1
|
Fernandes FA, Carocho M, Finimundy TC, Prieto MA, Ferreira ICFR, Barros L, Heleno SA. Cistus, Acacia, and Lemon verbena Valorization through Response Surface Methodology: Optimization Studies and Potential Application in the Pharmaceutical and Nutraceutical Industries. Pharmaceuticals (Basel) 2024; 17:593. [PMID: 38794166 PMCID: PMC11124168 DOI: 10.3390/ph17050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Cistus ladanifer L., Acacia dealbata L., and Aloysia citrodora Paláu were subject to an optimization procedure for two extraction techniques (heat-assisted extraction (HAE) and ultrasound-assisted extraction (UAE)). The extracts were then analyzed by HPLC-DAD-ESI/MS for their phenolic profile (cistus-15 compounds, acacia-21 compounds, and lemon verbena-9 compounds). The response surface methodology was applied, considering four varying factors: ethanol percentage; extraction time; temperature/power; and S/L ratio, generating two responses (the major phenolic compound, or family of compounds, and the extraction yield). For cistus, both techniques optimized the extraction yield of punicalagins, with UAE proving to be the most efficient extraction method (3.22% ethanol, 22 min, 171 W, and 35 g/L). For acacia, HAE maximized the extraction of procyanidin (74% ethanol, 86 min, 24 °C, and 50 g/L), and UAE maximized the content of myricetin (65% ethanol, 8 min, 50 W, and 50 g/L). For lemon verbena, HAE favored the extraction of martynoside (13% ethanol, 96 min, 49 °C and 17 g/L) and forsythiaside UAE (94% ethanol, 25 min, 399 W, and 29 g/L). The optimal conditions for the extraction of compounds with high added value and potential for use in pharmaceuticals and nutraceuticals were defined.
Collapse
Affiliation(s)
- Filipa A. Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.A.F.); (T.C.F.); (I.C.F.R.F.); (L.B.); (S.A.H.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Nutrición y Bromatología, Departamento de Química Analítica y Alimentaria, Facultad de Ciencias de Ourense, Universidad de Vigo-Ourense Campus, E-32004 Ourense, Spain;
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.A.F.); (T.C.F.); (I.C.F.R.F.); (L.B.); (S.A.H.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tiane C. Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.A.F.); (T.C.F.); (I.C.F.R.F.); (L.B.); (S.A.H.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Miguel A. Prieto
- Grupo de Nutrición y Bromatología, Departamento de Química Analítica y Alimentaria, Facultad de Ciencias de Ourense, Universidad de Vigo-Ourense Campus, E-32004 Ourense, Spain;
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.A.F.); (T.C.F.); (I.C.F.R.F.); (L.B.); (S.A.H.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.A.F.); (T.C.F.); (I.C.F.R.F.); (L.B.); (S.A.H.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.A.F.); (T.C.F.); (I.C.F.R.F.); (L.B.); (S.A.H.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
2
|
Romero AK, Portillo DJ, Beltrán SB, Sierra LJ, Álvarez CA, Ramírez KJ, Martínez JR, Stashenko EE. Enhanced Two-Step Extraction from Biomass of Two Cymbopogon Species Cultivated in Santander, Colombia. Molecules 2023; 28:6315. [PMID: 37687142 PMCID: PMC10488661 DOI: 10.3390/molecules28176315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The insertion of circular economy principles into the essential oil (EO) production chain aims to reduce waste generation and make integral use of harvested plant material. Higher profits from integral use with reduced waste generation contribute to the eventual use of the EO value chain as an alternative to illicit crops in Colombia (mostly coca). In this study, Java-type citronella (Cymbopogon winterianus) and palmarosa (C. martinii) plant materials were used in two consecutive processes to obtain EOs and extracts. The residual biomass after EO distillation was subjected to ultrasound-assisted hydroethanolic extraction to afford extracts that contained bioactive compounds. Citronella and palmarosa were distilled with typical EO yields (1.0 ± 0.1% for citronella; 0.41 ± 0.06% for palmarosa; n = 5) either through hydrodistillation assisted by microwave radiation or through steam distillation, and their composition (determined via GC/FID/MS analysis) and physicochemical parameters fell within their ISO standard specifications. The concentration of citronellal, the major compound of citronella oil, was 500 ± 152 mg/g. Geraniol, the main component of palmarosa oil, was found at 900 ± 55 mg/g. The citronella and palmarosa hydroalcoholic extracts (4-11% yield) were analyzed with UHPLC-ESI-Orbitrap-MS, which permitted the identification of 30 compounds, mainly C-glycosylated flavones and hydroxycinnamic acids. Both extracts had similar antioxidant activity values, evaluated using the ABTS+● and ORAC assays (110 ± 44 µmol Trolox®/g extract and 1300 ± 141 µmol Trolox®/g extract, respectively).
Collapse
Affiliation(s)
- Angie K. Romero
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (A.K.R.); (D.J.P.); (S.B.B.); (L.J.S.); (J.R.M.)
| | - Daysy J. Portillo
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (A.K.R.); (D.J.P.); (S.B.B.); (L.J.S.); (J.R.M.)
| | - Sheila B. Beltrán
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (A.K.R.); (D.J.P.); (S.B.B.); (L.J.S.); (J.R.M.)
| | - Lady J. Sierra
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (A.K.R.); (D.J.P.); (S.B.B.); (L.J.S.); (J.R.M.)
| | - Camilo A. Álvarez
- Research Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (C.A.Á.); (K.J.R.)
| | - Karen J. Ramírez
- Research Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (C.A.Á.); (K.J.R.)
| | - Jairo R. Martínez
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (A.K.R.); (D.J.P.); (S.B.B.); (L.J.S.); (J.R.M.)
- Research Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (C.A.Á.); (K.J.R.)
| | - Elena E. Stashenko
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (A.K.R.); (D.J.P.); (S.B.B.); (L.J.S.); (J.R.M.)
- Research Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (C.A.Á.); (K.J.R.)
| |
Collapse
|
3
|
Babotă M, Frumuzachi O, Nicolescu A, Dias MI, Pinela J, Barros L, Añibarro-Ortega M, Stojković D, Carević T, Mocan A, López V, Crișan G. Thymus Species from Romanian Spontaneous Flora as Promising Source of Phenolic Secondary Metabolites with Health-Related Benefits. Antioxidants (Basel) 2023; 12:antiox12020390. [PMID: 36829949 PMCID: PMC9952121 DOI: 10.3390/antiox12020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Wild thyme aerial parts (Serpylli herba) are recognized as a valuable herbal product with antioxidant, anti-inflammatory, and antibacterial effects. Although pharmacopoeial regulations allow its collection exclusively from Thymus serpyllum, substitution with other species is frequent in current practice. This study analyzed the phenolic composition, antioxidant, and enzyme-inhibitory and antimicrobial activity of the hydroethanolic extracts obtained from five Romanian wild thyme species (Thymus alpestris, T. glabrescens, T. panonicus, T. pulcherimus and T. pulegioides). The analysis of individual phenolic constituents was performed through LC-ESI-DAD/MS2, while for the in vitro evaluation of antioxidant potential, TEAC, FRAP, DPPH, TBARS and OxHLIA assays were employed. The anti-enzymatic potential was tested in vitro against tyrosinase, α-glucosidase and acetylcholinesterase. High rosmarinic acid contents were quantified in all species (20.06 ± 0.32-80.49 ± 0.001 mg/g dry extract); phenolic acids derivatives (including salvianolic acids) were confirmed as the principal metabolites of T. alpestris and T. glabrescens, while eriodictyol-O-di-hexoside was found exclusively in T. alpestris. All species showed strong antioxidant potential and moderate anti-enzymatic effect against α-glucosidase and acetylcholinesterase, showing no anti-tyrosinase activity. This is the first detailed report on the chemical and biological profile of T. alpestris collected from Romanian spontaneous flora.
Collapse
Affiliation(s)
- Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Oleg Frumuzachi
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Alexandru Nicolescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Tamara Carević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-742-017-816
| | - Víctor López
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50830 Zaragoza, Spain
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Chemical Composition and Antioxidant Properties of Common and Lemon Verbena. Antioxidants (Basel) 2022; 11:antiox11112247. [DOI: 10.3390/antiox11112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
Abstract
The nutritional profiles of common and lemon verbena leaves were analyzed (proximate constituents, free sugars, organic acids, tocopherols, and fatty acids) and the leaves were prepared in hydromethanolic and aqueous (decoctions and infusions) extracts. The phenolic compound composition and antioxidant activity (2,2-Diphenyl-1-picrylhydrazyl (DPPH); 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric-reducing antioxidant power (FRAP); and cupric-reducing antioxidant capacity (CUPRAC) assays) of the extracts were characterized. The nutritional composition varied between the studied species, with lemon verbena showing higher amounts of protein, ash, and fat than common verbena, whereas the opposite trend was recorded for the dietary fiber content. The main free sugars detected in both species were fructose, glucose, and sucrose, which were present in higher amounts in the common verbena samples. Succinic acid was the most abundant organic acid in both species while high amounts of oxalic acid were detected in lemon verbena. The main fatty acids in both species were α-linolenic, palmitic, and linoleic acid. Regarding the phenolic compound content, the extracts of lemon verbena presented higher amounts of total phenolic compounds (TPCs), total flavonoids (TFs) and total phenolic acids (TPAs) than the common verbena extracts while the aqueous extracts (infusions and decoctions) were richer in TPCs, TFs, and TPAs than the hydromethanolic ones in both species. Nine phenolic compounds were identified and quantified, including seven phenolic acids and two flavonoids. The lemon verbena samples were characterized by higher antioxidant activity compared to the common verbena samples while the aqueous extracts showed higher antioxidant efficacy than the hydromethanolic ones. In conclusion, both species showed promising results in terms of the nutritional value, chemical composition, and antioxidant activities, which were positively correlated with the phenolic compound contents. Moreover, the extraction protocol may affect the chemical composition and bioactive properties of both species, with aqueous extracts showing better results than hydromethanolic ones.
Collapse
|
5
|
Oliveira AS, Rolo J, Gaspar C, Cavaleiro C, Salgueiro L, Palmeira-de-Oliveira R, Ferraz C, Coelho S, Pastorinho MR, Sousa AC, Teixeira JP, Martinez-de-Oliveira J, Palmeira-de-Oliveira A. Chemical characterization and bioactive potential of Thymus×citriodorus (Pers.) Schreb. preparations for anti-acne applications: Antimicrobial, anti-biofilm, anti-inflammatory and safety profiles. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114935. [PMID: 34954264 DOI: 10.1016/j.jep.2021.114935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thymus × citriodorus (Pers.) Schreb. is an interspecific hybrid between Thymus pulegioides and Thymus vulgaris, known for its pharmacological activities as diaphoretic, deodorant, antiseptic and disinfectant, the last mostly related with its antimicrobial activity. The folk use of other extracts, as hydrolates, have also been disseminated, as regulators of oily skin with anti-acne effect. AIM OF THE STUDY We aimed to evaluate the anti-acne potential of two Thymus x citriodorus (TC) preparations, the essential oil (EO) and the hydrolate, to be used as active ingredients for skin applications. Specifically, we intend to validate their anti-acne potential by describing their activity on acne related bacteria, bacterial virulence, anti-oxidant and anti-inflammatory potential, and biocompatibility on inflammatory cells. Additionally, we aimed to report their ecotoxicity under the Globally Harmonized System of Classification and Labelling of Chemicals (GHS), thus focusing not only on the consumer, but also on environmental safety assessment. MATERIALS AND METHODS Minimum inhibitory concentration (MIC) against C. acnes, S. aureus and S. epidermidis was evaluated. Minimum lethal concentration (MLC) was also determined. The effect on C. acnes biofilm formation and disruption was evaluated with crystal violet staining. Anti-inflammatory activity was investigated on LPS-stimulated mouse macrophages (RAW 264.7), by studying nitric oxide (NO) production (Griess reagent) and cellular biocompatibility through MTT assay. In-vitro NO and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging potential were also evaluated. The ecotoxicity was evaluated using Daphnia magna acute toxicity assays. RESULTS EO presented direct antimicrobial activity, with visual MICs ranging from 0.06% for S. epidermidis and C. acnes to 0.125% for S. aureus. MLCs were higher than the obtained MICs. Hydrolate revealed visual MIC only for C. acnes. TC essential oil was effective in preventing biofilm formation and disrupting preformed biofilms even at sub-inhibitory concentrations. Hydrolate showed a more modest anti-biofilm effect. Regarding anti-inflammatory activity, TC hydrolate has a higher cellular biocompatibility. Still, both plant preparations were able to inhibit at least 50% of NO production at non-cytotoxic concentrations. Both EO and hydrolate have poor anti-oxidant activities. Regarding the ecotoxicity, TC essential oil was classified under acute 3 category, while the hydrolate has proved to be nontoxic, in accordance to the GHS. CONCLUSIONS These results support the anti-acne value of different TC preparations for different applications. TC hydrolate by presenting higher biocompatibility, anti-inflammatory potential and the ability to modulate C. acnes virulence, can be advantageous in a product for everyday application. On the other hand, EO by presenting a marked antimicrobial, anti-biofilm and anti-inflammatory activities, still with some cytotoxicity, may be better suited for application in acute flare-ups, for short treatment periods.
Collapse
Affiliation(s)
- Ana S Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Joana Rolo
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Carlos Gaspar
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal.
| | - Carlos Cavaleiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal.
| | - Lígia Salgueiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal.
| | - Rita Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal; CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504, Coimbra, Portugal.
| | - Celso Ferraz
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Susana Coelho
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - M Ramiro Pastorinho
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; Department of Medical and Health Sciences, University of Évora, Évora, Portugal; Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal.
| | - Ana Catarina Sousa
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal; Department of Biology, University of Évora, Évora, Portugal.
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal.
| | - José Martinez-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Ana Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal.
| |
Collapse
|
6
|
Babotă M, Frumuzachi O, Gâvan A, Iacoviță C, Pinela J, Barros L, Ferreira ICFR, Zhang L, Lucini L, Rocchetti G, Tanase C, Crișan G, Mocan A. Optimized ultrasound-assisted extraction of phenolic compounds from Thymus comosus Heuff. ex Griseb. et Schenk (wild thyme) and their bioactive potential. ULTRASONICS SONOCHEMISTRY 2022; 84:105954. [PMID: 35247683 PMCID: PMC8892194 DOI: 10.1016/j.ultsonch.2022.105954] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 05/24/2023]
Abstract
An optimized ultrasound-assisted extractive method was developed to obtain a polyphenol-enriched extract from the aerial parts of Thymus comosus Heuff. ex Griseb. et Schenk. Optimization process was conducted based on Design of Experiment (DoE) principles, determining the influence of three independent variables (time, ultrasound amplitude, ethanol concentration) on the total phenolic content of the extract (dependent variable). Additionally, the phenolic composition of the extract was characterized through UHPLC-HRMS, revealing beside the most abundant flavonoid-type compounds the presence of salvianolic acids C, D and L in high amounts. Phytochemical profile of the extract was correlated with its antioxidant activity (tested through five complementary assays) and enzyme-inhibitory potential, showing important antiglucosidase and anticholinesterase effects. Overall, it was concluded that the developed method is suitable for obtaining a good recovery of both phenolic and non-phenolic compounds from Thymus comosus aerial parts, and their presence in the optimized extract is responsible for its pharmacological potential.
Collapse
Affiliation(s)
- Mihai Babotă
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Oleg Frumuzachi
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Alexandru Gâvan
- Department of Medical Devices, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Cristian Iacoviță
- Department of Pharmaceutical Physics-Biophysics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Paschoalinotto BH, Dias MI, Pinela J, Pires TC, Alves MJ, Mocan A, Calhelha RC, Barros L, Ineu RP, Ferreira IC. Phytochemical Characterization and Evaluation of Bioactive Properties of Tisanes Prepared from Promising Medicinal and Aromatic Plants. Foods 2021; 10:foods10020475. [PMID: 33671660 PMCID: PMC7926303 DOI: 10.3390/foods10020475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
The chemical composition and biological properties correlation in several medicinal and aromatic plants is still underexplored, especially in its most common form of consumption as tisane. The present study aims to characterize the organic acids and vitamin E composition of five tisanes and their extracts by High-Performance Liquid Chromatography coupled to a diode-array detector (HPLC-DAD) and HPLC coupled to a fluorescence detector techniques, respectively, and the phenolic composition by HPLC-DAD-ESI/MS (mass spectrometry by electrospray ionization). It also focuses on their bioactive properties, namely antioxidant, antimicrobial, anti-inflammatory, cytotoxic, anti-tyrosinase, and anti-diabetic activities. A Principal Component Analysis (PCA) was performed in order to understand the correlation between the chemical composition and bioactive properties of the tisanes. The tisane 5 (T5) composed by lemon thyme, tutsan, cloves, and cinnamon, was the most promising mixture, presenting the lowest values for the lipid peroxidation inhibition, anti-inflammatory, and anti-diabetic activity. It also presented the highest concentration of phenolic acids (caffeoylquinic acids derivatives), and flavan-3-ols (catechin derivatives). Only the dry plants presented tocopherols. For the antihemolytic, antimicrobial, and cytotoxic activity, T2 and T4 (with lemon thyme) were highlighted as the best herbal mixtures. The PCA proved to be a valid tool to select the most promising tisane according to the bioactivity. These results suggest that the studied tisanes can be source of high added-value bioactive compounds with health-promoting effects and potential for application in the food and nutraceutical industries, among others.
Collapse
Affiliation(s)
- Beatriz H. Paschoalinotto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.H.P.); (J.P.); (T.C.S.P.P.); (M.J.A.); (R.C.C.); (I.C.F.R.F.)
- Universidade Tecnológica Federal do Paraná, Campus Campo Mourão (UTFPR-CM), Campo Mourão 87301-899, Brazil;
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.H.P.); (J.P.); (T.C.S.P.P.); (M.J.A.); (R.C.C.); (I.C.F.R.F.)
- Correspondence: (M.I.D.); (L.B.); Tel.: +351-273-330-903 (M.I.D.)
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.H.P.); (J.P.); (T.C.S.P.P.); (M.J.A.); (R.C.C.); (I.C.F.R.F.)
| | - Tânia C.S.P. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.H.P.); (J.P.); (T.C.S.P.P.); (M.J.A.); (R.C.C.); (I.C.F.R.F.)
| | - Maria José Alves
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.H.P.); (J.P.); (T.C.S.P.P.); (M.J.A.); (R.C.C.); (I.C.F.R.F.)
| | - Andrei Mocan
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.H.P.); (J.P.); (T.C.S.P.P.); (M.J.A.); (R.C.C.); (I.C.F.R.F.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.H.P.); (J.P.); (T.C.S.P.P.); (M.J.A.); (R.C.C.); (I.C.F.R.F.)
- Correspondence: (M.I.D.); (L.B.); Tel.: +351-273-330-903 (M.I.D.)
| | - Rafael P. Ineu
- Universidade Tecnológica Federal do Paraná, Campus Campo Mourão (UTFPR-CM), Campo Mourão 87301-899, Brazil;
| | - Isabel C.F.R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.H.P.); (J.P.); (T.C.S.P.P.); (M.J.A.); (R.C.C.); (I.C.F.R.F.)
| |
Collapse
|
8
|
Taghouti M, Martins-Gomes C, Félix LM, Schäfer J, Santos JA, Bunzel M, Nunes FM, Silva AM. Polyphenol composition and biological activity of Thymus citriodorus and Thymus vulgaris: Comparison with endemic Iberian Thymus species. Food Chem 2020; 331:127362. [PMID: 32590268 DOI: 10.1016/j.foodchem.2020.127362] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
The polyphenol compositions of Thymus × citriodorus and Thymus vulgaris extracts as obtained by exhaustive hydroethanolic (HE) extraction and aqueous decoction (AD) were compared. In addition, their compositions and bioactivities were compared to those of Thymus pulegioides and Thymus mastichina, grown under the same edaphoclimatic conditions, and Thymus carnosus. Rosmarinic acid was the most abundant polyphenol followed by luteolin-hexuronide, salvianolic acids I and K. Cluster analysis suggests a similarity of the polyphenol composition of T. citriodorus and T. vulgaris. A significant antioxidant activity was observed and correlated with their polyphenol levels. The same being observed for the higher anti-proliferative activity/cytotoxicity of HE extracts on Caco-2 and HepG2 cells as compared to AD extracts. Significant association between the total phenolic compounds with the anti-proliferative activity, for both cell lines, was observed. These results support the importance of salvianolic acids levels in Thymus extracts and their in vitro anti-proliferative/cytotoxic activities.
Collapse
Affiliation(s)
- Meriem Taghouti
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal; Food and Wine Chemistry Lab, Chemistry Research Centre Vila Real (CQ-VR), UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal
| | - Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal; Food and Wine Chemistry Lab, Chemistry Research Centre Vila Real (CQ-VR), UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal
| | - Luís M Félix
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal
| | - Judith Schäfer
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - João A Santos
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal; Department of Physics, School of Sciences and Technology, UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Fernando M Nunes
- Food and Wine Chemistry Lab, Chemistry Research Centre Vila Real (CQ-VR), UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal; Department of Chemistry, School of Life Sciences and Environment, UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal.
| | - Amélia M Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal; Department of Biology and Environment, School of Life Sciences and Environment, UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal.
| |
Collapse
|
9
|
Antioxidants-rich ice cream containing herbal extracts and fructooligossaccharides: manufacture, functional and sensory properties. Food Chem 2019; 298:125098. [PMID: 31276942 DOI: 10.1016/j.foodchem.2019.125098] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022]
Abstract
This work aimed to optimize an aqueous extract rich in phenolic compounds and potential functional properties made of Ilex paraguariensis, Melissa officinalis, and Cymbopogon citratus. The lyophilized extract was used for the development of an ice cream. Total phenolics, FRAP, DPPH, Folin-Ciocalteu's reducing capacity, and total reducing capacity of different combinations of herbal extracts were tested and modeled using response surface methodology. Simultaneous optimisation was employed to maximize the bioactive compounds in the extract and the lyophilized optimum combination was added to ice cream. The lyophilized extract contained quercetin-3-rutinoside, hesperidin, isoquercetin, caffeic acid, and 5,7-dihydroxyflavone. The optimised extract, which showed antihypertensive, antidiabetic, and antioxidant activity using in vitro protocols, increased total phenolics and antioxidant activity in comparison to the control ice cream. The ice cream presented a sensory acceptance index of 83%. After 72 days of storage (-18 °C), total phenolics and antioxidant activity significantly decreased.
Collapse
|