1
|
Nascimento LES, Thapa B, Oliveira WDS, Prata R, Godoy HT, Anderson JL. A practical and eco-friendly method for the determination of polycyclic aromatic hydrocarbons in açaí-based food products by vacuum-assisted sorbent extraction coupled to gas chromatography-mass spectrometry. J Chromatogr A 2024; 1730:465104. [PMID: 38905947 DOI: 10.1016/j.chroma.2024.465104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
For the first time, a method for the simultaneous analysis of fifteen polycyclic aromatic hydrocarbons (PAHs), including light and heavy PAHs, in açaí-based food products (AFPs) was developed using vacuum-assisted sorbent extraction (VASE) combined with gas chromatography-mass spectrometry (GC-MS). The method requires no organic solvents and is amenable to full automation. To achieve optimal analytical extraction conditions, VASE parameters including stirring rate, extraction time, desorption temperature, desorption time, preheat time, and preheat temperature were optimized using sequential multivariate optimization. The method was validated and yielded limits of quantification below 1 µg kg-1 for all analytes, with recoveries ranging from 65 % to 112 % and good precision (≤11 % relative standard deviation). Additionally, the greenness and practical aspects of the method were investigated using the Green Analytical Procedure Index (GAPI), eco-scale, and the Blue Applicability Grade Index (BAGI), respectively. The VASE-GC-MS approach is suitable for routine analysis and exhibits characteristics of a green analytical method. No PAHs were detected above the limits of detection in thirty samples of AFPs.
Collapse
Affiliation(s)
- Luis Eduardo Silva Nascimento
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil; Department of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, IA, 50011, USA.
| | - Bhawana Thapa
- Department of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, IA, 50011, USA
| | - Wellington da Silva Oliveira
- Reference Laboratory for Physical, Sensory and Statistics Analysis, Science and Food Quality Center, Food Technology Institute (ITAL), Avenida Brasil 2880, Campinas, SP, 13070-178, Brazil
| | - Rafaela Prata
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| | - Helena Teixeira Godoy
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, IA, 50011, USA
| |
Collapse
|
2
|
Mohiuddin I, Singh R, Kaur V. A Review of Sensing Applications of Molecularly Imprinted Fluorescent Carbon Dots for Food and Biological Sample Analysis. Crit Rev Anal Chem 2023; 54:3212-3233. [PMID: 37467171 DOI: 10.1080/10408347.2023.2236215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Molecularly imprinted fluorescent carbon dots (MI-FCDs) find numerous applications in analytical chemistry due to their outstanding photoluminescent properties and having specific pockets for the recognition of target molecules. Despite significant advances, practical applications of MI-FCDs-based fluorescent sensors are still in their initial stages. Therefore, the topical developments in the synthesis, working, and application of MI-FCDs for sensing various target species (e.g., pharmaceuticals, biomolecules, pesticides, food additives, and miscellaneous species) in food and biological media have been highlighted. Moreover, a careful evaluation has been made to select the best methods based on their performance in terms of analytical parameters. To expand the horizons of this field, important challenges and future directions for developing MI-FCDs for practical use are also presented. This review will highlight important aspects of MI-FCDs-based fluorescent sensors for their applicability in food science, material science, environmental science, nanoscience, and biotechnology.
Collapse
Affiliation(s)
| | | | - Varinder Kaur
- Department of Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
3
|
Georgiev P, Belka M, Bączek T, Płotka-Wasylka J. The presence of polycyclic aromatic hydrocarbons in disposable baby diapers: A facile determination method via salting-out assisted liquid-liquid extraction coupled with gas chromatography-mass spectrometry. J Chromatogr A 2023; 1698:463981. [PMID: 37098291 DOI: 10.1016/j.chroma.2023.463981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/27/2023]
Abstract
In this paper we demonstrate the development of the extraction procedure of polycyclic aromatic hydrocarbons from baby diapers along with their quantification by gas chromatography-mass spectrometry. Apart from covering plastic foil, disposable baby diapers contain sorbents intended to absorb urine and feces. A hygroscopic, adsorptive, and tough-to-homogenize fibrous sorbent, represents an analytical challenge to analytical chemists. To address this issue we optimized and validated a novel extraction protocol including cryogenic homogenization, liquid-liquid extraction and further preconcentration by evaporation. By using deuterated internal standards in conjunction with matrix-matched calibration, high precision and accuracy were achieved. The limit of detection is estimated in the range of 0.041-0.221 ng/g (for fluorene and fluoranthene, respectively), which is far below the concentration currently assumed to be dangerous for children. The method was successfully applied to real samples available on the Polish market, and it was found that the amount of PAH compounds varies between manufacturers. Most diapers do not have all 15 polycyclic aromatic hydrocarbons in their composition, but there is no diaper that is free of these compounds. The most abundant in diapers was acenaphthalene, where the concentration ranged from 1.6 ng/g diaper up to 362.4 ng/g. The lowest concentration in diapers is chrysene, which is not detected in most diapers. The article is a response to the lack of a harmonized analytical method for the determination of polycyclic aromatic hydrocarbons in disposable sanitary products for children.
Collapse
Affiliation(s)
- Paweł Georgiev
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk 80-416, Poland
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk 80-416, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk 80-416, Poland
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk 80-233, Poland; BioTechMed Center, Research Centre, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdańsk 80-233, Poland.
| |
Collapse
|
4
|
Kim YY, Shin HS. Evaluation of polycyclic aromatic hydrocarbons content of herbal medicine products in Korea by HPLC-FLD. Food Sci Biotechnol 2023; 32:101-109. [PMID: 36606095 PMCID: PMC9807727 DOI: 10.1007/s10068-022-01168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to quantify four polycyclic aromatic hydrocarbons (PAH4) in herbal medicine products in Korea. The PAH4 (benzo[a]anthracene, benzo[b]fluoranthene, chrysene, and benzo[a]pyrene) were analyzed in 70 popularly used herbal medicine products without containing essential oil and containing essential oil matrices, using 3-methylcholanthrene as the internal standard. Ultrasonication and liquid-liquid extraction were followed by HPLC-FLD analysis. Satisfactory linearity (R 2 = 0.99), limit of detection (0.05-0.18 μg/kg), limit of quantification (0.14-0.54 μg/kg), recovery (85.72-112.18%), and precision (0.22-2.90%) of PAH4 were acquired. PAH contamination was detected in all herbal medicine products without containing essential oil and containing essential oil matrices types. In 44 samples of herbal medicine products, all PAH4 were detected, and in two samples of the other herbal medicine products, only benzo[b]fluoranthene was detected. The average concentration of PAH4 was 3.88 μg/kg. The validated analytical method was used for preventing human health risks related to the consumption of herbal medicines.
Collapse
Affiliation(s)
- Yong-Yeon Kim
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326 Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326 Republic of Korea
| |
Collapse
|
5
|
Agus BAP, Rajentran K, Selamat J, Lestari SD, Umar NB, Hussain N. Determination of 16 EPA PAHs in food using gas and liquid chromatography. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Zhu Z, Xu Y, Huang T, Yu Y, Bassey AP, Huang M. The contamination, formation, determination and control of polycyclic aromatic hydrocarbons in meat products. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Sun X, Hu J, Yan X, Li T, Chang Y, Qu H, Pang W, Duan X. On-Chip Monolithic Integrated Multimode Carbon Nanotube Sensor for a Gas Chromatography Detector. ACS Sens 2022; 7:3049-3056. [PMID: 36227068 DOI: 10.1021/acssensors.2c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carbon nanotube (CNT)-based chemiresistors are promising gas detectors for gas chromatography (GC) due to their intrinsic nanoscale porosity and excellent electrical conductivity. However, fabrication reproducibility, long desorption time, limited sensitivity, and low dynamic range limit their usage in real applications. This paper reports a novel on-chip monolithic integrated multimode CNT sensor, where a micro-electro-mechanical system-based bulk acoustic wave (BAW) resonator is embedded underneath a CNT chemiresistor. The device fabrication repeatability was improved by on-site monitoring of CNT deposition using BAW. We found that the acoustic stimulation can accelerate the gas desorption rate from the CNT surface, which solves the slow desorption issue. Due to the different sensing mechanisms, the multimode CNT sensor provides complementary responses to targets with improved sensitivity and dynamic range compared to a single mode detector. A prototype of a chromatographic system using the multimode CNT sensor was prepared by dedicated design of the connection between the device and the separation column. Such a GC system is used for the quantitative identification of a gas mixture at different GC conditions, which proves the feasibility of the multimode CNT detector for chromatographic analysis. The as-developed CMOS compatible multimode CNT sensor offers high sensing performance, miniaturized size, and low power consumption, which are critical for developing portable GC.
Collapse
Affiliation(s)
- Xueyou Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
| | - Jizhou Hu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
| | - Xu Yan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
| | - Tiechuan Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
| | - Ye Chang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
| | - Hemi Qu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
| | - Wei Pang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
| |
Collapse
|
8
|
Pytskii IS, Kuznetsova ES, Buryak AK. Surface Imaging in Applied Research. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
The possibilities of mass spectrometric visualization in new areas of research are considered. It is shown that surface mass spectrometry can be used to study structural materials and monitor surfaces for corrosion damage, process contamination, and damage. The possibility of studying non-metallic materials is shown for the first time. It is found that studying the low molecular weight part of polymer films helps to detect technological impurities and irreversible deformation of the film surface. It is established this can be used to authenticate handwritten documents, make corrections to them, and successfully compete with the classical means of such research.
Collapse
|
9
|
Wei S, Lv J, Wei L, Xie B, Wei J, Zhang G, Li J, Gao C, Xiao X, Yu J. Chemometric approaches for the optimization of headspace-solid phase microextraction to analyze volatile compounds in coriander (Coriandrum sativum L.). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Kim YY, Patra JK, Shin HS. Evaluation of analytical method and risk assessment of polycyclic aromatic hydrocarbons for fishery products in Korea. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Neves DA, Oliveira WDS, Petrarca MH, Rodrigues MI, Godoy HT. A multivariate approach to overcome chlorophyll interferences in the determination of polycyclic aromatic hydrocarbons in jambu (Acmella olerarea (L.) R.K. Jansen). J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Yan XT, Zhang Y, Zhou Y, Li GH, Feng XS. Source, Sample Preparation, Analytical and Inhibition Methods of Polycyclic Aromatic Hydrocarbons in Food (Update since 2015). SEPARATION & PURIFICATION REVIEWS 2021. [DOI: 10.1080/15422119.2021.1977321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiao-ting Yan
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Petrarca MH, Braga PADC, Reyes FGR, Bragotto APA. Exploring miniaturized sample preparation approaches combined with LC-QToF-MS for the analysis of sulfonamide antibiotic residues in meat- and/or egg-based baby foods. Food Chem 2021; 366:130587. [PMID: 34332424 DOI: 10.1016/j.foodchem.2021.130587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/04/2021] [Accepted: 07/09/2021] [Indexed: 11/04/2022]
Abstract
Miniaturized and simplified sample preparation methods with reduced consumption of chemicals and non-halogenated solvents are presented for the determination of 12 sulfonamides in baby foods. Hydrophilic interaction liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was used for the identification and quantification of the compounds based on the acquisition of full spectrum at high resolution with accurate mass for precursor and its fragment ions. Three miniaturized protocols based on QuEChERS, salting-out assisted liquid-liquid extraction or low-temperature cleanup were evaluated regarding the extraction efficiency and removal capability of matrix co-extractives. All approaches achieved satisfactory recoveries (70.0-120.0%); however, the miniaturized QuEChERS distinguished by lower co-extractives content in the final extract providing lower matrix effects. Thus, the performance characteristics of the miniaturized QuEChERS were established using different matrices: beef-, egg yolk- and vegetable-based baby food or chicken- and vegetable-based baby food, in compliance with the Codex Alimentarius Commission guidelines. The target compounds were investigated in 30 commercial baby foods.
Collapse
Affiliation(s)
- Mateus Henrique Petrarca
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil.
| | - Patrícia Aparecida de Campos Braga
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Felix Guillermo Reyes Reyes
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Adriana Pavesi Arisseto Bragotto
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| |
Collapse
|
14
|
Barzegar F, Kamankesh M, Mohammadi A. Recent Development in Formation, Toxic Effects, Human Health and Analytical Techniques of Food Contaminants. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Wu H, Li D, Zhao B, Guan S, Jing X, Ding Y, Fan G. Magnetic covalent organic framework nanocomposites as a new adsorbent for the determination of polycyclic aromatic hydrocarbons in water and food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2847-2856. [PMID: 34085678 DOI: 10.1039/d1ay00496d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A magnetic covalent organic framework nanocomposite (Fe3O4@COF(Tp-NDA)) was synthesized via a solvothermal method, used as a magnetic adsorbent for the extraction of polycyclic aromatic hydrocarbons (PAHs) from lake water, tea, coffee, and fried chicken, and detected using a high performance liquid chromatography-ultraviolet detector. The synthesized magnetic adsorbent was characterized via transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption-desorption isotherm analysis and vibrating sample magnetometry. Parameters that affected the extraction conditions and desorption conditions were optimized. Adsorption equilibrium could be attained within 3 min. The prepared magnetic material could be reused 10 times. The limits of detection and quantification were 0.05-0.25 μg L-1 and 0.17-0.83 μg L-1, respectively. The recovery was 74.6-101.8% with a relative standard deviation of below 4.2%. The method was successfully used to detect PAHs in various samples.
Collapse
Affiliation(s)
- Hao Wu
- School of Chemistry and Materials Science of Shanxi Normal University, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Linfen 041004, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Sampaio GR, Guizellini GM, da Silva SA, de Almeida AP, Pinaffi-Langley ACC, Rogero MM, de Camargo AC, Torres EAFS. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. Int J Mol Sci 2021; 22:6010. [PMID: 34199457 PMCID: PMC8199595 DOI: 10.3390/ijms22116010] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are chemical compounds comprised of carbon and hydrogen molecules in a cyclic arrangement. PAHs are associated with risks to human health, especially carcinogenesis. One form of exposure to these compounds is through ingestion of contaminated food, which can occur during preparation and processing involving high temperatures (e.g., grilling, smoking, toasting, roasting, and frying) as well as through PAHs present in the soil, air, and water (i.e., environmental pollution). Differently from changes caused by microbiological characteristics and lipid oxidation, consumers cannot sensorially perceive PAH contamination in food products, thereby hindering their ability to reject these foods. Herein, the occurrence and biological effects of PAHs were comprehensively explored, as well as analytical methods to monitor their levels, legislations, and strategies to reduce their generation in food products. This review updates the current knowledge and addresses recent regulation changes concerning the widespread PAHs contamination in several types of food, often surpassing the concentration limits deemed acceptable by current legislations. Therefore, effective measures involving different food processing strategies are needed to prevent and reduce PAHs contamination, thereby decreasing human exposure and detrimental health effects. Furthermore, gaps in literature have been addressed to provide a basis for future studies.
Collapse
Affiliation(s)
- Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| | - Glória Maria Guizellini
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| | - Simone Alves da Silva
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
- Organic Contaminant Core, Contaminant Centre, Adolfo Lutz Institute, 355 Doutor Arnaldo Ave, Sao Paulo 01246-000, Brazil;
| | - Adriana Palma de Almeida
- Organic Contaminant Core, Contaminant Centre, Adolfo Lutz Institute, 355 Doutor Arnaldo Ave, Sao Paulo 01246-000, Brazil;
| | - Ana Clara C. Pinaffi-Langley
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Elizabeth A. F. S. Torres
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| |
Collapse
|
17
|
Kamal El-Deen A, Shimizu K. Modified μ-QuEChERS coupled to diethyl carbonate-based liquid microextraction for PAHs determination in coffee, tea, and water prior to GC-MS analysis: An insight to reducing the impact of caffeine on the GC-MS measurement. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1171:122555. [PMID: 33756450 DOI: 10.1016/j.jchromb.2021.122555] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
A fast, sensitive and eco-friendly method was developed for the determination of fifteen polycyclic aromatic hydrocarbons (PAHs) in different environmental matrices through gas chromatography mass spectrometry (GC-MS). The method utilizes a modified and miniaturized quick easy cheap effective rugged and safe (QuEChERS) clean up procedure coupled to an air-assisted dispersive liquid-liquid microextraction (AA-DLLME) for the enrichment of the concerned compounds. The AA-DLLME uses diethyl carbonate (DEC) as a green bio-based solvent for the microextraction. DEC is considered as biodegradable (with octanol/water coefficient < 3, resulting in low potential of bioaccumulation), classified as a green solvent and considered as one of the recommended solvent alternatives based on SSG results. The AA-DLLME procedure was optimized by One-Variable-at-A-Time (OVAT) succeeded by experimental design applying Central Composite Face-centered (CCF) design. The method linear calibration was found in the range of 10-120 µg/Kg for Benzo[a]pyrene and 5-100 µg/Kg for all other PAHs with low detection limits ranging from 0.01 to 2.10 µg/Kg. It could enrich the PAHs up to 166-folds. The combination of modified μ-QuEChERS with the green AA-DLLME could sharply decrease the caffeine amount on the final extract injected to the GC-MS instrument. The method was successfully applied to coffee, tea, and water samples with acceptable % recovery (>90%). Finally, the impact of our procedure to the environment from green analytical chemistry view was assessed by a novel metric system called AGREE, proving the greenness of our procedure.
Collapse
Affiliation(s)
- Asmaa Kamal El-Deen
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395 Fukuoka, Japan; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395 Fukuoka, Japan.
| |
Collapse
|
18
|
Deng W, Huang A, Zheng Q, Yu L, Li X, Hu H, Xiao Y. A density-tunable liquid-phase microextraction system based on deep eutectic solvents for the determination of polycyclic aromatic hydrocarbons in tea, medicinal herbs and liquid foods. Food Chem 2021; 352:129331. [PMID: 33652198 DOI: 10.1016/j.foodchem.2021.129331] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/24/2021] [Accepted: 02/07/2021] [Indexed: 12/24/2022]
Abstract
A novel density-tunable liquid-phase microextraction (DT-LPME) system was developed with high-density deep eutectic solvents (DESs) as extractant and low-density organic solvents as emulsifier and density regulator. DES-rich phase was induced to form in the bottom or in the top by adjusting the emulsifier amount. This system was used to directly extract polycyclic aromatic hydrocarbons (PAHs) from liquid and solid foods, and the obtained DES-rich phase was easy to be collected for quantification. The method (LPME with HPLC-fluorescence detector) has linearity (R2 > 0.9974), detection limits of 0.6-4.2 ng L-1 for liquid foods and 0.05-0.35 ng g-1 for solid foods, recoveries of 86.2-114.9%, and intra-day/inter-day RSDs below 6.6%. The method was applied to detect PAHs in real samples, and the PAHs residue was found in honey and five solid foods. The DT-LPME method is simple, fast, green and suitable for direct extraction of analytes from both liquid and solid samples.
Collapse
Affiliation(s)
- Wenwen Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; National 111 Center for Cellular Regulation and Molecular Pharmaceutics, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Anqi Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Qutong Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Long Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xiao Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Yuxiu Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| |
Collapse
|
19
|
Emrarian M, Sohrabi MR, Goudarzi N, Tadayon F. Retention time prediction of polycyclic aromatic hydrocarbons in gas chromatography–mass spectrometry using QSPR based on random forests and artificial neural network. Struct Chem 2021. [DOI: 10.1007/s11224-020-01614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Zhang Y, Chen X, Zhang Y. Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: From food processing to
in vivo
metabolic transformation. Compr Rev Food Sci Food Saf 2021; 20:1422-1456. [DOI: 10.1111/1541-4337.12705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/11/2020] [Accepted: 01/01/2021] [Indexed: 01/09/2023]
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| |
Collapse
|
21
|
Dodds JN, Alexander NLM, Kirkwood KI, Foster MR, Hopkins ZR, Knappe DRU, Baker ES. From Pesticides to Per- and Polyfluoroalkyl Substances: An Evaluation of Recent Targeted and Untargeted Mass Spectrometry Methods for Xenobiotics. Anal Chem 2021; 93:641-656. [PMID: 33136371 PMCID: PMC7855838 DOI: 10.1021/acs.analchem.0c04359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nancy Lee M Alexander
- Department of Civil, Construction, & Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Kaylie I Kirkwood
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - MaKayla R Foster
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zachary R Hopkins
- Department of Civil, Construction, & Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Detlef R U Knappe
- Department of Civil, Construction, & Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
22
|
Galindo MV, Oliveira WDS, Godoy HT. Multivariate optimization of low-temperature cleanup followed by dispersive solid-phase extraction for detection of Bisphenol A and benzophenones in infant formula. J Chromatogr A 2020; 1635:461757. [PMID: 33302139 DOI: 10.1016/j.chroma.2020.461757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022]
Abstract
A simple and effective analytical method to determine six contaminants, including five benzophenones (BP, BP-1, BP-3, BP-8, and BP-12) and bisphenol A (BPA) in infant formulas was developed in this study. For this, a sequential experimental design was used to optimize the extraction and cleanup method using low temperature partition (LTP) combined with dispersive solid phase extraction (dSPE). The effect of primary secondary amine (PSA), sodium chloride (NaCl), graphitized carbon black (GCB), octadecyl (C18), strong anion exchanger (SAX), water, acetonitrile (ACN) and, ultrasound (US) time were evaluated using a sequential design of experiments including a Plackett-Burman, a central composite rotatable design, and the Derringer and Suich's tool. The method was validated, and it showed a limit of quantification varying from 0.06 to 2 mg.kg-1, good precision (< 20% RSD), and recovery (52-106%). The method proposed was applied to twenty-five samples of commercial infant formulas.
Collapse
Affiliation(s)
- Marcella Vitoria Galindo
- Departament of Food Science, School of Food Engineering, University of Campinas,13083-862, Campinas, SP, Brazil.
| | | | - Helena Teixeira Godoy
- Departament of Food Science, School of Food Engineering, University of Campinas,13083-862, Campinas, SP, Brazil
| |
Collapse
|
23
|
Rodriguez RS, O'Keefe TL, Froehlich C, Lewis RE, Sheldon TR, Haynes CL. Sensing Food Contaminants: Advances in Analytical Methods and Techniques. Anal Chem 2020; 93:23-40. [PMID: 33147958 DOI: 10.1021/acs.analchem.0c04357] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rebeca S Rodriguez
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Tana L O'Keefe
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Clarice Froehlich
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Riley E Lewis
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Trever R Sheldon
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Molecular complex based dispersive liquid–liquid microextraction for simultaneous HPLC determination of eight phenolic compounds in water samples. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Prakash J, Mishra AK. Simultaneous Quantification of Multiple Polycyclic Aromatic Hydrocarbons in Aqueous Media using Micelle Assisted White Light Excitation Fluorescence. Sci Rep 2020; 10:8921. [PMID: 32488103 PMCID: PMC7265557 DOI: 10.1038/s41598-020-65788-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/05/2020] [Indexed: 11/09/2022] Open
Abstract
Qualitative and quantitative display of multiple fluorescent analytes is made simple and reliable in this micelle assisted methodology. The adopted method involves micelle assisted evincing of ppb level of PAHs in water; measurement of total fluorescence (white light excitation fluorescence, WLEF) and data deciphering using multivariate analysis. This protocol yields sensitive and accurate quantification of the cancerous pollutants (PAHs) in aqueous media with Limit of Quantification of the order 1-10 μg/L and accuracy of >98%. The use of WLEF enables the simultaneous acquisition of fluorescence signatures of all the PAHs. It has the additional advantage of being portable, layman-friendly and cost-effective. The optimized amount of surfactants for the simultaneous extraction of PAHs from real samples was estimated as 27.8 mg (19.3 mM) of SDS and 9.1 mg (5 mM) of CTAB. Also, the analytical fidelity of the quantification such as percentage recovery (98 ± 2%), linear dynamic range (2-250 μg/L), RMSEP (<0.5), etc. explains the veracity of methodology.
Collapse
Affiliation(s)
- John Prakash
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
26
|
Polycyclic aromatic hydrocarbons in edible oils and fatty foods: Occurrence, formation, analysis, change and control. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 93:59-112. [PMID: 32711866 DOI: 10.1016/bs.afnr.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Numerous studies have demonstrated that dozens of polycyclic aromatic hydrocarbons (PAHs) are mutagenic, genotoxic and strongly carcinogenic. PAHs are found to be widely present in foods contaminated through multiple paths. Due to their lipophilic nature, these compounds easily accumulate in edible oils and fatty foods where they can range from no detection to over 2000μg/kg. Compared to precursor PAHs, researchers have seldom studied the presence of PAH derivatives, especially in food matrices. This chapter includes the physical and chemical characteristics of PAHs and their types, occurrence, sample pretreatment and instrumental determination methods, and their formation, change and control in edible oils and fatty foods. The occurrence and formation of PAH derivatives in foods are much less investigated compared to those of their precursor PAHs. Although the removal of matrix effects and accuracy remain difficult for current rapid determination methods, a prospective research direction of PAH analysis for large-scale screening is in demand. To date, physical absorption, chemical oxidation and biodegradation have been widely used in PAH removal techniques. Specific types of bacteria, fungi, and algae have also been used to degrade PAHs into harmless compounds. However, most of them can only degrade a range of LPAHs, such as naphthalene, anthracene and phenanthrene. Their ability to degrade HPAHs requires further study. Moreover, it is still a great challenge to maintain food nutrition and flavor during the PAH removal process using these methods.
Collapse
|
27
|
Slámová T, Sadowska-Rociek A, Fraňková A, Surma M, Banout J. Application of QuEChERS-EMR-Lipid-DLLME method for the determination of polycyclic aromatic hydrocarbons in smoked food of animal origin. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Jinadasa BKKK, Monteau F, Morais S. Critical review of micro-extraction techniques used in the determination of polycyclic aromatic hydrocarbons in biological, environmental and food samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1004-1026. [PMID: 32186468 DOI: 10.1080/19440049.2020.1733103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous environmental contaminants and their accurate determination is very important to human health and environment safety. In this review, sorptive-based micro-extraction techniques [such as Solid-Phase Micro-extraction (SPME), Stir Bar Sorptive Extraction (SBSE), Micro-extraction in Packed Sorbent (MEPS)] and solvent-based micro-extraction [Membrane-Mediated Liquid-Phase Micro-extraction (MM-LPME), Dispersive Liquid-Liquid Micro-extraction (DLLME), and Single Drop Micro-extraction (SDME)] developed for quantification of PAHs in environmental, biological and food samples are reviewed. Moreover, recent micro-extraction techniques that have been coupled with other sample extraction strategies are also briefly discussed. The main objectives of these micro-extraction techniques are to perform extraction, pre-concentration and clean up together as one step, and the reduction of the analysis time, cost and solvent following the green chemistry guidelines.
Collapse
Affiliation(s)
- B K K K Jinadasa
- Laboratoire D'étude Des Résidus Et Contaminants Dans Les Aliments (LABERCA), Nantes-Atlantic National College of Veterinary Medicine, Food Science, and Engineering (ONIRIS) , Nantes, France
| | - Fabrice Monteau
- Laboratoire D'étude Des Résidus Et Contaminants Dans Les Aliments (LABERCA), Nantes-Atlantic National College of Veterinary Medicine, Food Science, and Engineering (ONIRIS) , Nantes, France
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior De Engenharia Do Porto, Instituto Politécnico Do Porto , Porto, Portugal
| |
Collapse
|
29
|
Analysis of PAHs in oily systems using modified QuEChERS with EMR-Lipid clean-up followed by GC-QqQ-MS. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106950] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Liu Q, Tang J, Chen D, Zhou Y, Lin Q, Ma X, Zhang M, Hu H. [Hmim]PF6 enhanced the extraction of polycyclic aromatic hydrocarbons from soil with the QuEChERS method. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
31
|
Moreda-Piñeiro J, Moreda-Piñeiro A. Combined assisted extraction techniques as green sample pre-treatments in food analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Wang J, Duan HL, Ma SY, Zhang J, Zhang ZQ. Solidification of a Switchable Solvent-Based QuEChERS Method for Detection of 16 Pesticides in Some Fruits and Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8045-8052. [PMID: 31241326 DOI: 10.1021/acs.jafc.9b00686] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
n-Octadecylamine was adopted as a cleanup agent to develop a novel solidification of a switchable solvent-based QuEChERS method. At higher temperatures (such as 55 °C), n-octadecylamine can melt into a liquid, allowing effective extraction of matrix interferences in acetonitrile solution (i.e., in dispersive liquid-liquid microextraction). At lower temperatures, n-octadecylamine carrying matrix interferences can rapidly solidify and easily separate from the acetonitrile solution. The results demonstrated that n-octadecylamine possessed a better ability to remove matrix interferences and reduce matrix effects than those of traditional solid-phase dispersive extraction cleanup agents of primary secondary amine and octadecyl bonded silica gel. By coupling it with gas chromatography-mass spectrometry, the proposed method was applied to the detection of 16 pesticides in cucumber. The recoveries were from 80.9 to 112.6% with relative standard deviations less than 12.9%. Satisfactory results were also obtained for the detection of 16 pesticides in pear, orange, apple, pepper, lettuce, and tomato.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education , Shaanxi Normal University , Xi'an 710062 , China
- Institute of Agricultural Product Quality Standard and Testing Research , Tibet Academy of Agricultural and Animal Husbandry Sciences , Lhasa 850032 , China
| | - Hui-Ling Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education , Shaanxi Normal University , Xi'an 710062 , China
| | - Shi-Yao Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education , Shaanxi Normal University , Xi'an 710062 , China
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education , Shaanxi Normal University , Xi'an 710062 , China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education , Shaanxi Normal University , Xi'an 710062 , China
| |
Collapse
|
33
|
Determination of N-acylhomoserine lactones from spoilage bacteria and aquatic product by integrative coupling method of solvent-terminated dispersive liquid-liquid microextraction and micellar electrokinetic capillary chromatography. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Analysis of Endocrine-Disrupting Compounds from Cheese Samples Using Pressurized Liquid Extraction Combined with Dispersive Liquid–Liquid Microextraction Followed by High-Performance Liquid Chromatography. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01487-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Perestrelo R, Silva P, Porto-Figueira P, Pereira JAM, Silva C, Medina S, Câmara JS. QuEChERS - Fundamentals, relevant improvements, applications and future trends. Anal Chim Acta 2019; 1070:1-28. [PMID: 31103162 DOI: 10.1016/j.aca.2019.02.036] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/16/2019] [Accepted: 02/24/2019] [Indexed: 12/15/2022]
Abstract
The Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method is a simple and straightforward extraction technique involving an initial partitioning followed by an extract clean-up using dispersive solid-phase extraction (d-SPE). Originally, the QuEChERS approach was developed for recovering pesticide residues from fruits and vegetables, but rapidly gained popularity in the comprehensive isolation of analytes from different matrices. According to PubMed, since its development in 2003 up to November 2018, about 1360 papers have been published reporting QuEChERS as extraction method. Several papers have reported different improvements and modifications to the original QuEChERS protocol to ensure more efficient extractions of pH-dependent analytes and to minimize the degradation of labile analytes. This analytical approach shows several advantages over traditional extraction techniques, requiring low sample and solvent volumes, as well as less time for sample preparation. Furthermore, most of the published studies show that the QuEChERS protocol provides higher recovery rate and a better analytical performance than conventional extraction procedures. This review proposes an updated overview of the most recent developments and applications of QuEChERS beyond its original application to pesticides, mycotoxins, veterinary drugs and pharmaceuticals, forensic analysis, drugs of abuse and environmental contaminants. Their pros and cons will be discussed, considering the factors influencing the extraction efficiency. Whenever possible, the performance of the QuEChERS is compared to other extraction approaches. In addition to the evolution of this technique, changes and improvements to the original method are discussed.
Collapse
Affiliation(s)
- Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Priscilla Porto-Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Jorge A M Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Catarina Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Sonia Medina
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
36
|
Rapid and sensitive detection of acrylamide in fried food using dispersive solid-phase extraction combined with surface-enhanced Raman spectroscopy. Food Chem 2019; 276:157-163. [DOI: 10.1016/j.foodchem.2018.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
|
37
|
Trends of research on polycyclic aromatic hydrocarbons in food: A 20-year perspective from 1997 to 2017. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
38
|
Wu C, Wang L, Li H, Yu S. Determination of 4(5)-methylimidazole in foods and beverages by modified QuEChERS extraction and liquid chromatography-tandem mass spectrometry analysis. Food Chem 2018; 280:278-285. [PMID: 30642498 DOI: 10.1016/j.foodchem.2018.12.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/14/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
The determination of carcinogenic 4(5)-methylimidazole (4-MeI) in complex matrices at trace levels is a challenge because of its higher polarity and weaker column retention capability. Here, we proposed a novel method for the quantification of 4-MeI in various foods and beverages using modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The evaluated QuEChERS extraction with LC-MS/MS method showed excellent linearity (1-200 μg/L, with correlation coefficient (R2) > 0.999), trueness (91-113%), and precision (relative standard deviation (RSD) ≤ 12.3%), but low matrix effect (92-108%) for cola, tea, beer, coffee beverage, bread, biscuit and instant coffee. The expanded measurement uncertainty was less than 34.4% at 95% confidence level. The proposed method can be successfully applied to determine 4-MeI in 28 commercial foods and beverages purchased from local market. Therefore, we believe this method is likely to provide a potential for 4-MeI determination in practical application.
Collapse
Affiliation(s)
- Chunjian Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Li Wang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China
| | - He Li
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Shujuan Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| |
Collapse
|