commonly found in plant polysaccharides. The method was further compared to well-established alditol acetates and m-hydroxydiphenyl methods and employed for sugar profiling of selected agro-industrial wastes. The most influential separation factors were the mobile-phase pH and acetonitrile content, optimized at 8.0 and a 12–17% gradient, respectively. The method showed excellent linearity, repeatability and intermediate precision. High sensitivity was achieved, especially for neutral sugars, with an accuracy error range of 5–10% relative standard deviation. The sugar profiling results were highly correlated to the reference method for neutral sugars. The HPLC method was highly applicable for the evaluation of polysaccharides in selected wastes and showed advantages in terms of simplicity, accuracy in acidic sugar determination and suitability for their simultaneous analysis with neutral sugars.
Collapse
|
24
|
Biodegradation and metabolic pathway of sulfamethoxazole by Sphingobacterium mizutaii. Sci Rep 2021; 11:23130. [PMID: 34848765 PMCID: PMC8632973 DOI: 10.1038/s41598-021-02404-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
Sulfamethoxazole (SMX) is the most commonly used antibiotic in worldwide for inhibiting aquatic animal diseases. However, the residues of SMX are difficult to eliminate and may enter the food chain, leading to considerable threats on human health. The bacterial strain Sphingobacterium mizutaii LLE5 was isolated from activated sludge. This strain could utilize SMX as its sole carbon source and degrade it efficiently. Under optimal degradation conditions (30.8 °C, pH 7.2, and inoculum amount of 3.5 × 107 cfu/mL), S. mizutaii LLE5 could degrade 93.87% of 50 mg/L SMX within 7 days. Four intermediate products from the degradation of SMX were identified and a possible degradation pathway based on these findings was proposed. Furthermore, S. mizutaii LLE5 could also degrade other sulfonamides. This study is the first report on (1) degradation of SMX and other sulfonamides by S. mizutaii, (2) optimization of biodegradation conditions via response surface methodology, and (3) identification of sulfanilamide, 4-aminothiophenol, 5-amino-3-methylisoxazole, and aniline as metabolites in the degradation pathway of SMX in a microorganism. This strain might be useful for the bioremediation of SMX-contaminated environment.
Collapse
|
25
|
Li Y, Liang J, Gao JN, Shen Y, Kuang HX, Xia YG. A novel LC-MS/MS method for complete composition analysis of polysaccharides by aldononitrile acetate and multiple reaction monitoring. Carbohydr Polym 2021; 272:118478. [PMID: 34420737 DOI: 10.1016/j.carbpol.2021.118478] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Carbohydrate analysis has always been a challenging task due to the occurrence of high polarity and multiple isomers. Aldoses are commonly analyzed by gas liquid chromatography (GLC) following aldononitrile acetate derivatization (AND). However, the GLC technique cannot be applied for the simultaneous determination of aldoses, ketoses, and uronic acids. In this study, a new method based on the combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and AND is developed for the complete characterization of monosaccharide composition (i.e., aldoses, ketoses, alditols, amino sugars, and uronic acids) in plant-derived polysaccharides. In addition to discussing the possible byproducts, the study optimizes the multiple reaction monitoring (MRM) parameters and LC conditions. The final separation of 17 carbohydrates is performed on a BEH Shield RP18 column (150 mm × 2.1 mm, 1.7 μm) within 25 min, without using any buffer salt. Notably, the complex polysaccharides extracted from Ligusticum chuanxiong, Platycodon grandiflorum, Cyathula officinalis Kuan, Juglans mandshurica Maxim, and Aralia elata (Miq.). Seem bud can be successfully characterized using the developed method. Overall, the results demonstrated that the newly established LC-MS/MS MRM method is more effective and powerful than the GLC-based methods reported previously, and it is more suitable for the analysis of highly complex natural polysaccharides, including complex pectins, fructosans, and glycoproteins.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jia-Ning Gao
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yu Shen
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
26
|
Wang W, You Y, Gunasekaran S. LSPR-based colorimetric biosensing for food quality and safety. Compr Rev Food Sci Food Saf 2021; 20:5829-5855. [PMID: 34601783 DOI: 10.1111/1541-4337.12843] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022]
Abstract
Ensuring consistently high quality and safety is paramount to food producers and consumers alike. Wet chemistry and microbiological methods provide accurate results, but those methods are not conducive to rapid, onsite testing needs. Hence, many efforts have focused on rapid testing for food quality and safety, including the development of various biosensors. Herein, we focus on a group of biosensors, which provide visually recognizable colorimetric signals within minutes and can be used onsite. Although there are different ways to achieve visual color-change signals, we restrict our focus on sensors that exploit the localized surface plasmon resonance (LSPR) phenomenon of metal nanoparticles, primarily gold and silver nanoparticles. The typical approach in the design of LSPR biosensors is to conjugate biorecognition ligands on the surface of metal nanoparticles and allow the ligands to specifically recognize and bind the target analyte. This ligand-target binding reaction leads to a change in color of the test sample and a concomitant shift in the ultraviolet-visual absorption peak. Various designs applying this and other signal generation schemes are reviewed with an emphasis on those applied for evaluating factors that compromise the quality and safety of food and agricultural products. The LSPR-based colorimetric biosensing platform is a promising technology for enhancing food quality and safety. Aided by the advances in nanotechnology, this sensing technique lends itself easily for further development on field-deployable platforms such as smartphones for onsite and end-user applications.
Collapse
Affiliation(s)
- Weizheng Wang
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Youngsang You
- Department of Food Engineering, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Lang Y, Zhang Y, Wang C, Huang L, Liu X, Song N, Li G, Yu G. Comparison of Different Labeling Techniques for the LC-MS Profiling of Human Milk Oligosaccharides. Front Chem 2021; 9:691299. [PMID: 34589467 PMCID: PMC8473617 DOI: 10.3389/fchem.2021.691299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Human milk oligosaccharides (HMOs) exhibit various biological activities for infants, such as serving as prebiotics, blocking pathogens, and aiding in brain development. HMOs are a complex mixture of hetero-oligosaccharides that are generally highly branched, containing multiple structural isomers and no intrinsic chromophores, presenting a challenge to both their resolution and quantitative detection. While liquid chromatography-mass spectrometry (LC-MS) has become the primary strategy for analysis of various compounds, the very polar and chromophore-free properties of native glycans hinder their separation in LC and ionization in MS. Various labeling approaches have been developed to achieve separation of glycans with higher resolution and greater sensitivity of detection. Here, we compared five commonly used labeling techniques [by 2-aminobenzamide, 2-aminopyridine, 2-aminobenzoic acid (2-AA), 2,6-diaminopyridine, and 1-phenyl-3-methyl-5-pyrazolone] for analyzing HMOs specifically under hydrophilic-interaction chromatography-mass spectrometry (HILIC-MS) conditions. The 2-AA labeling showed the most consistent deprotonated molecular ions, the enhanced sensitivity with the least structural selectivity, and the sequencing-informative tandem MS fragmentation spectra for the widest range of HMOs; therefore, this labeling technique was selected for further optimization under the porous graphitized carbon chromatography-mass spectrometry (PGC-MS) conditions. The combination strategy of 2-AA labeling and PGC-MS techniques provided online decontamination (removal of excess 2-AA, salts, and lactose) and resolute detection of many HMOs, enabling us to characterize the profiles of complicated HMO mixtures comprehensively in a simple protocol.
Collapse
Affiliation(s)
- Yinzhi Lang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yongzhen Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chen Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Limei Huang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaoxiao Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ni Song
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
28
|
Wen M, Cui Y, Dong CX, Zhang L. Quantitative changes in monosaccharides of Keemun black tea and qualitative analysis of theaflavins-glucose adducts during processing. Food Res Int 2021; 148:110588. [PMID: 34507733 DOI: 10.1016/j.foodres.2021.110588] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Monosaccharides of Keemun black tea were quantitatively determined by high performance liquid chromatography coupled with 3-methyl-1-phenyl-2-pyrazolin-5-one (PMP) pre-column derivatization. The methodology of developed analytical method was established with good linearity, recovery, repeatability and precision. The quantitative results showed that D-mannose, D-glucuronic acid, D-glucose, D-galactose and L-arabinose were detected in Keemun black tea samples. D-glucose was the predominant monosaccharide in black tea, and its concentration was continuously increased from fresh tea leaves to fermentation, but after drying its concentration was significantly decreased. Meanwhile, theaflavins' concentrations were obviously decreased after drying. When theaflavins were heated with D-glucose, the loss of theaflavins was increased. Correspondingly, theaflavins also prevented the caramelization of D-glucose and restored the loss of D-glucose during heating. Through the liquid chromatography/electrospray tandem mass spectrometry some theaflavins glucose adducts were identified.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Cai-Xia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
29
|
Valdivia-Rivera S, Herrera-Pool IE, Ayora-Talavera T, Lizardi-Jiménez MA, García-Cruz U, Cuevas-Bernardino JC, Cervantes-Uc JM, Pacheco N. Kinetic, Thermodynamic, Physicochemical, and Economical Characterization of Pectin from Mangifera indica L. cv. Haden Residues. Foods 2021; 10:2093. [PMID: 34574203 PMCID: PMC8467629 DOI: 10.3390/foods10092093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
The effect of temperature (60, 70, 80, and 90 °C) and time (30, 45, 60, 75, and 90 min) on citric acid extraction of Haden mango (Mangifera indica L. cv. Haden) peel pectin was evaluated in the present study. In order to obtain a better understanding of both the extraction process and the characteristics of the pectin (obtained from an agro-industrial waste) for a future scaling process, the following characterizations were performed: (1) Kinetic, with the maximum extraction times and yields at all evaluated temperatures; (2) thermodynamic, obtaining activation energies, enthalpies, entropies, and Gibbs free energies for each stage of the process; (3) physicochemical (chemical analysis, monosaccharide composition, degree of esterification, galacturonic acid content, free acidity, Fourier-transform infrared spectroscopy, thermogravimetric and derivative thermogravimetric analyses); and (4) economical, of the pectin with the highest yield. The Haden mango peel pectin was found to be characterized by a high-esterified degree (81.81 ± 0.00%), regular galacturonic acid content (71.57 ± 1.26%), low protein (0.83 ± 0.05%) and high ash (3.53 ± 0.02%) content, low mean viscometric molecular weight (55.91 kDa), and high equivalent weight (3657.55 ± 8.41), which makes it potentially useful for food applications.
Collapse
Affiliation(s)
- Sergio Valdivia-Rivera
- Centro de Investigacion y Asistencia en Tecnologia y Diseño del Estado de Jalisco, Sede Sureste, Parque Cientifico Tecnologico de Yucatan, Km 5.5, Carretera Sierra Papacal-Chuburna Puerto, Merida 97302, Yucatan, Mexico; (S.V.-R.); (I.E.H.-P.); (T.A.-T.)
| | - Iván Emanuel Herrera-Pool
- Centro de Investigacion y Asistencia en Tecnologia y Diseño del Estado de Jalisco, Sede Sureste, Parque Cientifico Tecnologico de Yucatan, Km 5.5, Carretera Sierra Papacal-Chuburna Puerto, Merida 97302, Yucatan, Mexico; (S.V.-R.); (I.E.H.-P.); (T.A.-T.)
| | - Teresa Ayora-Talavera
- Centro de Investigacion y Asistencia en Tecnologia y Diseño del Estado de Jalisco, Sede Sureste, Parque Cientifico Tecnologico de Yucatan, Km 5.5, Carretera Sierra Papacal-Chuburna Puerto, Merida 97302, Yucatan, Mexico; (S.V.-R.); (I.E.H.-P.); (T.A.-T.)
| | - Manuel Alejandro Lizardi-Jiménez
- CONACYT, Universidad Autonoma de San Luis Potosi, Sierra Leona 550, Lomas Segunda Seccion, San Luis Potosi 78210, San Luis Potosi, Mexico;
| | - Ulises García-Cruz
- Centro de Investigacion y de Estudios Avanzados-Merida, Antigua Carretera a Progreso Km 6, Cordemex, Loma Bonita Xcumpich, Mérida 97310, Yucatan, Mexico;
| | - Juan Carlos Cuevas-Bernardino
- CONACYT, Centro de Investigacion y Asistencia en Tecnologia y Diseño del Estado de Jalisco, Sede Sureste, Parque Cientifico Tecnologico de Yucatan, Km 5.5, Carretera Sierra Papacal-Chuburna Puerto, Merida 97302, Yucatan, Mexico;
| | - José Manuel Cervantes-Uc
- Centro de Investigacion Cientifica de Yucatan, Unidad de Materiales, Calle 43 No. 130 x 32 y 34, Chuburna de Hidalgo, Merida 97205, Yucatan, Mexico;
| | - Neith Pacheco
- Centro de Investigacion y Asistencia en Tecnologia y Diseño del Estado de Jalisco, Sede Sureste, Parque Cientifico Tecnologico de Yucatan, Km 5.5, Carretera Sierra Papacal-Chuburna Puerto, Merida 97302, Yucatan, Mexico; (S.V.-R.); (I.E.H.-P.); (T.A.-T.)
| |
Collapse
|
30
|
Efficient whole-cell biosynthesis of l-gulose by coupling mannitol-1-dehydrogenase with NADH oxidase. Enzyme Microb Technol 2021; 148:109815. [PMID: 34116746 DOI: 10.1016/j.enzmictec.2021.109815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/26/2020] [Accepted: 05/01/2021] [Indexed: 12/24/2022]
Abstract
L-Gulose is a rare aldohexose to serve as a building block for anticancer drug bleomycin and nucleoside-based antivirals. However, preparative inaccessibility and high cost have hindered its pharmaceutical application. Despite a regio- and stereo-selective enzymatic synthesis of l-gulose from d-sorbitol using a variant of NAD+-dependent mannitol-1-dehydrogenase from Apium graveolens (mMDH) was explored, low efficiency and productivity caused by NADH accumulation or insufficient amount of NAD+ limited the practical utility of this process. In this study, a stable and efficient NADH oxidase from Bacillus cereus (bcNOX) was found to be more compatible with mMDH to recycle NAD+ in E. coli cells for l-gulose biosynthesis. After a systematic optimization of the whole-cell system, efficient biosynthesis of l-gulose was achieved. Starting with 70 g/L of readily available and cheap d-sorbitol resulted in a volumetric productivity of 5.5 g/L/d. This whole-cell approach enables practical, efficient and environmentally friendly biosynthesis of l-gulose and exhibits the potential of becoming a biocatalytic strategy for various enzymatic oxidative transformations.
Collapse
|
31
|
Wang W, Wang Y, Chen F, Zheng F. Comparison of determination of sugar-PMP derivatives by two different stationary phases and two HPLC detectors: C18 vs. amide columns and DAD vs. ELSD. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
López-Ortega MA, Chavarría-Hernández N, López-Cuellar MDR, Rodríguez-Hernández AI. A review of extracellular polysaccharides from extreme niches: An emerging natural source for the biotechnology. From the adverse to diverse! Int J Biol Macromol 2021; 177:559-577. [PMID: 33609577 DOI: 10.1016/j.ijbiomac.2021.02.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 01/12/2023]
Abstract
Every year, new organisms that survive and colonize adverse environments are discovered and isolated. Those organisms, called extremophiles, are distributed throughout the world, both in aquatic and terrestrial environments, such as sulfurous marsh waters, hydrothermal springs, deep waters, volcanos, terrestrial hot springs, marine saltern, salt lakes, among others. According to the ecosystem inhabiting, extremophiles are categorized as thermophiles, psychrophiles, halophiles, acidophiles, alkalophilic, piezophiles, saccharophiles, metallophiles and polyextremophiles. They have developed chemical adaptation strategies that allow them to maintain their cellular integrity, altering physiology or improving repair capabilities; one of them is the biosynthesis of extracellular polysaccharides (EPS), which constitute a slime and hydrated matrix that keep the cells embedded, protecting from environmental stress (desiccation, salinity, temperature, radiation). EPS have gained interest; they are explored by their unique properties such as structural complexity, biodegradability, biological activities, and biocompatibility. Here, we present a review concerning the biosynthesis, characterization, and potential EPS applications produced by extremophile microorganisms, namely, thermophiles, halophiles, and psychrophiles. A bibliometric analysis was conducted, considering research articles published within the last two decades. Besides, an overview of the culture conditions used for extremophiles, the main properties and multiple potential applications of their EPS is also presented.
Collapse
Affiliation(s)
- Mayra Alejandra López-Ortega
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico.
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico
| | - Ma Del Rocío López-Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico
| | - Adriana Inés Rodríguez-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1, Exhacienda de Aquetzalpa, Tulancingo de Bravo, Hidalgo C.P. 43600, Mexico.
| |
Collapse
|
33
|
Characterization of a novel polysaccharide from Moutan Cortex and its ameliorative effect on AGEs-induced diabetic nephropathy. Int J Biol Macromol 2021; 176:589-600. [PMID: 33581205 DOI: 10.1016/j.ijbiomac.2021.02.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
This study aimed to investigate the structure of a new heteropolysaccharide (MC-Pa) from Moutan Cortex (MC), and its protection on diabetic nephropathy (DN). The MC-Pa composed of D-glucose and L-arabinose (3.31:2.25) was characterized with homogeneous molecular weight of 1.64 × 105 Da, and the backbone was 4)-α-D-Glcp-(1 → 5-α-L-Araf-(1 → 3,5-α-L-Araf-(1→, branched partially at O-3 with α-L-Araf-(1 → residue with methylated-GC-MS and NMR. Furthermore, MC-Pa possessed strong antioxidant activity in vitro and inhibited the production of ROS caused by AGEs. In vivo, MC-Pa could alleviate mesangial expansion and tubulointerstitial fibrosis of DN rats in histopathology and MC-Pa could decrease significantly the serum levels of AGEs and RAGE. Western blot and immunohistochemical analysis showed that MC-Pa can reduce the expression of main protein (FN and Col IV) of extracellular-matrix, down-regulate the production of inflammatory factors (ICAM-1 and VCAM-1), and therefore regulate the pathway of TGF-β1. The above indicated that MC-Pa has an improving effect on DN.
Collapse
|
34
|
Chen S, Sathuvan M, Zhang X, Zhang W, Tang S, Liu Y, Cheong KL. Characterization of polysaccharides from different species of brown seaweed using saccharide mapping and chromatographic analysis. BMC Chem 2021; 15:1. [PMID: 33430936 PMCID: PMC7798215 DOI: 10.1186/s13065-020-00727-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/08/2020] [Indexed: 02/05/2023] Open
Abstract
Brown seaweed polysaccharides (BSPs) are one of the primary active components from brown seaweed that has a range of pharmaceutical and biomedical applications. However, the quality control of BSPs is a challenge due to their complicated structure and macromolecule. In this study, saccharide mapping based on high-performance liquid chromatography (HPLC), multi-angle laser light scattering, viscometer, and refractive index detector (HPSEC-MALLS-Vis-RID), and Fourier transform infrared (FT-IR) were used to discriminate the polysaccharides from nine different species of brown algae (BA1-9). The results showed that BSPs were composed of β-D-glucans and β-1,3-1,4-glucan linkages. The molecular weight, radius of gyration, and intrinsic viscosity of BSPs were ranging from 1.718 × 105 Da to 6.630 × 105 Da, 30.2 nm to 51.5 nm, and 360.99 mL/g to 865.52 mL/g, respectively. Moreover, α values of BSPs were in the range of 0.635 to 0.971, which indicated a rigid rod chain conformation. The antioxidant activities of BSPs exhibited substantial radical scavenging activities against DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) radicals, which indicated that the use of BSPs might be a potential approach for antioxidant supplements. Thus, this study gives insights about the structure-function relationship of BSPs, which will be beneficial to improve the quality of polysaccharides derived from marine algae.
Collapse
Affiliation(s)
- Shengqin Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Malairaj Sathuvan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Xiao Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China.
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, People's Republic of China.
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, People's Republic of China.
| |
Collapse
|
35
|
Zhang R, Lv C, Lu J. Studies on laccase mediated conversion of lignin from ginseng residues for the production of sugars. BIORESOURCE TECHNOLOGY 2020; 317:123945. [PMID: 32805484 DOI: 10.1016/j.biortech.2020.123945] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study was to determine the production of sugars from ginseng residues treated with laccase. Laccase was used to degrade lignin from ginseng residues in order to increase the yield of sugars. Reaction conditions, including solid loading, pH, enzyme concentration, incubation temperature, and incubation time, were investigated and optimized. The results showed that the optimum conditions were 20% of solid loading (w/v), pH 7, 300 IU/ml, temperature of 40 °C and incubation time of 6 h. The minimum residual lignin obtained was 59.89%. The results also showed that 56.58% sugars including 12.04% water soluble polysaccharides (WSP), 16.24% water insoluble polysaccharides (WIP) and 5.08% reducing sugar were afforded from delignify substance. Chemical characters of these sugars were analyzed. Pretreat of laccase delignification for sugars production is expected to be applied to other herbal residues.
Collapse
Affiliation(s)
- Ruiqi Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang 110006, China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang 110006, China.
| |
Collapse
|
36
|
He L, Yan B, Yao C, Chen X, Li L, Wu Y, Song Z, Song S, Zhang Z, Luo P. Oligosaccharides from Polygonatum Cyrtonema Hua: Structural characterization and treatment of LPS-induced peritonitis in mice. Carbohydr Polym 2020; 255:117392. [PMID: 33436221 DOI: 10.1016/j.carbpol.2020.117392] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 01/12/2023]
Abstract
Fructooligosaccharide was isolated from Polygonatum Cyrtonema Hua (PFOS) for the first time. Structure characterized using FT-IR, MALDI-TOF-MS, NMR, AFM, and TEM, indicated that PFOS was graminan-type fructan with a degree of polymerization ranging from 5 to 10. A murine model of lipopolysaccharide (LPS)-induced peritonitis was used to evaluate the in vivo anti-inflammatory and lung protective efficacy of PFOS. The result shown that pretreatment with PFOS (1.0 mg/mL) in peritonitis-induced mice could significantly inhibit the level of pro-inflammatory cytokines (TNF-α, IL-1β) in serum (P < 0.001), increase mice survival rate from 12.5 % to 54 % (P < 0.05), and alleviated lung injury through ameliorating the damage of the pulmonary cellular architecture and reducing inflammatory monocyte accumulation in lung tissue. This effect of oligosaccharides could explain the traditional usage of P. cyrtonema as a tonic medicine for respiratory problems and it could be used as a potential natural ingredient with anti-inflammatory activity.
Collapse
Affiliation(s)
- Lili He
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Bingxiong Yan
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Caiyun Yao
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Xiaoyi Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Longwei Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Youjiao Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhijun Song
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Shanshan Song
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhifeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Pei Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
37
|
Synergistic effects of α-Fe2O3-TiO2 and Na2S2O8 on the performance of a non-thermal plasma reactor as a novel catalytic oxidation process for dimethyl phthalate degradation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117185] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Tsolmon B, Fang Y, Yang T, Guo L, He K, Li GY, Zhao H. Structural identification and UPLC-ESI-QTOF-MS 2 analysis of flavonoids in the aquatic plant Landoltia punctata and their in vitro and in vivo antioxidant activities. Food Chem 2020; 343:128392. [PMID: 33191012 DOI: 10.1016/j.foodchem.2020.128392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/01/2020] [Accepted: 10/11/2020] [Indexed: 01/16/2023]
Abstract
Duckweeds have long been consumed as vegetables in several South Asian countries. In this study of the chemical constituents of duckweed Landoltia punctata, a new compound, apigenin 6-C-[β-D-apiofuranosyl-(1 → 2)]-β-D-glucopyranoside (1), and a previously LC-MS identified compound, quercetin 3-O-β-D-apiofuranoside (3), as well as three known compounds, luteolin 6-C-[β-D-apiofuranosyl-(1 → 2)]-β-D-glucopyranoside (2), apigenin 6-C-β-D-glucopyranoside (4), and luteolin 7-O-neohespirodise (5), were isolated and identified on the basis of MS and NMR spectroscopic analyses and chemical derivations. In total, 24 flavonoids were identified in L. punctata 0001 by UPLC-ESI-QTOF-MS2. In DPPH and ABTS assays, 3 exhibited significant antioxidant activity with IC50 values of 4.03 ± 1.31 µg/mL and 14.9 ± 2.28 µg/mL, respectively. In in vivo antioxidant activity assays, 1 significantly increased the survival rate of juglone-exposed Caenorhabditis elegans by 2 to 3-fold, and by 75% following thermal damage. Compounds 1-5 exhibited moderate scavenging capacities of intracellular reactive oxygen species in C. elegans exposed to H2O2.
Collapse
Affiliation(s)
- Bolor Tsolmon
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China; National Engineering Research Center for Natural Medicines, Chengdu 610041, People's Republic of China
| | - Tao Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Ling Guo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Kaize He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China; National Engineering Research Center for Natural Medicines, Chengdu 610041, People's Republic of China
| | - Guo-You Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China.
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China; National Engineering Research Center for Natural Medicines, Chengdu 610041, People's Republic of China.
| |
Collapse
|
39
|
Wang Y, Hu L, Huang H, Wang H, Zhang T, Chen J, Du G, Kang Z. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum. Nat Commun 2020; 11:3120. [PMID: 32561727 PMCID: PMC7305114 DOI: 10.1038/s41467-020-16962-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan is widely used in cosmetics and pharmaceutics. Development of robust and safe cell factories and cultivation approaches to efficiently produce hyaluronan is of many interests. Here, we describe the metabolic engineering of Corynebacterium glutamicum and application of a fermentation strategy to manufacture hyaluronan with different molecular weights. C. glutamicum is engineered by combinatorial overexpression of type I hyaluronan synthase, enzymes of intermediate metabolic pathways and attenuation of extracellular polysaccharide biosynthesis. The engineered strain produces 34.2 g L−1 hyaluronan in fed-batch cultures. We find secreted hyaluronan encapsulates C. glutamicum, changes its cell morphology and inhibits metabolism. Disruption of the encapsulation with leech hyaluronidase restores metabolism and leads to hyper hyaluronan productions of 74.1 g L−1. Meanwhile, the molecular weight of hyaluronan is also highly tunable. These results demonstrate combinatorial optimization of cell factories and the extracellular environment is efficacious and likely applicable for the production of other biopolymers. Bioproduction of hyaluronan needs increases in yield and greater diversity of the molecular weights. Here, the author increases hyaluronan production and diversifies the molecular weights through engineering the hyaluronan biosynthesis pathway and disruption of Corynebacterium glutamicum encapsulation caused by secreted hyaluronan.
Collapse
Affiliation(s)
- Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Hao Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Hao Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | | | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
40
|
Bailly C, Hecquet PE, Kouach M, Thuru X, Goossens JF. Chemical reactivity and uses of 1-phenyl-3-methyl-5-pyrazolone (PMP), also known as edaravone. Bioorg Med Chem 2020; 28:115463. [DOI: 10.1016/j.bmc.2020.115463] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/16/2022]
|
41
|
Rahman Z, Dharani S, Barakh Ali SF, Nutan MTH, Khan MA. Effects of Diluents on Physical and Chemical Stability of Phenytoin and Phenytoin Sodium. AAPS PharmSciTech 2020; 21:104. [PMID: 32166473 DOI: 10.1208/s12249-020-1639-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/12/2020] [Indexed: 11/30/2022] Open
Abstract
The focus of the present work was to investigate compatibility between commonly used diluents and the drug (salt and acid form of the phenytoin). Lactose monohydrate (LMH), lactitol hydrate (LCT), and mannitol (MNT) were selected based on commercial products information of phenytoin sodium (PS) and phenytoin acid (PHT). Binary mixtures of the drug-diluent were stored at 60°C and 40°C/75% RH. Similarly, two commercial products, namely Product-A and Product-B, were also investigated in in-use stability. Color of PS-LMH changed from white to yellowish-brown and pH dropped by 3.4 units after 4 weeks exposure. FTIR, XRPD, and NIR chemical images indicated disproportionation in PS-LMH and PS-LCT mixtures stored at 40°C/75% RH. Furthermore, PS-LMH also indicated chemical interactions as indicated by distortion of LMH peaks. PHT-diluent mixture did not exhibit any physical and chemical modifications. Product-A changed color, increased weight, dropped pH value, and exhibited disproportionation and chemical reactions. The dissolution of Product-A decreased from 83.3 ± 1.4 to 7.1 ± 4.4% on 8 weeks exposure to 30°C/75% RH. On the other hand, Product-B did not change; however, dissolution decreased by 15%. In conclusion, PS showed disproportionation and chemical reactions with LMH. Therefore, LMH should be avoided in PS formulations.
Collapse
|
42
|
Wang W, Chen F, Zheng F, Russell BT. Optimization of synthesis of carbohydrates and 1-phenyl-3-methyl-5-pyrazolone (PMP) by response surface methodology (RSM) for improved carbohydrate detection. Food Chem 2020; 309:125686. [DOI: 10.1016/j.foodchem.2019.125686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 10/25/2022]
|
43
|
Flavonoid glycosides from seeds of Hippophae rhamnoides subsp. Sinensis with α-glucosidase inhibition activity. Fitoterapia 2019; 137:104248. [DOI: 10.1016/j.fitote.2019.104248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 11/21/2022]
|
44
|
La Cava EL, Gerbino E, Sgroppo SC, Gómez-Zavaglia A. Pectin Hydrolysates from Different Cultivars of Pink/Red and White Grapefruits (Citrus Paradisi [macf.]) as Culture and Encapsulating Media for Lactobacillus Plantarum. J Food Sci 2019; 84:1776-1783. [PMID: 31218715 DOI: 10.1111/1750-3841.14671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 11/30/2022]
Abstract
Citrus pectin hydrolysates (Citrus paradisi [Mafc.]) from "Foster," "Red Shambar," "Tangelo Orlando," and "Citrumelo Swingle" cultivars were obtained by partial chemical hydrolysis and their properties as culture media (sole carbon/nutrient source) and encapsulating agents of Lactobacillus plantarum CIDCA 83114 were evaluated. The concentration of neutral sugars was maximal after 2-hour hydrolysis. All hydrolysates were rich in glucose >xylose >galactose >galacturonic acid >mannose >arabinose. "Citrumelo Swingle" cultivar was the one with the highest concentration of xylose. After 24 hr of fermentation with L. plantarum CIDCA 83114, bacterial viability increased from 6.76 ± 0.14 to almost 9 log CFU/mL, and lactic acid concentration, from 2.63 ± 0.41 to 7.82 ± 0.15 mmol/L in all hydrolysates. Afterwards, bacteria were entrapped in pectate-calcium beads by ionotropic gelation. Bacterial viability did not significantly decrease after freeze-drying and storage the beads at 4 °C for 45 days. PRACTICAL APPLICATION: Pectin hydrolysates were adequate culture media for microorganisms, as determined by the viabililty and lactic acid production. Considering that citrus peels are agro-wastes obtained in large quantities, their use as encapsulating materials provides a solution to overcome the environmental problem they entail.
Collapse
Affiliation(s)
- Enzo L La Cava
- Laboratorio de Tecnología Química y Bromatología, Facultad de Ciencias Exactas, Naturales y Agrimensura, UNNE, Av. Libertad 5460, RA3400, Corrientes, Argentina
| | - Esteban Gerbino
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), Calle 47 y 116, RA 1900, La Plata, Buenos Aires, Argentina
| | - Sonia C Sgroppo
- Laboratorio de Tecnología Química y Bromatología, Facultad de Ciencias Exactas, Naturales y Agrimensura, UNNE, Av. Libertad 5460, RA3400, Corrientes, Argentina
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), Calle 47 y 116, RA 1900, La Plata, Buenos Aires, Argentina
| |
Collapse
|
45
|
Dharani S, Barakh Ali SF, Afrooz H, Bhattacharya R, Khan MA, Rahman Z. Quality and In-Use Stability Comparison of Brand and Generics of Extended-Release Phenytoin Sodium Capsules. J Pharm Sci 2019; 108:1808-1817. [PMID: 30611751 DOI: 10.1016/j.xphs.2018.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Abstract
The objective of the present study was to understand quality of brand and generic products of phenytoin sodium by in vitro methods. Three commercial products were selected for the study, 1 brand and 2 generics (product-A, product-B, and product-C). Products were repacked in pharmacy vials and stored for 12 weeks at 30°C/75% RH to simulate in-use conditions. The products were examined visually and microscopically for morphologic changes, spectroscopic and diffractometric methods for chemical changes, and dissolution, assay, and impurities for performance evaluation. Capsules content of the product-A turned yellowish to dark orange color from initial white powder, which indicated a possible chemical interaction between lactose and the drug in addition to disproportionation. This was supported by pH, microscopic, spectroscopic, and X-ray diffraction data. Product-A failed to meet United States Pharmacopoeia dissolution specification of 75% in 120 min after 2-weeks whereas product-B and product-C failed at 6-weeks of in-use stability conditions exposure. Furthermore, product-A also failed to meet United States pharmacopoeia assay and impurities specifications in 12 weeks in-use period. In summary, this study indicated salt disproportionation, chemical interactions, and phase transformations of drug and excipients in the commercial products of phenytoin sodium, which may affect the clinical performance of the product.
Collapse
Affiliation(s)
- Sathish Dharani
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
| | - Sogra F Barakh Ali
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
| | - Hamideh Afrooz
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
| | - Raktima Bhattacharya
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
| | - Mansoor A Khan
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
| | - Ziyaur Rahman
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843.
| |
Collapse
|
46
|
Yang M, Yu Y, Yang S, Shi X, Mou H, Li L. Expression and Characterization of a New PolyG-Specific Alginate Lyase From Marine Bacterium Microbulbifer sp. Q7. Front Microbiol 2018; 9:2894. [PMID: 30555439 PMCID: PMC6281962 DOI: 10.3389/fmicb.2018.02894] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/12/2018] [Indexed: 01/12/2023] Open
Abstract
Alginate lyases play an important role in preparation of alginate oligosaccharides. Although a large number of alginate lyases have been characterized, reports on directional preparation of alginate oligosaccharides by alginate lyases are still rather less. Here, a gene alyM encoding a new alginate lyase AlyM was cloned from Microbulbifer sp. Q7 and expressed in Escherichia coli. AlyM exhibited the maximumactivity at pH 7.0 and 55°C and showed special preference to poly-guluronic acid (polyG). Glycine promoted the extracellular secretion of AlyM by 3.6 times. PBS and glycerol significantly improved the thermal stability of AlyM, the enzyme activity remained 75 and 78% after heat-treatment at 45°C for 2 h, respectively. ESI-MS analysis suggested that AlyM mainly produced oligosaccharides with degrees of polymerization (DP) of 2-5. The results of 1H-NMR showed that guluronic acid (G) occupied the reducing end of the end products, indicating that AlyM preferred to degrade the glycosidic bond at the G-X linkage. HPLC analysis showed that the hydrolysis products with a lower degree of polymerization contained more G. Therefore, AlyM shows good potential to produce alginate oligosaccharides with specific M/G ratio and molecular weights.
Collapse
Affiliation(s)
- Min Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuan Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Suxiao Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaohui Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Li Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
47
|
Galermo AG, Nandita E, Barboza M, Amicucci MJ, Vo TTT, Lebrilla CB. Liquid Chromatography-Tandem Mass Spectrometry Approach for Determining Glycosidic Linkages. Anal Chem 2018; 90:13073-13080. [PMID: 30299929 DOI: 10.1021/acs.analchem.8b04124] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The structural analysis of carbohydrates remains challenging mainly due to the lack of rapid analytical methods able to determine and quantitate glycosidic linkages between the diverse monosaccharides found in natural oligosaccharides and polysaccharides. In this research, we present the first liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for the rapid and simultaneous relative quantitation of glycosidic linkages for oligosaccharide and polysaccharide characterization. The method developed employs ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC/QqQ-MS) analysis performed in multiple reaction monitoring (MRM) mode. A library of 22 glycosidic linkages was built using commercial oligosaccharide standards. Permethylation and hydrolysis conditions along with LC-MS/MS parameters were optimized resulting in a workflow requiring only 50 μg of substrate for the analysis. Samples were homogenized, permethylated, hydrolyzed, and then derivatized with 1-phenyl-3-methyl-5-pyrazolone (PMP) prior to analysis by UHPLC/MRM-MS. Separation by C18 reversed-phase UHPLC along with the simultaneous monitoring of derivatized terminal, linear, bisecting, and trisecting monosaccharide linkages by mass spectrometry is achieved within a 15 min run time. Reproducibility, efficacy, and robustness of the method was demonstrated with galactan ( Lupin) and polysaccharides within food such as whole carrots. The speed and specificity of the method enables its application toward the rapid glycosidic linkage analysis of oligosaccharides and polysaccharides.
Collapse
|