1
|
Zhu G, Li X, Ma Q, Hong Z, Zhong D, Sun X. Construction and application of magnetic surface molecularly imprinted solid-phase extraction for the detection of 5-hydroxytryptamine in peripheral blood. Mikrochim Acta 2025; 192:220. [PMID: 40067417 DOI: 10.1007/s00604-025-07058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/18/2025] [Indexed: 03/18/2025]
Abstract
The 5-Hydroxytryptamine (5-HT) level determination is crucial for predicting, pathogenesis, diagnosis, and pharmacological treatment of schizophrenia. To realize the extraction of trace 5-HT in complex matrix samples, a magnetic molecularly imprinted solid-phase extraction (MMISPE) pretreatment method was developed. In combination with UPLC-MS/MS, the method was possible to achieve the quantification of 1 ng/mL 5-HT in tissue samples. The type of adsorbent, magnetic surface molecularly imprinted polymers (MMIPs) adsorbent dosage, adsorption temperature, and adsorption method were screened to obtain the better extraction of 5-HT. After optimizing the extraction and separation method, we applied the MMISPE method to the detection of 5-HT in peripheral blood of clinical schizophrenia patients. The results showed that the average concentration of 5-HT in the peripheral blood of healthy controls was 74.30 ng/mL, whereas the 5-HT content in the samples from schizophrenic patients was 1.17 ng/mL.
Collapse
Affiliation(s)
- Gege Zhu
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xinyu Li
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Qianjie Ma
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhanying Hong
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Dan Zhong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Xiaodong Sun
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai, 200444, China.
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Sorout M, Bhogal S. Current trends of functional monomers and cross linkers used to produce molecularly imprinted polymers for food analysis. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38907585 DOI: 10.1080/10408398.2024.2365337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Molecularly imprinted polymers (MIPs) as artificial synthetic receptors are in high demand for food analysis due to their inherent molecular recognition abilities. It is common practice to employ functional monomers with basic or acidic groups that can interact with analyte molecules via hydrogen bonds, covalent bonds, and other interactions (π-π, dipole-ion, hydrophobic, and Van der Waals). Therefore, selecting the appropriate functional monomer and cross-linker is crucial for determining how precisely they interact with the template and developing the polymeric network's three-dimensional structure. This study summarizes the advancements made in MIP's functional monomers and cross-linkers for food analysis from 2018 to 2023. The subsequent computational design of MIP has been thoroughly explained. The discussion has concluded with a look at the difficulties and prospects for MIP in food analysis.
Collapse
Affiliation(s)
- Mohit Sorout
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Shikha Bhogal
- Department of Chemistry, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| |
Collapse
|
3
|
Hemmati F, Hosseini H, Mostashari P, Aliyeva A, Mousavi Khaneghah A. Application of molecularly imprinted polymers as the sorbent for extraction of chemical contaminants from milk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2015-2030. [PMID: 37115101 DOI: 10.1080/09603123.2023.2207484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 06/19/2023]
Abstract
Milk is one of the most consumed and balanced foods with a high nutritional value which could be contaminated with different chemicals such as antibiotics, melamine, and hormones. Because of the low concentration of these compounds and the complexity of milk samples, there is a need to use sample pre-treatment methods for purification and preconcentration of these compounds before instrumental techniques. Molecular imprinting polymers (MIPs) are synthetic materials with specific recognition sites complementary to the target molecule. MIPs have selectivity for a specific analyte or group of analytes, which could be used to extract and determine contaminants and remove the interfering compounds from complex samples. Compared to other techniques, sample preparation, high selectivity, excellent stability, and low cost are other advantages of using MIPs. The present article gives an overview of the synthesis of MIPs and their application for extracting antibiotics, hormones, and melamine in milk samples.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Mostashari
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
4
|
Wang S, Yang J, Sun J, Liu K, Xie X, Hong L, Wang S, Pan M. Nanomaterial-based magnetic surface molecularly imprinted polymers for specific extraction and efficient recognition of dibutyl phthalate. Food Chem 2023; 426:136621. [PMID: 37354582 DOI: 10.1016/j.foodchem.2023.136621] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
A rapid and selective sorbent for the enrichment of dibutyl phthalate (DBP) from water and Chinese Baijiu samples was established using magnetic surface molecularly imprinted polymers (MSMIPs) combined with gas chromatography-mass spectrometer (GC-MS). The MSMIPs were synthesized using a magnetic nanosphere material with silica layer, increasing the polymer surface area as a carrier. Compared with the traditional methods, the addition of magnetic microspheres simplified the process of food substrate purification and significantly shortened the pre-concentration time. The MSMIPs adsorption conforms to the Freundlich isotherm model as multilayer adsorption on an inhomogeneous surface and the pseudo-second-order model. The developed MSMIPs combined with GC-MS method showed good linearity in DBP concentration range of 0.02-1.0 mg L-1 with low LOD (0.0054 mg L-1) and LOQ (0.018 mg L-1), and obtained good recoveries in real samples (95.2-97.2%) with RSD < 5.0% (n = 9), which were consistent with those from Chinese national standard method.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiaqing Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Hu G, Wu T, Liu Z, Gao S, Hao J. Application of molecular imprinting technology based on new nanomaterials in adsorption and detection of fluoroquinolones. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2467-2479. [PMID: 37183439 DOI: 10.1039/d3ay00353a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Irrational use of fluoroquinolones (FQs) can lead to allergic reactions, adverse reactions to the heart and damage of the liver; thus, it is of great significance to establish rapid, sensitive and accurate detection methods for FQs. Molecularly imprinted polymers (MIPs) with specific structures synthesized by molecular imprinting technology (MIT) are widely used for the detection of FQs due to their high specificity, high sensitivity and stable performance. Recently, new functional nanomaterials with different morphologies and sizes, which can provide rich sites for surface chemical reactions, have attracted more and more attention of the researchers. Thus, the application status and development prospects of MIT based on new nanomaterials in the adsorption and detection of FQs were summarized in this study, providing a theoretical basis and technical guarantee for the development of new and efficient food safety analysis strategies based on MIPs.
Collapse
Affiliation(s)
- Gaoshuang Hu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Tianqi Wu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Ziyang Liu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Shan Gao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| |
Collapse
|
6
|
Jiang X, Wu F, Huang X, He S, Han Q, Zhang Z, Liu W. Fabrication of a Molecularly-Imprinted-Polymer-Based Graphene Oxide Nanocomposite for Electrochemical Sensing of New Psychoactive Substances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:751. [PMID: 36839120 PMCID: PMC9958802 DOI: 10.3390/nano13040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
As new psychoactive substances (commonly known as "the third generation drugs") have characteristics such as short-term emergence, rapid updating, and great social harmfulness, there is a large gap in the development of their detection methods. Herein, graphite oxide (GO) was first prepared and immobilized with a reversible addition-fragmentation chain transfer (RAFT) agent, then a new psychoactive substance (4-MEC) was chosen as a template, and then the surface RAFT polymerization of methacrylamide (MAAM) was carried out by using azobisisobutyronitrile (AIBN) as an initiator and divinylbenzene (DVB) as a cross-linker. After the removal of the embedded template, graphene oxide modified by molecularly imprinted polymers (GO-MIPs) was finally obtained. Owing to the specific imprinted cavities for 4-MEC, the satisfactory selectivity and stability of the GO-MIP nanocomposite have been demonstrated. The GO-MIP nanocomposite was then used to fabricate the electrochemical sensor, which displayed a high selectivity in detecting 4-MEC over a linear concentration range between 5 and 60 μg mL-1 with a detection limit of 0.438 μg mL-1. As a result, the GO-MIPs sensor developed an accurate, efficient, convenient, and sensitive method for public security departments to detect illicit drugs and new psychoactive substances.
Collapse
Affiliation(s)
- Xue Jiang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No. 1 Road, Shanghai 200083, China
| | - Fangsheng Wu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No. 1 Road, Shanghai 200083, China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shan He
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No. 1 Road, Shanghai 200083, China
| | - Qiaoying Han
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No. 1 Road, Shanghai 200083, China
| | - Zihua Zhang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No. 1 Road, Shanghai 200083, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No. 1 Road, Shanghai 200083, China
| |
Collapse
|
7
|
Jiang M, Chen L, Niu N. Enhanced adsorption for malachite green by functionalized lignin magnetic composites: Optimization, performance and adsorption mechanism. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
A template synthesized strategy on bentonite-doped lignin hydrogel spheres for organic dyes removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Recent advances of magnetic molecularly imprinted materials: From materials design to complex sample pretreatment. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Das RS, Kumar A, Wankhade AV, Mandavgane SA. Antioxidant analysis of ultra-fast selectively recovered 4-hydroxy benzoic acid from fruits and vegetable peel waste using graphene oxide based molecularly imprinted composite. Food Chem 2021; 376:131926. [PMID: 34968918 DOI: 10.1016/j.foodchem.2021.131926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 11/30/2022]
Abstract
Food processing industries generate 25-30% of fruit and vegetable peel (F&VP) waste of the total produce, which are rich in polyphenolic antioxidants (PA). Sustainable solution for the above waste can be its valorization for the recovery of PA, often used as natural preservative. Present work reports rationally designed graphene oxide-based molecularly imprinted composites (GOMIPs) using ionic liquid 1-allyl-3-octylimidazolium chloride (A) as a green functional monomer for selective recovery of PA 4-Hydroxy benzoic acid (4HA) from F&VP/pomegranate peel (PGP) waste. GOMIP-A and GOMIP-V were characterized using various techniques for its successful synthesis. GOMIP-A attained equilibrium within 10 min with adsorption capacity of 190.56 μmol g-1 for 4HA. Developed HPLC method depicted selective recovery of 77.23% and 62.83% 4HA from F&VP and PGP waste respectively by GOMIP-A. Subsequently, desorbed 4HA from GOMIP-A matrices exhibited the antioxidant potential of 33.53% (F&VP extract) and 47.97% (PGP extract) for DPPH radical.
Collapse
Affiliation(s)
- Ranjita S Das
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India
| | - Anupama Kumar
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India.
| | - Atul V Wankhade
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India
| | - Sachin A Mandavgane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India
| |
Collapse
|
11
|
Huang C, Wang H, Ma S, Bo C, Ou J, Gong B. Recent application of molecular imprinting technique in food safety. J Chromatogr A 2021; 1657:462579. [PMID: 34607292 DOI: 10.1016/j.chroma.2021.462579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022]
Abstract
Due to the extensive use of chemical substances such as pesticides, antibiotics and food additives, food safety issues have gradually attracted people's attention. The extensive use of these chemicals seriously damages human health. In order to detect trace chemical residues in food, researchers have to find several simple, economical and effective tools for qualitative and quantitative analysis. As a kind of material that specifically and selectively recognize template molecules from real samples, molecular imprinting technique (MIT) has widely applied in food samples analysis. This article mainly reviews the application of molecularly imprinted polymer (MIP) in the detection of chemical residues from food in the past five years. Some recent and novel methods for fabrication of MIP are reviewed. Their application of sample pretreatment, sensors, etc. in food analysis is reviewed. The application of molecular imprinting in chromatographic stationary phase is referred. Additionally, the challenges faced by MIP are discussed.
Collapse
Affiliation(s)
- Chao Huang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Hongwei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
12
|
Liu X, Wang J, Wang Y, Huang C, Wang Z, Liu L. In Situ Functionalization of Silver Nanoparticles by Gallic Acid as a Colorimetric Sensor for Simple Sensitive Determination of Melamine in Milk. ACS OMEGA 2021; 6:23630-23635. [PMID: 34549161 PMCID: PMC8444319 DOI: 10.1021/acsomega.1c03927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 06/12/2023]
Abstract
A simple and green colorimetric sensing assay strategy for highly efficient determination of melamine has been fabricated, which is based on the redox reaction of gallic acid with Ag+. Monodispersed Ag nanoparticles (AgNPs) were obtained using gallic acid as a reducing and stabilizing agent. However, the aggregate behavior of AgNPs was observed, while the melamine was present in the reaction medium. As a result, the color of the solution changed from vivid yellow to brown, and the density of the color was quantitatively correlated with the melamine concentration. The aggregation of AgNPs could be attributable to the formation of hydrogen bonds between melamine and gallic acid. The designed sensor exhibited a good detection limit of 0.099 μM (0.012 ppm), which was much lower than the safety limit in China (1.0 ppm) and EU (2.0 ppm). Additionally, the sensing assay displayed good selectivity toward melamine over other coexisting substances. Consequently, the proposed colorimetric sensor was successfully used for the determination of melamine detection in raw milk samples.
Collapse
Affiliation(s)
- Xuexia Liu
- School of Chemistry and Chemical
Engineering, Jinggangshan University, Ji’an 343009, China
| | - Juan Wang
- School of Chemistry and Chemical
Engineering, Jinggangshan University, Ji’an 343009, China
| | - Yinfeng Wang
- School of Chemistry and Chemical
Engineering, Jinggangshan University, Ji’an 343009, China
| | - Chunfang Huang
- School of Chemistry and Chemical
Engineering, Jinggangshan University, Ji’an 343009, China
| | - Zhijun Wang
- School of Chemistry and Chemical
Engineering, Jinggangshan University, Ji’an 343009, China
| | - Limin Liu
- School of Chemistry and Chemical
Engineering, Jinggangshan University, Ji’an 343009, China
| |
Collapse
|
13
|
Abstract
The review describes the development of batch solid phase extraction procedures based on dispersive (micro)solid phase extraction with molecularly imprinted polymers (MIPs) and magnetic MIPs (MMIPs). Advantages and disadvantages of the various MIPs for dispersive solid phase extraction and dispersive (micro)solid phase extraction are discussed. In addition, an effort has also been made to condense the information regarding MMIPs since there are a great variety of supports (magnetite and magnetite composites with carbon nanotubes, graphene oxide, or organic metal framework) and magnetite surface functionalization mechanisms for enhancing MIP synthesis, including reversible addition-fragmentation chain-transfer (RAFT) polymerization. Finally, drawbacks and future prospects for improving molecularly imprinted (micro)solid phase extraction (MIMSPE) are also appraised.
Collapse
|
14
|
Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. Molecularly imprinted polymers for food applications: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Chen X, Yuan Y, Yan H, Shen S. Selective, sensitive, and miniaturized analytical method based on molecularly imprinted graphene oxide composites for the determination of naphthalene-derived plant growth regulators in apples. Food Chem 2021; 349:128982. [PMID: 33561797 DOI: 10.1016/j.foodchem.2020.128982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/22/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
This paper reports a selective, sensitive, and miniaturized analytical method based on a molecularly imprinted graphene oxide (MIP-GO) composite as adsorbent for miniaturized tip solid-phase extraction (MTSPE) to determine naphthalene-derived plant growth regulators (PGRs) in apples. The proposed method combines the advantages of MIP-GOs (high selectivity), MTSPE (low consumption), and high-performance liquid chromatography-fluorescence detection (high sensitivity). Under optimized conditions, the method exhibited appreciable linearity (2.00-200 ng/g), low detection limits (0.21-0.53 ng/g), high accuracy (absolute recoveries: 87.6-99.5%), and high precision (relative standard deviations ≤ 3.0%), along with low consumption (0.5 mL sample solution and 2.0 mg adsorbent). In addition, the adsorption performance of the MIP-GO adsorbent did not decrease over ten months, highlighting the long storage and operational lifetime of the adsorbent. The proposed method was employed for the analysis of naphthalene-derived PGR residues in apples and exhibited promising potential for application in food safety analysis.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yanan Yuan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Shigang Shen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
16
|
Li S, Ma X, Pang C, Li H, Liu C, Xu Z, Luo J, Yang Y. Novel molecularly imprinted amoxicillin sensor based on a dual recognition and dual detection strategy. Anal Chim Acta 2020; 1127:69-78. [DOI: 10.1016/j.aca.2020.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 01/10/2023]
|
17
|
Determination of melamine and melamine–Cu(II) complexes in milk using a DNA-Ag hydrocolloid as the sensor. Food Chem 2020; 311:125889. [DOI: 10.1016/j.foodchem.2019.125889] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/01/2019] [Accepted: 11/10/2019] [Indexed: 02/05/2023]
|
18
|
Li F, Huang Y, Huang K, Lin J, Huang P. Functional Magnetic Graphene Composites for Biosensing. Int J Mol Sci 2020; 21:E390. [PMID: 31936264 PMCID: PMC7013569 DOI: 10.3390/ijms21020390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/13/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
Magnetic graphene composites (MGCs), which are composed of magnetic nanoparticles with graphene or its derivatives, played an important role in sensors development. Due to the enhanced electronic properties and the synergistic effect of magnetic nanomaterials and graphene, MGCs could be used to realize more efficient sensors such as chemical, biological, and electronic sensors, compared to their single component alone. In this review, we first reviewed the various routes for MGCs preparation. Then, sensors based on MGCs were discussed in different groups, including optical sensors, electrochemical sensors, and others. At the end of the paper, the challenges and opportunities for MGCs in sensors implementation are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China; (F.L.); (Y.H.); (K.H.); (J.L.)
| |
Collapse
|
19
|
Yuan Y, Nie H, Yin J, Han Y, Lv Y, Yan H. Selective extraction and detection of β-agonists in swine urine for monitoring illegal use in livestock breeding. Food Chem 2020; 313:126155. [PMID: 31945701 DOI: 10.1016/j.foodchem.2019.126155] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 01/02/2023]
Abstract
The illegal use of β-agonists often endangers animal-derived food safety. In this study, a selective detection method for β-agonists in swine urine was established via the combination of polymeric ionic liquid-molecularly imprinted graphene oxide-miniaturized pipette tip solid-phase extraction and high-performance liquid chromatography. It is worth noting that this method relied mainly on the designed adsorbent, which presented a rich adsorption mechanism, fast mass transfer rate, and high selectivity, and was successfully utilized in the selective extraction of β-agonists from swine urine samples. The proposed method has low LOD (0.20-0.56 ng/mL), high recovery (94.9-107.9%), and high reusability (4 times, 91.9-108.8%), which indicates its high potential as a selective, sensitive, accurate, and nonfatal method for monitoring the illegal use of β-agonists in the livestock breeding stage.
Collapse
Affiliation(s)
- Yanan Yuan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Hailiang Nie
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China
| | - Junfa Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yehong Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yunkai Lv
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; Key Laboratory of Analytical Science and Technology of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China.
| |
Collapse
|
20
|
Zhou T, Che G, Ding L, Sun D, Li Y. Recent progress of selective adsorbents: From preparation to complex sample pretreatment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115678] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Zhang E, Liu W, Liang Q, Liu X, Zhao Z, Yang Y. Polypyrrole nanospheres@graphene aerogel with high specific surface area, compressibility, and proper water wettability prepared in dimethylformamide-dependent environment. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Affiliation(s)
- Valérie Pichon
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France.,Sorbonne Université , 75005 Paris , France
| | - Nathalie Delaunay
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| | - Audrey Combès
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| |
Collapse
|
23
|
Li H, Zhang W, Wu Z, Huang X, Hui A, He Y, Wang H. Theoretical design, preparation, and evaluation of Ginkgolide B molecularly imprinted polymers. J Sep Sci 2019; 43:514-523. [PMID: 31642160 DOI: 10.1002/jssc.201900675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
Abstract
Ginkgolide B is in great demand worldwide on account of its extensive and excellent pharmacological effects, however, it is difficult to separate and purify ginkgolide B. In this study, ginkgolide B molecularly imprinted polymers were prepared by combining software simulation and molecular imprinting technique, and its characterization and adsorption performed evaluation were performed to understand the adsorption behavior of the polymers. The adsorption equilibrium concentration of molecularly imprinted polymers was 0.70 mg/mL, and the adsorption equilibrium time was 4 h. Meanwhile, the adsorption isotherm of the polymers for ginkgolide B fitted well with the Langmuir model, and the adsorption kinetics was in line with the pseudo-second-order kinetics. In contrast, the adsorption capacity of molecularly imprinted polymers on ginkgolide B was higher than that of non-molecular imprinted polymers, with better selectivity and better adsorption after repeated use for six times. The application experiments showed that molecular imprinted polymers have a good adsorption effect in low purity samples. Therefore, the polymers reported herein can be expected to apply in the adsorption and separation of ginkgolide B samples.
Collapse
Affiliation(s)
- Honghong Li
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Xusheng Huang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Ailing Hui
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Yiwen He
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Haiyan Wang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| |
Collapse
|
24
|
Huang L, Yu W, Guo X, Huang Y, Zhou Q, Zhai H. Chip-based multi-molecularly imprinted monolithic capillary array columns coated Fe3O4/GO for selective extraction and simultaneous determination of tetracycline, chlortetracycline and deoxytetracycline in eggs. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Hou X, Tang S, Wang J. Recent advances and applications of graphene-based extraction materials in food safety. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Deng Q, Sun L, Zhu T. Preparation of porous aromatic framework modified graphene oxide for pipette-tip solid-phase extraction of theophylline in tea. Electrophoresis 2019; 40:2954-2961. [PMID: 31373704 DOI: 10.1002/elps.201900053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 11/11/2022]
Abstract
A new material called as porous aromatic frameworks modified graphene oxide (PAFs-GO) was synthesized, and it was used as an adsorbent in pipette-tip SPE for the effective purification and enrichment of theophylline in tea sample by HPLC. The properties of PAFs-GO were characterized by field emission SEM, FTIR, thermogravimetry analysis and Brunauer Emmett Teller N2 adsorption-desorption analysis. The results of static adsorption and dynamic adsorption test showed PAFs-GO had higher adsorption ability (93.25 mg/g) than graphene oxide. The LOD and LOQ of the method were 0.0141 and 0.0471 µg/mL, respectively. The acceptable method reproducibility was found as intra- and inter-day precisions, yielding the RSDs <4.62%. By introducing PAFs as support skeleton, the specific surface area of GO was effectively increased, and the penetrability was improved. Studies showed that the proposed method had been successfully applied for purification and enrichment of theophylline in complex tea matrix.
Collapse
Affiliation(s)
- Qilin Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, P. R. China
| | - Liping Sun
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, P. R. China
| | - Tao Zhu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, P. R. China
| |
Collapse
|
27
|
Gholami H, Arabi M, Ghaedi M, Ostovan A, Bagheri AR. Column packing elimination in matrix solid phase dispersion by using water compatible magnetic molecularly imprinted polymer for recognition of melamine from milk samples. J Chromatogr A 2019; 1594:13-22. [DOI: 10.1016/j.chroma.2019.02.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
|