1
|
Suwanangul S, Arkanit K, Kraithong S, Sorndech W, Tastub S, Rungraeng N, Narkprasom K, Laosam P, Sangsawad P. Impact of an innovative two-step temperature-controlled accelerated germination process on phytochemical enhancement, digestibility, and morphological changes in colored rice. Food Chem 2025; 478:143558. [PMID: 40056628 DOI: 10.1016/j.foodchem.2025.143558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/23/2025] [Accepted: 02/21/2025] [Indexed: 03/10/2025]
Abstract
Traditional accelerated germination methods for rice are often inefficient due to extended processing times. This study developed an innovative two-step temperature-controlled germination process for colored rice varieties, completed within 48 h. Two methods were compared: a two-stage process (W: soaking at 30 °C for 6 h, followed by wet incubation at 30 °C for 18 h and 40 °C for 24 h) and a soaking or single-stage process (S: continuous soaking at 40 °C for 48 h) using Jao Kham Hom Maejo 1A (M1A) and Jao Hom Nin (HN) rice. The W process significantly enhanced bioactive compounds, particularly in M1A rice, increasing GABA (40-fold), polyphenols (45 %), and flavonoids (42 %), which improved antioxidant activity and enzyme inhibition. Despite a slight reduction in grain crystallinity, digestibility and glycemic response were maintained. This innovative M1A-W provides a commercially feasible approach to producing nutrient-enriched functional rice products with enhanced health benefits.
Collapse
Affiliation(s)
- Saranya Suwanangul
- Program in Food Science and Technology, Faculty of Engineering and Agro-industry, Maejo University, Chiang Mai 50290, Thailand
| | - Kornpaka Arkanit
- Program in Food Science and Technology, Faculty of Engineering and Agro-industry, Maejo University, Chiang Mai 50290, Thailand.
| | - Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Waraporn Sorndech
- Expert Center of Innovative Health Food, Thailand Institute of Scientific and Technological Research, Klong Ha, Klong Luang, Pathum Thani 12120, Thailand
| | - Sukanya Tastub
- Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand
| | - Natthakan Rungraeng
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, 57100, Thailand; Research Center of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kanjana Narkprasom
- Program in Food Engineering, Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai 50290, Thailand
| | - Phanthipha Laosam
- Research and Development Institute Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Papungkorn Sangsawad
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
2
|
Yu S, Zhang S, Lu L, Liu L, Liang J, Lang S, Wang C, Wang L, Li Z. Effects of combined ultrasound and calcium ion pretreatments on polyphenols during mung bean germination: Exploring underlying mechanisms. Food Res Int 2024; 195:114947. [PMID: 39277225 DOI: 10.1016/j.foodres.2024.114947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Mung beans were pretreated with a combination of ultrasonic and calcium ion to enhance the polyphenol content and antioxidant capacity during germination. Changes in polyphenol content and antioxidant capacity during germination, along with underlying mechanisms, were investigated. Both single ultrasound and combined ultrasound-Ca2+ pretreatments significantly increased the polyphenol content and enhanced the antioxidant capacity (p < 0.05) of mung beans depending on germination period. Among 74 polyphenolic metabolites identified in germinated mung beans, 50 were differential. Notably, 23 of these metabolites showed a significant positive correlation with antioxidant activity. Ultrasound pretreatment promoted flavonoid biosynthesis, whereas ultrasound-Ca2+ pretreatment favored the tyrosine synthesis pathway. Polyphenol composition and accumulation changes were mainly influenced by metabolic pathways like flavonoid, isoflavonoid, anthocyanin, and flavone/flavonol biosynthesis. The results suggest that ultrasound alone or combined with calcium ion pretreatments effectively enhance mung bean polyphenol content and antioxidant capacity during germination.
Collapse
Affiliation(s)
- Shibo Yu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Shu Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lele Lu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lijuan Liu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Jiaxin Liang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shuangjing Lang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Heilongjiang Food and Biotechnology Innovation and Research Center (International Cooperation), Daqing 163319, PR China
| | - Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| |
Collapse
|
3
|
Chen R, Yan X, Cai M, Cai J, Dai T, Liu Y, Wu J. Impact of Germination on the Edible Quality and Nutritional Properties of Brown Rice Noodles. Foods 2024; 13:2152. [PMID: 38998657 PMCID: PMC11241835 DOI: 10.3390/foods13132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Brown rice noodles are increasingly favored by consumers for their health benefits; however, their development is hindered by their poor edible qualities. The effect of germination on the cooking, textural, organoleptic and nutritional qualities of brown rice pasta was investigated. In comparison to ungerminated brown rice noodles, germination resulted in a shorter cooking time, reduced cooking losses, and decreased hardness and adhesion of noodles as well as reduced bitter taste. These changes can be attributed to germination altering the basic composition of brown rice. Meanwhile, the contents of γ-aminobutyric acid, free phenolic acid, and bound phenolic acid increased by 53.43%, 21.71%, and 7.14%, respectively, while the content of resistant starch de-creased by 21.55%. Sprouting is a promising strategy for improving the edible quality and nutritional properties of brown rice noodles.
Collapse
Affiliation(s)
- Ruiyun Chen
- Jiangxi General Institute of Testing and Certification, Nanchang 330052, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xudong Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingxi Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jiamei Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yunfei Liu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Jianyong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
4
|
Dong L, Yang Y, Zhao Y, Liu Z, Li C, He L, Liu L. Effect of different conditions on the germination of coix seed and its characteristics analysis. Food Chem X 2024; 22:101332. [PMID: 38586225 PMCID: PMC10997825 DOI: 10.1016/j.fochx.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
Coix seed (CS) has high nutritional value, but the deep processing of CS is relatively limited. Sprouting can significantly improve nutritional value, laying the foundation for efficient consumption or further processing. The optimal conditions for the germination of CS are a soaking temperature of 36 °C for 10 h and a germination temperature of 29 °C for 24 h. Under these conditions, the final germination rate of CS reached 90%. Additionally, the content of γ-aminobutyric acid was 21.205 mg/100 g; soluble protein, free amino acids, γ-aminobutyric acid, and other essential substances increased in CS. Especially after germination, the γ-aminobutyric acid (GABA) content increased by 7.8 times compared with the GABA content of ungerminated CS. Therefore, the nutritional value and flavor of germinated CS are better than those of ungerminated ones, which establishs a solid foundation for its application in developing various products such as compound health drinks, coix yogurt, and others.
Collapse
Affiliation(s)
- Lidan Dong
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yun Yang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yongcai Zhao
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Zhengyu Liu
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
- Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China
- Guizhou Nanfang Dairy Co, Ltd, Guiyang 551499, PR China
| | - Lihua Liu
- Guizhou Nanfang Dairy Co, Ltd, Guiyang 551499, PR China
| |
Collapse
|
5
|
Oliveira MEAS, Ribeiro da Silva Lima L, Santos MCB, Ferrari Fonseca de Sales N, Ferreira RM, Cameron LC, Filho JMC, Bassinello PZ, Wanderlei Piler de Carvalho C, Ferreira MSL, Takeiti CY. Role of short germination and milling on physical properties, amino acid and metabolomic profiles of high amylose rice fractions. Food Res Int 2023; 174:113556. [PMID: 37986434 DOI: 10.1016/j.foodres.2023.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
Short germination is a process that can improve bioactive compounds in rice. This work aimed investigate the physical properties, phenolic compounds (PC), antioxidant activity and amino acids composition of husk + bran, brown and milled rice with high amylose content after short germination (16 h). α-amylase activity (Falling Number, FN) and enthalpy (ΔH) were unchanged (p < 0.05). RVA curve profiles were similar, even though after short germination and milling. Globally, metabolomics analysis identified 117 PC, in which 111 (bound), 104 (free) and 21 revealed in both extracts. p-Coumaric, trans-ferulic and ferulic acids were the most abundant PC revealed in all fractions. The portion husk + bran showed the highest level of total antioxidant activity (709.90 µmol TE) in both free and bound fractions. In terms of total amino acids, there was no statistical difference (p < 0.05) among non-germinated and germinated samples, contrary to free amino acids content. Glutamic acid (Glu) presented the highest values combining short germination and milling (1725-1900 mg/100 g) consequently, leads to higher value of GABA (12.21 mg/100 g). The combination of short germination and milling demonstrated a good strategy to improve the nutritional quality of rice, unless the thermal and pasting properties have been altered, contribute to potential health benefits on human nutrition.
Collapse
Affiliation(s)
| | - Luciana Ribeiro da Silva Lima
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry (IMasS-LBP), UNIRIO, Brazil; Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil
| | - Millena Cristina Barros Santos
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry (IMasS-LBP), UNIRIO, Brazil; Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil
| | | | - Renata Marenda Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil
| | - Luiz Claudio Cameron
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry (IMasS-LBP), UNIRIO, Brazil
| | | | | | | | - Mariana Simões Larraz Ferreira
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry (IMasS-LBP), UNIRIO, Brazil; Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil
| | - Cristina Yoshie Takeiti
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Embrapa Agroindústria de Alimentos, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Beaulieu JC, Boue SM, Goufo P. Health-promoting germinated rice and value-added foods: a comprehensive and systematic review of germination effects on brown rice. Crit Rev Food Sci Nutr 2023; 63:11570-11603. [PMID: 35816149 DOI: 10.1080/10408398.2022.2094887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last 30 years, thousands of articles have appeared examining the effects of soaking and germinating brown rice (BR). Variable germination conditions and methods have been employed to measure different health-beneficial parameters in a diverse germplasm of BR. Research results may therefore appear inconsistent with occasional anomalies, and it may be difficult to reach consensus concerning expected trends. Herein, we amassed a comprehensive review on germinated brown rice (GBR), attempting to codify 133 peer-reviewed articles regarding the effects on 164 chemical parameters related to health and nutrition in BR and in value-added food products. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-2020) approach was used to direct the flow of the literature search. A pair-wise comparison t-test was performed to deliver an overall approach indicating when a given compound has been found to significantly increase or decrease through germination, which was grouped into GABA and polyamines, γ-Oryzanol and phytosterols, phenolic compounds, vitamins, proteins and amino acids, starchy carbohydrates, free sugars, lipids, minerals and phytic acid. This resource will stimulate interest in germinating rice and optimistically help increase both production and consumption of highly nutritious, health-beneficial rice with pigmented bran.
Collapse
Affiliation(s)
- John C Beaulieu
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Stephen M Boue
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Piebiep Goufo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
7
|
Obadi M, Xu B. Effect of processing methods and storage on the bioactive compounds of black rice ( Oryza sativa L.): a review. Food Funct 2023; 14:9100-9122. [PMID: 37766517 DOI: 10.1039/d3fo02977h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Compared to brown and white rice, black rice contains more nutrients and numerous unique bioactive substances, such as essential amino acids, dietary fiber, γ-oryzanols, γ-aminobutyric acid, phenolic compounds, and anthocyanins, which makes it highly valuable for development and use. Whole-grain black rice typically requires a certain amount of processing prior to consumption, with the primary goal of enhancing the taste and texture of whole grains and their products. However, various new processing technologies have been effectively applied to the processing of black rice and the enhancement of its qualitative characteristics, but they also have both positive and negative effects on its nutritional quality. Therefore, evaluation of changes in concentrations of the bioactive substances as natural antioxidants due to processing and storage conditions is critical for establishing dietary guidelines for rice. This review highlights the primary bioactive components of black rice and provides a discussion of the impact of processing methods and storage on the bioactive components of black rice. Furthermore, we summarized the issues that currently exist in the processing and storage of black rice.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
8
|
Monmai C, Kim JS, Baek SH. Use of Germination to Enhance Resveratrol Content and Its Anti-Inflammatory Activity in Lipopolysaccharide-Stimulated RAW264.7 Cells. Molecules 2023; 28:4898. [PMID: 37446559 DOI: 10.3390/molecules28134898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammation is triggered by a variety of danger signals and is now a worldwide concern. Resveratrol, a natural nonflavonoid polyphenol found in naturally consumed plants and foods, has a wide spectrum of bioactive potency. We successfully generated resveratrol-enriched rice by introducing the resveratrol biosynthesis gene into Dongjin rice. In this study, resveratrol- and piceid-enriched rice (DJ526) was investigated for its anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 cells compared to normal rice (DJ). In addition, the 5-day-old germinated DJ526 (DJ526_5) was tested for its anti-inflammatory effects. The piceid and resveratrol amounts increased in DJ526_5 by germination. Treatment of LPS-stimulated RAW264.7 cells with resveratrol-enriched rice seed extracts (DJ526_0 and DJ526_5) significantly decreased the production of nitric oxide (NO) and the inflammatory mediator prostaglandin E2 (PGE2), downregulated proinflammatory gene expression, and inhibited nuclear factor kappa B (NF-κB) p65, p38 mitogen-activated protein kinase, and extracellular signal-regulated kinase 1/2 (ERK 1/2) phosphorylation. These findings demonstrated the anti-inflammatory mechanisms of resveratrol-enriched rice in LPS-stimulated RAW264.7 cells. Furthermore, resveratrol-enriched rice could be a potential source of anti-inflammatory agents.
Collapse
Affiliation(s)
- Chaiwat Monmai
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| | - Jin-Suk Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| | - So-Hyeon Baek
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| |
Collapse
|
9
|
Živković A, Gođevac D, Cigić B, Polak T, Požrl T. Identification and Quantification of Selected Benzoxazinoids and Phenolics in Germinated Spelt ( Triticum spelta). Foods 2023; 12:foods12091769. [PMID: 37174307 PMCID: PMC10178788 DOI: 10.3390/foods12091769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, we investigated the effects of germination on the secondary metabolite composition in spelt grains. Germination significantly increased the content of various metabolites in free and bound forms. Benzoxazinoids were the most important compounds in the free fraction of the 96 h germinated grains (MBOA content as the predominant compound was 277.61 ± 15.29 µg/g DW). The majority of phenolic acids were present in the bound fraction, with trans-ferulic acid as the main component, reaching 753.27 ± 95.87 µg/g DW. The often neglected cis-isomers of phenolic acids accounted for about 20% of the total phenolic acids. High levels of apigenin di-C-glycosides were found in spelt grains, and the schaftoside content was most affected by germination, increasing threefold. The accumulation of secondary metabolites significantly increased the antioxidant activity of germinated spelt. According to the results of this study, the content of most bioactive compounds was highest in spelt grains after 96 h of germination. These data suggest that germinated spelt could potentially be valuable for the production of functional foods.
Collapse
Affiliation(s)
- Andrej Živković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia
| | - Dejan Gođevac
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Blaž Cigić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia
| | - Tomaž Polak
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia
| | - Tomaž Požrl
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia
| |
Collapse
|
10
|
Zhang YX, Zhang YD, Shi YP. A reliable and effective sample preparation protocol of MALDI-TOF-MSI for lipids imaging analysis in hard and dry cereals. Food Chem 2023; 398:133911. [DOI: 10.1016/j.foodchem.2022.133911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 11/27/2022]
|
11
|
Tong Y, Yi SC, Liu SY, Xu L, Qiu ZX, Zeng DQ, Tang WW. Bruceine D may affect the phenylpropanoid biosynthesis by acting on ADTs thus inhibiting Bidens pilosa L. seed germination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113943. [PMID: 35999761 DOI: 10.1016/j.ecoenv.2022.113943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Bruceine D is a natural quassinoid, which was successfully isolated in our research group from the residue of Brucea javanica (L.) seeds. Our previous research showed that Bruceine D prevented Bidens pilosa L. seed germination by suppressing the activity of key enzymes and the expression levels of key genes involved in the phenylpropanoid biosynthesis pathway. In this study, integrated analyses of non-targeted metabolomic and transcriptomic were performed. A total of 356 different accumulated metabolites (DAMs) were identified, and KEGG pathway analyses revealed that most of these DAMs were involved in phenylpropanoid biosynthesis. The decreased expression of ADTs and content of L-phenylalanine implicates that Bruceine D may suppress the downstream phenylpropanoid biosynthesis pathway by disrupting primary metabolism, that is, the phenylalanine biosynthesis pathway, thus inhibiting the final products, resulting in the interruption of B. pilosa seed germination. These results suggest that Bruceine D may inhibit the B. pilosa seed germination by suppressing phenylpropanoid biosynthesis through acting on ADTs.
Collapse
Affiliation(s)
- Yao Tong
- Guangxi Key Laboratory of Agrio-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Shan-Chi Yi
- Guangxi Key Laboratory of Agrio-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Shu-Yu Liu
- Guangxi Key Laboratory of Agrio-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Lin Xu
- Guangxi Key Laboratory of Agrio-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhuo-Xun Qiu
- Guangxi Key Laboratory of Agrio-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Dong-Qiang Zeng
- Guangxi Key Laboratory of Agrio-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Wen-Wei Tang
- Guangxi Key Laboratory of Agrio-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| |
Collapse
|
12
|
Oliveira MEAS, Coimbra PPS, Galdeano MC, Carvalho CWP, Takeiti CY. How does germinated rice impact starch structure, products and nutrional evidences? – A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Tyagi A, Chen X, Shabbir U, Chelliah R, Oh DH. Effect of slightly acidic electrolyzed water on amino acid and phenolic profiling of germinated brown rice sprouts and their antioxidant potential. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Gu M, Yang J, Tian X, Fang W, Xu J, Yin Y. Enhanced total flavonoid accumulation and alleviated growth inhibition of germinating soybeans by GABA under UV-B stress. RSC Adv 2022; 12:6619-6630. [PMID: 35424610 PMCID: PMC8981559 DOI: 10.1039/d2ra00523a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Germination of soybeans under ultraviolet-B (UV-B) treatment is a simple and effective way to enrich soybean isoflavones, but its mechanism of action is not yet clear. G-Aminobutyric acid (GABA) is a signaling molecule that is involved in the accumulation of secondary metabolites as well as the regulation of plant development and metabolism. In this study, the effects of exogenous GABA and its inhibitors on the physiological and biochemical, antioxidant systems, total flavonoid content, activity and gene expression of isoflavone metabolism related enzyme in germinating soybeans under UV-B treatment were investigated. Compared to UV-B treatment alone, soybean treated with GABA (5 mM) in combination with UV-B significantly increased sprout length, fresh weight, Ca2+ inward flow and peroxidase and catalase activities, and decreased malondialdehyde and H2O2 and O2˙- fluorescence intensity, while soybean treated with GABA inhibitor showed the opposite trend. Meanwhile, total flavonoid content increased by 11.2% and 6.7%, respectively, in 2- and 4 day-old soybeans under UV-B treatment, compared to UV-B treatment alone. Moreover, the application of GABA under UV treatment significantly increased the activity of phenylalanine ammonia-lyase and cinnamic acid-4-hydroxylase, with values increasing by 43.6% and 18.5%, respectively, in four-day-old soybean compared to UV treatment alone, which also increased the relative expression of key genes involved in isoflavone metabolism. The GABA inhibitor 3-mercaptopropionic acid blocked these occurrences. According to this research, GABA could operate as a signaling molecule to mediate isoflavone accumulation in soybean sprouts under UV radiation and stimulate soybean sprout growth.
Collapse
Affiliation(s)
- Minglang Gu
- College of Food Science and Engerning, Yangzhou University Yangzhou Jiangsu 225127 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Jia Yang
- Yangzhou Center for Food and Drug Control Yangzhou Jiangsu 225009 People's Republic of China
| | - Xin Tian
- College of Food Science and Engerning, Yangzhou University Yangzhou Jiangsu 225127 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Weiming Fang
- College of Food Science and Engerning, Yangzhou University Yangzhou Jiangsu 225127 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Jinpeng Xu
- College of Food Science and Engerning, Yangzhou University Yangzhou Jiangsu 225127 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Yongqi Yin
- College of Food Science and Engerning, Yangzhou University Yangzhou Jiangsu 225127 People's Republic of China +86-514-89786551 +86-514-89786551
| |
Collapse
|
15
|
Medic A, Zamljen T, Hudina M, Veberic R. Time-Dependent Degradation of Naphthoquinones and Phenolic Compounds in Walnut Husks. BIOLOGY 2022; 11:342. [PMID: 35205208 PMCID: PMC8869098 DOI: 10.3390/biology11020342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The aim of the present study was to investigate how individual phenolic compounds and phenolic groups in walnut husk gratings (e.g., naphthoquinones, flavanols, flavonols, hydroxycinnamic acids) are oxidized over time, with a particular focus on the juglone synthase pathway. Walnut husk gratings were prepared and left under 'degradation' conditions (exposure to the air, room temperature) at increasing times. Following methanol extraction of these husk gratings, the HPLC profile of methanolic extract of husk gratings exhibited twenty-six compounds over time, then hydrojuglone glucoside, α-hydrojuglone, and juglone were detailed by HPLC-mass spectrometry. Initially (0-20 min), the content of hydrojuglone glucoside in the husk gratings decreased by 40.4%, while the content of α-hydrojuglone increased by 20.0%, and then decreased. After an initial delay (0-20 min), juglone increased by 47.9% from 20 to 40 min, and then decreased. This initially confirmed that hydrojuglone glucoside and α-hydrojuglone could be considered as precursors of juglone. Different phenolic groups showed different degradation processes, although they all reached their highest content after 40 min. This might arise from degradation of the phenols, increased free phenols, or activation of the plant defense mechanism due to damage to the tissue, similar to the effects of stress or a pathogen attack. Although it has been reported that the phenolic compounds decrease when food is processed or damaged, they showed increases, which were not indefinite, but time dependent. As phenolic compounds are considered highly beneficial to human health, increases upon processing indicate the need for further investigations into healthier food preparation processes. This is the first study on the degradation pathways of juglone, using a mass spectrometer, in which we suggest that hydrojuglone glucoside and α-hydrojuglone are indeed the precursors of juglone. However, it is possible that there are other degradation pathways of hydrojuglone glucoside, since less juglone is synthesized than expected.
Collapse
|
16
|
Garduño-Félix KG, Ramirez K, Salazar-Salas NY, Amabilis-Sosa LE, Rochín-Medina JJ. Phenolic profile in black sesame sprouts biostimulated with Bacillus clausii. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01115-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Gonu H, Wanapu C, Withayagiat U. The Correlation of Free and Bound Phenolic Acid with Antioxidant Activity Accelerated by Germination Period and Temperature. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1966287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hellie Gonu
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Chokchai Wanapu
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Ulaiwan Withayagiat
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, Thailand
- Fermentation Technology Research Center, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, Thailand
| |
Collapse
|
18
|
Sitanggang AB, Joshua M, Munarko H, Kusnandar F, Budijanto S. Increased γ-Aminobutyric Acid Content of Germinated Brown Rice Produced in Membrane Reactor. Food Technol Biotechnol 2021; 59:295-305. [PMID: 34759761 PMCID: PMC8542178 DOI: 10.17113/ftb.59.03.21.6846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
RESEARCH BACKGROUND Rice germination is a natural approach to enhance the physical and functional properties of brown rice. Thus, the aim of this study is to investigate the influence of different germination methods on functional properties of germinated brown rice and evaluate the process feasibility. EXPERIMENTAL APPROACH Brown rice of IPB 3S variety was germinated with three different methods: (i) complete soaking without water replacement, (ii) complete soaking with water replacement every six hours, and (iii) complete soaking with continuous washing in the developed membrane-facilitated soaking reactor. RESULTS AND CONCLUSIONS The application of the membrane reactor for producing germinated brown rice maintained the pH of the soaking solution relatively constant (i.e. 6.8-7.0). This indicated the circumvention of natural fermentation during brown rice germination. Moreover, the mass fraction of γ-aminobutyric acid in germinated brown rice produced in the membrane reactor was about 4.5-fold higher (169.2 mg/100 mg) than in ungerminated brown rice (36.82 mg/100 mg), and also higher than that of the other two soaking methods. The γ-oryzanol mass fractions and the antioxidant capacity expressed as ascorbic acid equivalents of germinated brown rice obtained with the three soaking methods varied from 32 to 38 mg/100 mg and 18 to 28 mg/100 g, respectively. Within this study, germination could also slightly reduce the transition temperatures of germinated brown rice starch gelatinization (t o=73-74 °C, t p=76-77 °C and t c=~80 °C, where t o, t p and t c are onset, peak and conclusion (final) temperatures). In conclusion, the production of germinated brown rice in the membrane reactor could enhance its γ-aminobutyric acid mass fraction and reduce wastewater production and is therefore considered more feasible. NOVELTY AND SCIENTIFIC CONTRIBUTION This study demonstrates the feasibility of germinated brown rice production using a membrane-facilitated soaking reactor with enhancement of bioactive compound content, especially γ-aminobutyric acid, and minimised wastewater production.
Collapse
Affiliation(s)
- Azis Boing Sitanggang
- Department of Food Science and Technology, IPB University, Campus IPB Darmaga, 16680 Bogor, Indonesia
| | - Michael Joshua
- Department of Food Science and Technology, IPB University, Campus IPB Darmaga, 16680 Bogor, Indonesia
| | - Hadi Munarko
- Department of Food Science and Technology, IPB University, Campus IPB Darmaga, 16680 Bogor, Indonesia
| | - Feri Kusnandar
- Department of Food Science and Technology, IPB University, Campus IPB Darmaga, 16680 Bogor, Indonesia
| | - Slamet Budijanto
- Department of Food Science and Technology, IPB University, Campus IPB Darmaga, 16680 Bogor, Indonesia
| |
Collapse
|
19
|
Munarko H, Sitanggang AB, Kusnandar F, Budijanto S. Effect of different soaking and germination methods on bioactive compounds of germinated brown rice. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hadi Munarko
- Department of Food Science and Technology IPB University Kampus IPB Darmaga 16680 Bogor Indonesia
- Department of Food Technology Faculty of Engineering UPN “Veteran” East Java Surabaya 60294 Indonesia
| | - Azis Boing Sitanggang
- Department of Food Science and Technology IPB University Kampus IPB Darmaga 16680 Bogor Indonesia
| | - Feri Kusnandar
- Department of Food Science and Technology IPB University Kampus IPB Darmaga 16680 Bogor Indonesia
| | - Slamet Budijanto
- Department of Food Science and Technology IPB University Kampus IPB Darmaga 16680 Bogor Indonesia
| |
Collapse
|
20
|
GABA Regulates Phenolics Accumulation in Soybean Sprouts under NaCl Stress. Antioxidants (Basel) 2021; 10:antiox10060990. [PMID: 34205788 PMCID: PMC8235516 DOI: 10.3390/antiox10060990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
NaCl stress causes oxidative stress in plants; γ-aminobutyric acid (GABA) could alleviate such abiotic stress by enhancing the synthesis of phenolics, but the underlying mechanism is not clear. We investigated the effects of GABA on phenolics accumulation in soybean sprouts under NaCl stress by measuring changes in the content of physiological biochemicals and phenolic substances, in the activity and gene expression of key enzymes, and in antioxidant capacity. GABA reduced the oxidative damage in soybean sprouts caused by NaCl stress and enhanced the content of total phenolics, phenolic acids, and isoflavones by 16.58%, 22.47%, and 3.75%, respectively. It also increased the activities and expression of phenylalanine ammonia lyase, cinnamic acid 4-hydroxylase, and 4-coumarate coenzyme A ligase. Furthermore, GABA increased the activity of antioxidant enzymes and the antioxidant capacity. These events were inhibited by 3-mercaptopropionate (an inhibitor for GABA synthesis), indicating that GABA mediated phenolics accumulation and antioxidant system enhancement in soybean sprouts under NaCl stress.
Collapse
|
21
|
Ma Z, Guan X, Gong B, Li C. Chemical components and chain-length distributions affecting quinoa starch digestibility and gel viscoelasticity after germination treatment. Food Funct 2021; 12:4060-4071. [PMID: 33977982 DOI: 10.1039/d1fo00202c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A germination treatment was explored in this study as a green strategy to reduce the in vitro starch digestibility of cooked quinoa. The alterations of chemical compositions, starch chain-length distributions (CLDs) and rheological characteristics of quinoa flours after the germination treatment were characterized. Results showed that a significant alteration of amylose CLDs and the starch digestibility was observed for cooked quinoa flours after different germination times. By fitting starch digestograms to the logarithm of slop (LOS) plot and the combination of parallel and sequential kinetics model (CPS), two starch digestible fractions with distinct rate constants were identified. Pearson correlation analysis further found that the observed starch digestive characteristics could be largely explained by the alterations of amylose CLDs caused by the germination treatment. More specifically, the rapidly digestible starch fraction mainly consisted of amorphous amylopectin molecules and amylose intermolecular crystallites. On the other hand, the slowly digestible starch fraction was largely formed by intramolecular interactions among amylose short chains (degree of polymerization (DP) < 500). These results suggest that germination may be a promising way to develop cereal products with slower starch digestibility.
Collapse
Affiliation(s)
- Zhimin Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiao Guan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. and National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China and Shanghai Engineering Research Center for Food Rapid Detection, Shanghai 200093, P.R. China
| | - Bo Gong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, P.R. China
| | - Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
22
|
Tyagi A, Yeon SJ, Daliri EBM, Chen X, Chelliah R, Oh DH. Untargeted Metabolomics of Korean Fermented Brown Rice Using UHPLC Q-TOF MS/MS Reveal an Abundance of Potential Dietary Antioxidative and Stress-Reducing Compounds. Antioxidants (Basel) 2021; 10:antiox10040626. [PMID: 33921826 PMCID: PMC8072674 DOI: 10.3390/antiox10040626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Free radical-induced oxidative stress is the root cause of many diseases, such as diabetes, stress and cardiovascular diseases. The objective of this research was to screen GABA levels, antioxidant activities and bioactive compounds in brown rice. In this study, we first fermented brown rice with different lactic acid bacteria (LABs), and the best LAB was selected based on the levels of GABA in the fermentate. Lactobacillus reuterii generated the highest levels of GABA after fermentation. To ascertain whether germination can improve the GABA levels of brown rice, we compared the levels of GABA in raw brown rice (Raw), germinated brown rice (Germ), fermented brown rice (Ferm) and fermented-germinated brown rice (G+F) to identify the best approach. Then, antioxidant activities were investigated for Raw BR, Germ BR, Ferm BR and G+F BR. Antioxidant activity was calculated using a 2,2-diphenyl-1-picryl hydrazile radical assay, 2,2-azino-bis-(3-ethylene benzothiozoline-6-sulfonic acid) radical assay and ferric-reducing antioxidant power. In Ferm BR, DPPH (114.40 ± 0.66), ABTS (130.52 ± 0.97) and FRAP (111.16 ± 1.83) mg Trolox equivalent 100 g, dry weight (DW), were observed as the highest among all samples. Total phenolic content (97.13 ± 0.59) and total flavonoids contents (79.62 ± 1.33) mg GAE/100 g and catechin equivalent/100 g, DW, were also found to be highest in fermented BR. Furthermore, an untargeted metabolomics approach using ultra-high-performance liquid tandem chromatography quadrupole time of flight mass spectrometry revealed the abundance of bioactive compounds in fermented BR, such as GABA, tryptophan, coumaric acid, L-ascorbic acid, linoleic acid, β-carotenol, eugenol, 6-gingerol, etc., as well as bioactive peptides which could contribute to the health-promoting properties of L. reuterii fermented brown rice.
Collapse
|
23
|
Kim HJ, Han JA, Lim ST, Cho DH. Effects of germination and roasting on physicochemical and sensory characteristics of brown rice for tea infusion. Food Chem 2021; 350:129240. [PMID: 33618097 DOI: 10.1016/j.foodchem.2021.129240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/18/2022]
Abstract
Germinated brown rice was roasted for the preparation of tea. The germination induced substantial increases in reducing sugars (from 3224.06 to 5028.80 mg/100 g), free amino acids (from 62.51 to 165.07 mg/100 g), volatile compounds, and phenolics (10.06 to 14.27 mg GAE/100 g). Roasting decreased the residual contents of free amino acids and reducing sugars, but produced the volatiles and phenolics. Browning index was slightly decreased by the germination (from 22.69 to 20.13), but significantly increased by the subsequent roasting. The germinated BR (GBR) was more susceptible to roasting than native BR. Acrylamide content in the roasted GBR was significantly lower than that in the roasted BR, because of the lower asparagine content in GBR. Sensory evaluation revealed that a mild roasting for 5 min at 230 °C after germination for 2 days was appropriate to produce a brown rice tea.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea; Food Research Institute, Dongsuh Companies Inc., Siheung 15090, South Korea
| | - Jung-Ah Han
- Department of Food and Nutrition, Sangmyung University, Seoul 03016, South Korea
| | - Seung-Taik Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| | - Dong-Hwa Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
24
|
Li X, Dong S, Bai W, Jia J, Gu R, Zhao C, Liu X, Wang Y. Metabolic and transcriptional regulation of phenolic conversion and tocopherol biosynthesis during germination of sesame ( Sesamum indicum L.) seeds. Food Funct 2020; 11:9848-9857. [PMID: 33090159 DOI: 10.1039/d0fo01706j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study aims to evaluate the changes in phenolic acids, lignans and tocopherols of sesame seeds during 0-6 days of germination by monitoring the activities of phenolic metabolism-related enzymes and the expression of key genes in the tocopherol synthesis pathway. Sesamol, which is the most active lignan antioxidant, greatly increased, and most of the phenolic acid contents increased to varying degrees after germination. Correspondingly, the related enzymes, including phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarate:coenzyme A ligase (4CL), were activated. Germination also promoted the conversion of γ-tocopherol to α-tocopherol with the expression of related genes changed. Additionally, there was a high correlation between the tocopherol content and the relative expression levels of key genes. The germination process also increased the bio-accessibility of lignans and tocopherols. Therefore, germination can be utilized to improve the nutritional value of sesame-related products.
Collapse
Affiliation(s)
- Xiang Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Coello KE, Frias J, Martínez-Villaluenga C, Cartea ME, Abilleira R, Peñas E. Potential of Germination in Selected Conditions to Improve the Nutritional and Bioactive Properties of Moringa ( Moringa oleifera L.). Foods 2020; 9:E1639. [PMID: 33182814 PMCID: PMC7696275 DOI: 10.3390/foods9111639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Moringa oleifera L. is greatly appreciated for its high content of phytochemicals. Although most parts of moringa tree have been widely studied, seeds remained scarcely explored. The first goal of this study was to investigate the effectiveness of germination to improve the nutritional composition (proximate composition and levels of vitamins B1 and B2), content of bioactive compounds (glucosinolates, phenolics and γ-aminobutyric acid, GABA) and antioxidant activity of moringa seed. Germination improved protein, fat, fiber, riboflavin, phenolics, some individual glucosinolates (GLS) and GABA contents, as well as the antioxidant potential in moringa sprouts, but the extent of the improvement depended on germination conditions. The second objective of this work was to identify the optimal germination conditions to maximize nutritional and bioactive quality of moringa by applying multi-response optimization (response surface methodology, RSM). RSM models indicated that 28 °C and 24 h were the optimal conditions to enhance the accumulation of riboflavin, phenolics and antioxidant activity of sprouts, while the highest GABA and total GLS contents were observed at 36 °C for 96 h and thiamine achieved the maximum content at 36 °C for 24 h. These results show that moringa sprouts are promising functional foods that might be also used as ingredients for the elaboration of novel foodstuffs.
Collapse
Affiliation(s)
- Karín E. Coello
- Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863 Guayaquil, Ecuador;
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain; (M.E.C.); (R.A.)
| | - Rosaura Abilleira
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain; (M.E.C.); (R.A.)
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| |
Collapse
|
26
|
Li R, Zheng Q, Lu J, Zou Y, Lin J, Guo L, Ye S, Xing Z. Chemical composition and deterioration mechanism of Pleurotus tuoliensis during postharvest storage. Food Chem 2020; 338:127731. [PMID: 32810811 DOI: 10.1016/j.foodchem.2020.127731] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Pleurotus tuoliensis is a popular edible and medical mushroom, but it is highly perishable during postharvest storage. The quality parameters, chemical composition, malondialdehyde (MDA) concentration, and activity of metabolic enzymes were studied during 12 days of storage at 4 °C and 6 days of storage at 25 °C. Degradation was well described by changes in quality parameters, losses in nutritional value, increased metabolic enzyme activity, the accumulation of MDA concentrations, and the increase of total phenolic (TP) content. The phenylalanine ammonia lyase (PAL) significantly positively correlated with TP, which suggested an underlying mechanism of browning that the increased PAL activity stimulates the biosynthesis of phenols through the phenylalanine pathway. These results suggest that increased activity of laccase, lipoxygenase, PAL, TP and MDA accumulation, together with polysaccharide degradation, are the main factors involved in the deterioration of P. tuoliensis during storage.
Collapse
Affiliation(s)
- Ruirong Li
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Qianwang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Jiali Lu
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Yuan Zou
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Junfang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China.
| | - Liqiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China.
| | - Siqiang Ye
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Zhiming Xing
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
27
|
Khosravi A, Razavi SH. The role of bioconversion processes to enhance bioaccessibility of polyphenols in rice. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Rasera GB, Hilkner MH, de Castro RJS. Free and insoluble-bound phenolics: How does the variation of these compounds affect the antioxidant properties of mustard grains during germination? Food Res Int 2020; 133:109115. [PMID: 32466905 DOI: 10.1016/j.foodres.2020.109115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/08/2020] [Accepted: 02/18/2020] [Indexed: 01/20/2023]
Abstract
This work aimed to investigate how the variation of free and insoluble-bound phenolics affected the antioxidant properties of mustard grains from two varieties (black - Brassica nigra and white - Sinapsis alba) during different germination parameters. The germination conditions selected for each mustard variety to improve their antioxidant properties were different, as follows: (a) for white mustard - 72 h of germination at 25 °C in the dark and (b) for black mustard - 48 h of germination at 25 °C alternating dark and light periods. At these conditions, increases of 49, 72, 80, 68, 42, 66 and 45% were detected for total phenolic compounds (TPC), total flavonoids, condensed tannins, FRAP, DPPH, ABTS, and ORAC, respectively, for soluble extracts of white mustard compared to the non-germinated white mustard. The soluble extracts from black mustard, in turn, presented increases of 44, 18, 55, 29, 3, 160 and 42% for TPC, total flavonoids, condensed tannins, FRAP, DPPH, ABTS, and ORAC, respectively, compared to the non-germinated sample. Gallic acid, 3,4-di-hydroxybenzoic acid, sinapic acid, ferulic acid, coumaric acid, and rutin were identified by UPLC-MS/MS and were the main compounds detected in mustard extracts. Given the results obtained, germinated mustard grains have the potential for application as a functional and nutraceutical food.
Collapse
Affiliation(s)
- Gabriela Boscariol Rasera
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil.
| | - Marina Hermenegildo Hilkner
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil
| | - Ruann Janser Soares de Castro
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil
| |
Collapse
|
29
|
Munarko H, Sitanggang AB, Kusnandar F, Budijanto S. Phytochemical, fatty acid and proximal composition of six selected Indonesian brown rice varieties. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1754295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Hadi Munarko
- Department of Food Science and Technology, IPB University. Kampus IPB, Bogor, Indonesia
| | - Azis Boing Sitanggang
- Department of Food Science and Technology, IPB University. Kampus IPB, Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University. Kampus IPB Darmaga Bogor, Bogor, Indonesia
| | - Feri Kusnandar
- Department of Food Science and Technology, IPB University. Kampus IPB, Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University. Kampus IPB Darmaga Bogor, Bogor, Indonesia
| | - Slamet Budijanto
- Department of Food Science and Technology, IPB University. Kampus IPB, Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University. Kampus IPB Darmaga Bogor, Bogor, Indonesia
| |
Collapse
|
30
|
Ghumman A, Singh N, Kaur A. Influence of sprouting on phenolic composition and starch characteristics of lentil and horse gram. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Atinder Ghumman
- Department of Food Science and Technology Guru Nanak Dev University Amritsar 143005 Punjab India
| | - Narpinder Singh
- Department of Food Science and Technology Guru Nanak Dev University Amritsar 143005 Punjab India
| | - Amritpal Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar 143005 Punjab India
| |
Collapse
|
31
|
Rodboon T, Okada S, Suwannalert P. Germinated Riceberry Rice Enhanced Protocatechuic Acid and Vanillic Acid to Suppress Melanogenesis through Cellular Oxidant-Related Tyrosinase Activity in B16 Cells. Antioxidants (Basel) 2020; 9:247. [PMID: 32204345 PMCID: PMC7139339 DOI: 10.3390/antiox9030247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
The anti-melanogenic bioactivities of phytophenolic compounds have been well recognized. Riceberry rice contains a rich source of phenolic compounds that act as melanin inhibitors through their antioxidant and anti-tyrosinase properties. Germination has been shown to be an effective process to improve targeted phenolic compounds. In this study, germinated riceberry rice extract was tested for antioxidant activity. Total phenolic content was determined while the tyrosinase inhibitory effect was screened by the in vitro mushroom tyrosinase assay. Cytotoxicity of germinated riceberry rice extract was investigated in B16 cells before evaluating its activities on cellular tyrosinase, melanogenesis, melanin excretion, morphological appearance, and cellular oxidants. Germinated riceberry rice extract showed increased potency of antioxidants and was also twice as effective for mushroom tyrosinase inhibition when compared with ungerminated riceberry rice extract. In B16 cells, the extract inhibited cellular tyrosinase, melanogenesis, and cellular oxidants in a dose-dependent manner when compared with untreated cells. Germinated riceberry rice extract also displayed an effect on B16 cells morphology by reducing the number of melanin- containing cells and their dendriticity. Additionally, the germination of riceberry rice dominantly enhanced two phenolic acids, protocatechuic acid and vanillic acid, which have the potential for antioxidant-associated hyperpigmentation control. Thus, the restricted germination of riceberry rice tended to promote protocatechuic acid and vanillic acid, which dominantly displayed antioxidants and tyrosinase-related melanogenic inhibition.
Collapse
Affiliation(s)
- Teerapat Rodboon
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection & Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan;
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
32
|
Effects of cyclic cellulase conditioning and germination treatment on the γ-aminobutyric acid content and the cooking and taste qualities of germinated brown rice. Food Chem 2019; 289:232-239. [DOI: 10.1016/j.foodchem.2019.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 01/25/2023]
|
33
|
Saleh ASM, Wang P, Wang N, Yang L, Xiao Z. Brown Rice Versus White Rice: Nutritional Quality, Potential Health Benefits, Development of Food Products, and Preservation Technologies. Compr Rev Food Sci Food Saf 2019; 18:1070-1096. [DOI: 10.1111/1541-4337.12449] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/05/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ahmed S. M. Saleh
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
- Dept. of Food Science and Technology, Faculty of AgricultureAssiut Univ. Assiut 71526 Egypt
| | - Peng Wang
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
| | - Na Wang
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
| | - Liu Yang
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
| | - Zhigang Xiao
- College of Grain Science and TechnologyShenyang Normal Univ. Shenyang 110034 Liaoning China
| |
Collapse
|
34
|
Owolabi IO, Chakree K, Takahashi Yupanqui C. Bioactive components, antioxidative and anti‐inflammatory properties (on RAW 264.7 macrophage cells) of soaked and germinated purple rice extracts. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Iyiola Oluwakemi Owolabi
- Interdisciplinary Graduate School of Nutraceutical and Functional Food (IGS‐NFF) Prince of Songkla University Hat‐Yai Songkhla 90112 Thailand
| | - Korawan Chakree
- Interdisciplinary Graduate School of Nutraceutical and Functional Food (IGS‐NFF) Prince of Songkla University Hat‐Yai Songkhla 90112 Thailand
| | - Chutha Takahashi Yupanqui
- Interdisciplinary Graduate School of Nutraceutical and Functional Food (IGS‐NFF) Prince of Songkla University Hat‐Yai Songkhla 90112 Thailand
| |
Collapse
|
35
|
Cáceres PJ, Peñas E, Martínez-Villaluenga C, García-Mora P, Frías J. Development of a multifunctional yogurt-like product from germinated brown rice. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
36
|
Lemmens E, Moroni AV, Pagand J, Heirbaut P, Ritala A, Karlen Y, Lê KA, Van den Broeck HC, Brouns FJPH, De Brier N, Delcour JA. Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Compr Rev Food Sci Food Saf 2018; 18:305-328. [PMID: 33337026 DOI: 10.1111/1541-4337.12414] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
Sprouting induces activation and de novo synthesis of hydrolytic enzymes that make nutrients available for plant growth and development. Consumption of sprouted grains is suggested to be beneficial for human health. Positive consumer perceptions about sprouted cereals have resulted in new food and beverage product launches. However, because there is no generally accepted definition of "sprouting," it is unclear when grains are to be called sprouted. Moreover, guidelines about how much sprouted grain material food products should contain to exert health benefits are currently lacking. Accordingly, there is no regulatory base to develop appropriate food labeling for "sprouted foods." This review describes the nutritional and technological properties of sprouted grains in relation to processing conditions and provides guidelines to optimize sprouting practices in order to maximize nutritive value. Relatively long sprouting times (3 to 5 days) and/or high processing temperatures (25 to 35 °C) are needed to maximize the de novo synthesis and/or release of plant bioactive compounds. Nutrient compositional changes resulting from sprouting are often associated with health benefits. However, supportive data from clinical studies are very scarce, and at present it is impossible to draw any conclusion on health benefits of sprouted cereals. Finally, grains sprouted under the above-mentioned conditions are generally unfit for use in traditional food processing and it is challenging to use sprouted grains as ingredients without compromising their nutrient content. The present review provides a basis for better defining what "sprouting" is, and to help further research and development efforts in this field as well as future food regulations development.
Collapse
Affiliation(s)
- Elien Lemmens
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Alice V Moroni
- Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne, Switzerland
| | - Jennifer Pagand
- Puratos Group, Industrialaan 25, B-1702, Groot-Bijgaarden, Belgium
| | - Pieter Heirbaut
- Puratos Group, Industrialaan 25, B-1702, Groot-Bijgaarden, Belgium
| | - Anneli Ritala
- VTT Technical Research Centre of Finland, Vuorimiehentie 3, 02150, Espoo, Finland
| | - Yann Karlen
- Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne, Switzerland
| | - Kim-Anne Lê
- Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne, Switzerland
| | - Hetty C Van den Broeck
- Wageningen Univ. & Research, Business unit Bioscience, Droevendaalsesteeg 1, 6708, PB Wageningen, The Netherlands
| | - Fred J P H Brouns
- Dept. of Human Biology School of Nutrition and Translational Research in Metabolism Faculty of Health, Medicine and Life Sciences, Maastricht Univ., Universiteitssingel 40, 6229, ER Maastricht, The Netherlands
| | - Niels De Brier
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
37
|
Xia Q, Green BD, Zhu Z, Li Y, Gharibzahedi SMT, Roohinejad S, Barba FJ. Innovative processing techniques for altering the physicochemical properties of wholegrain brown rice ( Oryza sativa L.) - opportunities for enhancing food quality and health attributes. Crit Rev Food Sci Nutr 2018; 59:3349-3370. [PMID: 29993273 DOI: 10.1080/10408398.2018.1491829] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rice is a globally important staple consumed by billions of people, and recently there has been considerable interest in promoting the consumption of wholegrain brown rice (WBR) due to its obvious advantages over polished rice in metabolically protective activities. This work highlights the effects of innovative processing technologies on the quality and functional properties of WBR in comparison with traditional approaches; and it is aimed at establishing a quantitative and/or qualitative link between physicochemical changes and high-efficient processing methods. Compared with thermal treatments, applications of innovative nonthermal techniques, such as high hydrostatic pressure (HHP), pulsed electric fields (PEF), ultrasound and cold plasma, are not limited to modifying physicochemical properties of WBR grains, since improvements in nutritional and functional components as well as a reduction in anti-nutritional factors can also be achieved through inducing related biochemical transformation. Much information about processing methods and parameters which influence WBR quality changes has been obtained, but simultaneously achieving the product stabilization and functionality of processed WBR grains requires a comprehensive evaluation of all the quality changes induced by different processing procedures as well as quantitative insights into the relationship between the changes and processing variables.
Collapse
Affiliation(s)
- Qiang Xia
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Brian D Green
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Zhenzhou Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yunfei Li
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Shahin Roohinejad
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.,Burn and Wound Healing Research Center, Division of Food and Nutrition, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, València, 46100, Spain
| |
Collapse
|