1
|
Fan M, Brolo AG. Factors that Affect Quantification in Surface-Enhanced Raman Scattering. ACS NANO 2025; 19:3969-3996. [PMID: 39855155 DOI: 10.1021/acsnano.4c15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS. However, even 50 years after its first observation, SERS is still perceived as an unreliable technique for quantification. This perception has precluded the application of SERS in laboratories that rely on consistent quantification (for regulatory purposes, for instance). In this review, we describe some of the aspects that lead to SERS intensity variations and how those challenges were addressed in the 50 years of the technique. The goal is to identify the sources of variations in SERS intensities and then demonstrate that, even with these pitfalls, the technique can be used for quantification when factors such as nature of the substrate, experimental conditions, sample preparation, surface chemistry, and data analysis are carefully considered and tailored for a particular application.
Collapse
Affiliation(s)
- Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
2
|
Xiao L, Liu J, Hua MZ, Lu X. Rapid determination of total phenolic content and antioxidant capacity of maple syrup using Raman spectroscopy and deep learning. Food Chem 2025; 463:141289. [PMID: 39303472 DOI: 10.1016/j.foodchem.2024.141289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Total phenolic content (TPC) and antioxidant capacity of maple syrup were determined using Raman spectroscopy and deep learning. TPC was determined by Folin-Ciocalteu assay, while the antioxidant capacity was measured by 2,2-diphenyl-1picrylhydrazyl (DPPH) assay, oxygen radical absorbance capacity (ORAC) assay, and ferric reducing antioxidant power (FRAP) assay. A total of 360 spectra were collected from 36 maple syrup samples of different colours (dark, amber, light) by both benchtop and portable Raman spectrometers. These spectra were used to establish predictive models for assessing the antioxidant profiles of maple syrup. Deep learning models developed along with portable Raman spectroscopy exhibited comparable predictive performance to those developed along with benchtop Raman spectroscopy. Base on the spectral dataset collected using portable Raman spectroscopy, the developed deep learning models exhibited low RMSEs (root mean square errors, 7.2-17.9 % of mean reference values), low MAEs (mean absolute errors, 5.2-13.1 % of mean reference values) and high R2 values (>0.88). The results showed a great goodness of fit and accuracy for predicting the antioxidant profiles of maple syrup, indicating the potential of using portable Raman spectrometer for on-site analysis of antioxidant profiles of maple syrup.
Collapse
Affiliation(s)
- Li Xiao
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Jinxin Liu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Marti Z Hua
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
3
|
He Y, Hua MZ, Feng S, Lu X. Development of a smartphone-integrated microfluidic paper-based optosensing platform coupled with molecular imprinting technique for in-situ determination of histamine in canned tuna. Food Chem 2024; 451:139446. [PMID: 38685180 DOI: 10.1016/j.foodchem.2024.139446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
We reported the development of a smartphone-integrated microfluidic paper-based optosensing platform for in-situ detection and quantification of histamine in canned tuna. Molecularly imprinted polymers were synthesized via precipitation polymerization and utilized as dispersive solid phase extraction sorbent to selectively extract histamine from canned tuna. Carbon quantum dots functioning as a fluorescent probe were synthesized and introduced onto the microzones of the microfluidic paper device. This facilitated a noticeable fluorescence color change from dark red to vivid blue upon the addition of histamine. The change in fluorescence on the paper device was converted into specific RGB values using a portable UV light box combined with a smartphone. This assay achieved the limit of detection of 14.04 mg/kg with the linear range from 20 to 100 mg/kg of histamine in canned tuna. The entire molecular imprinting-microfluidic optosensing test could be completed in 45 min including sample preparation.
Collapse
Affiliation(s)
- Yihan He
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Marti Z Hua
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Shaolong Feng
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
4
|
Nazim T, Kubiak A, Cegłowski M. Quantification of 2,4-dichlorophenoxyacetic acid in environmental samples using imprinted polyethyleneimine with enhanced selectivity as a selective adsorbent in ambient plasma mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133661. [PMID: 38341890 DOI: 10.1016/j.jhazmat.2024.133661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Detection and quantification of various organic chemicals in the environment is critical to track their fate and control their levels. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a widely applied phenoxy herbicide with potential toxicity to fish and other aquatic organisms. In this study, we address the need for improved detection of 2,4-D by introducing a novel analytical method for its quantification. This method relies on the selective extraction of 2,4-D using MIPs and their subsequent direct analysis using ambient plasma mass spectrometry. During the synthesis, MIPs with various degrees of glycidol (GLY) functionalization were obtained. Experimental data showed that MIPs with no GLY functionalization displayed the highest adsorption capacity. Conversely, MIPs with 30% GLY functionalization exhibited the greatest selectivity for 2,4-D, rendering them valuable for extraction of 2,4-D even in the presence of other contaminants. Finally, the obtained MIPs were applied for quantification of 2,4-D in various water samples through direct analysis using a specially designed ambient plasma mass spectrometry setup. This approach improved the detection limits by 200-fold compared to pure solution analysis. The quantification of 2,4-D in river water samples yielded highly satisfactory recoveries, demonstrating the effective utility of the proposed analytical setup for real-life water sample analysis.
Collapse
Affiliation(s)
- Tomasz Nazim
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
5
|
Wusiman M, Taghipour F. A solid-phase fluorescence sensor for measuring chemical species in water. WATER RESEARCH 2024; 249:120972. [PMID: 38091699 DOI: 10.1016/j.watres.2023.120972] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
In this study, the first of its kind, a solid-phase fluorescence sensing platform was developed to quantify contaminants in water. ZnO quantum dots (QDs) were combined with molecularly imprinted polymers (MIPs) to form fluorescence sensing materials. Solid sensing layers were formed via a straightforward spin-coating method, which demonstrated a strong attachment to the sensor substrate while maintaining the integrity of the sensing materials. The developed sensing platform comprised a portable fluorescence detector to measure fluorescence intensity, instead of traditional fluorescence spectroscopy. The solid sensing platform was first tested with 2,4-dichlorophenoxyacetic acid (2,4-D), demonstrating high sensitivity (0.0233) and a very strong correlation (0.98) between the target molecule concentration and sensor signal. Further, the sensing platform was successfully adapted to measure a substance with a different molecular mass and chemical structure, the algae toxin microcystin-LR (MCLR); this demonstrated the sensor's versatility in quantifying target molecules. Tap water samples spiked with MCLR were also used to test the sensor's practical application. Finally, the working mechanism of the sensing platform was established, and the key information for using the sensor to measure various contaminants was determined. With its high performance, broad applicability, and ease of use, the developed platform provides a suitable basis for lab-on-chip image-based sensing devices for environmental monitoring.
Collapse
Affiliation(s)
- Muersha Wusiman
- Chemical and Biological Engineering, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Fariborz Taghipour
- Chemical and Biological Engineering, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
6
|
Neng J, Wang J, Wang Y, Zhang Y, Chen P. Trace analysis of food by surface-enhanced Raman spectroscopy combined with molecular imprinting technology: Principle, application, challenges, and prospects. Food Chem 2023; 429:136883. [PMID: 37506657 DOI: 10.1016/j.foodchem.2023.136883] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a rapid detection method with high sensitivity and simple pretreatment, but can be affected by interference from matrix components. By incorporating molecularly imprinted polymers (MIPs) that recognize specific targets, MIP-SERS sensors effectively overcome the interference of complex matrices and offer improved stability and sensitivity. This review provides a comprehensive understanding of the applications of MIP-SERS sensors for the detection of trace toxic substances in food. The underlying mechanism and development of SERS technology and the principle and classification of MIPs technology are discussed. Furthermore, the types of MIP-SERS sensors are introduced, with their advantages and disadvantages systematically illustrated. Recent advances in MIP-SERS technology for the detection of mycotoxins, additives, prohibited dyes, pesticides, veterinary drug residues, and other hazardous substances in food are highlighted. Finally, this review discusses the challenges associated with MIP-SERS technology and proposes future development prospects.
Collapse
Affiliation(s)
- Jing Neng
- College of Food Science and Engineering, Zhejiang University of Technology, Deqing 313299, China.
| | - Jiana Wang
- College of Food Science and Engineering, Zhejiang University of Technology, Deqing 313299, China.
| | - Yan Wang
- College of Food Science and Engineering, Zhejiang University of Technology, Deqing 313299, China.
| | - Yilong Zhang
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310027, China.
| | - Peng Chen
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310027, China.
| |
Collapse
|
7
|
Nazim T, Lusina A, Cegłowski M. Recent Developments in the Detection of Organic Contaminants Using Molecularly Imprinted Polymers Combined with Various Analytical Techniques. Polymers (Basel) 2023; 15:3868. [PMID: 37835917 PMCID: PMC10574876 DOI: 10.3390/polym15193868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) encompass a diverse array of polymeric matrices that exhibit the unique capacity to selectively identify a designated template molecule through specific chemical moieties. Thanks to their pivotal attributes, including exceptional selectivity, extended shelf stability, and other distinct characteristics, this class of compounds has garnered interest in the development of highly responsive sensor systems. As a result, the incorporation of MIPs in crafting distinctive sensors and analytical procedures tailored for specific analytes across various domains has increasingly become a common practice within contemporary analytical chemistry. Furthermore, the range of polymers amenable to MIP formulation significantly influences the potential utilization of both conventional and innovative analytical methodologies. This versatility expands the array of possibilities in which MIP-based sensing can be employed in recognition systems. The following review summarizes the notable progress achieved within the preceding seven-year period in employing MIP-based sensing techniques for analyte determination.
Collapse
Affiliation(s)
| | | | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (T.N.); (A.L.)
| |
Collapse
|
8
|
Erdem Ö, Eş I, Saylan Y, Atabay M, Gungen MA, Ölmez K, Denizli A, Inci F. In situ synthesis and dynamic simulation of molecularly imprinted polymeric nanoparticles on a micro-reactor system. Nat Commun 2023; 14:4840. [PMID: 37563147 PMCID: PMC10415298 DOI: 10.1038/s41467-023-40413-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Current practices in synthesizing molecularly imprinted polymers face challenges-lengthy process, low-productivity, the need for expensive and sophisticated equipment, and they cannot be controlled in situ synthesis. Herein, we present a micro-reactor for in situ and continuously synthesizing trillions of molecularly imprinted polymeric nanoparticles that contain molecular fingerprints of bovine serum albumin in a short period of time (5-30 min). Initially, we performed COMSOL simulation to analyze mixing efficiency with altering flow rates, and experimentally validated the platform for synthesizing nanoparticles with sizes ranging from 52-106 nm. Molecular interactions between monomers and protein were also examined by molecular docking and dynamics simulations. Afterwards, we benchmarked the micro-reactor parameters through dispersity and concentration of molecularly imprinted polymers using principal component analysis. Sensing assets of molecularly imprinted polymers were examined on a metamaterial sensor, resulting in 81% of precision with high selectivity (4.5 times), and three cycles of consecutive use. Overall, our micro-reactor stood out for its high productivity (48-288 times improvement in assay-time and 2 times improvement in reagent volume), enabling to produce 1.4-1.5 times more MIPs at one-single step, and continuous production compared to conventional strategy.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Ismail Eş
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Murat Alp Gungen
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Kadriye Ölmez
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
9
|
Xiao L, Feng S, Lu X. Raman spectroscopy: Principles and recent applications in food safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:1-29. [PMID: 37722771 DOI: 10.1016/bs.afnr.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food contaminant is a significant issue because of the adverse effects on human health and economy. Traditional detection methods such as liquid chromatography-mass spectroscopy for detecting food contaminants are expensive and time-consuming, and require highly-trained personnel and complicated sample pretreatment. Raman spectroscopy is an advanced analytical technique in a manner of non-destructive, rapid, cost-effective, and ultrasensitive sensing various hazards in agri-foods. In this chapter, we summarized the principle of Raman spectroscopy and surface enhanced Raman spectroscopy, the methods to process Raman spectra, the recent applications of Raman/SERS (surface-enhanced Raman spectroscopy) in detecting chemical contaminants (e.g., pesticides, antibiotics, mycotoxins, heavy metals, and food adulterants) and microbiological hazards (e.g., Salmonella, Campylobacter, Shiga toxigenic E. coli, Listeria, and Staphylococcus aureus) in foods.
Collapse
Affiliation(s)
- Li Xiao
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Shaolong Feng
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
10
|
Tarannum N, Khatoon S, Yadav A, Yadav AK. SERS-Based Molecularly Imprinted Polymer Sensor for Highly Sensitive Norfloxacin Detection. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
11
|
Xu R, Dai S, Dou M, Yang J, Wang X, Liu X, Wei C, Li Q, Li J. Simultaneous, Label-Free and High-throughput SERS Detection of Multiple Pesticides on Ag@Three-Dimensional Silica Photonic Microsphere Array. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3050-3059. [PMID: 36734836 DOI: 10.1021/acs.jafc.2c07846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rapid identification and quantitative simultaneous analysis for multiple pesticide in real samples based on surface-enhanced Raman spectroscopy (SERS) is still a challenge because of sample complexity, reproducibility, and stability of SERS substrate. With use of colloidal silver nanoparticles loaded three-dimensional (3D) silica photonic microspheres (SPMs) array as the analytical platform, a SERS-based array assay for multiple pesticides was developed in this work. The silver nanoparticles were fixed into the gaps formed by the self-assembled nanospheres of the 3D SPMs to produce "hot spots", on which the Raman enhanced effect was up to 9.86 × 107 and the maximum electric field enhancement effect reached to 9.75 times, ensuring the target pesticides on the surface of the SERS-substrate integrated SPM can be detected sensitively. Using 2,4-dichlorophenoxyacetic acid (2,4-D), glyphosate, and imidacloprid as the testing pesticides, the label-free and high-throughput SERS assay for simultaneous detection of the pesticides was established, giving good linear detection ranges (0.1-204.8 μg/mL for 2,4-D, 0.3-247.9 μg/mL for glyphosate, and 0.2-204.8 μg/mL for imidacloprid) and low detection limits (3.03 ng/mL for 2,4-D, 3.14 ng/mL for glyphosate, and 8.82 ng/mL for imidacloprid). The spiked recovery rates in the real samples were measured in the range of 82-112%, which was consistent with that of the classical standard methods. The label-free 3D SERS array analytical platform provides a powerful tool for high-throughput and low-cost screening of multiple pesticide residues in real samples.
Collapse
Affiliation(s)
- Ruimin Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Jing Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Xiu Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Xiaomeng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Chenhong Wei
- Anhui Costar Biochemical Company Ltd., Dangtu243100, Anhui, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| |
Collapse
|
12
|
Ayerdurai V, Lach P, Lis-Cieplak A, Cieplak M, Kutner W, Sharma PS. An advantageous application of molecularly imprinted polymers in food processing and quality control. Crit Rev Food Sci Nutr 2022; 64:3407-3440. [PMID: 36300633 DOI: 10.1080/10408398.2022.2132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the global market era, food product control is very challenging. It is impossible to track and control all production and delivery chains not only for regular customers but also for the State Sanitary Inspections. Certified laboratories currently use accurate food safety and quality inspection methods. However, these methods are very laborious and costly. The present review highlights the need to develop fast, robust, and cost-effective analytical assays to determine food contamination. Application of the molecularly imprinted polymers (MIPs) as selective recognition units for chemosensors' fabrication was herein explored. MIPs enable fast and inexpensive electrochemical and optical transduction, significantly improving detectability, sensitivity, and selectivity. MIPs compromise durability of synthetic materials with a high affinity to target analytes and selectivity of molecular recognition. Imprinted molecular cavities, present in MIPs structure, are complementary to the target analyte molecules in terms of size, shape, and location of recognizing sites. They perfectly mimic natural molecular recognition. The present review article critically covers MIPs' applications in selective assays for a wide range of food products. Moreover, numerous potential applications of MIPs in the food industry, including sample pretreatment before analysis, removal of contaminants, or extraction of high-value ingredients, are discussed.
Collapse
Affiliation(s)
| | - Patrycja Lach
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | | |
Collapse
|
13
|
Synthesis and characterization of sensitive molecularly imprinting electrochemical sensor based on chitosan modified aminoated hierarchical porous silica-supported gold for detection of 2, 4-dichlorophenoxyacetic acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Preparation of molecularly imprinted polymer coatings based on via a sandwich method for solid-phase microextraction of 2,4-dichlorophenoxyacetic acid from milk. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Molecularly-Imprinted SERS: A Potential Method for Bioanalysis. Sci Pharm 2022. [DOI: 10.3390/scipharm90030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The most challenging step in developing bioanalytical methods is finding the best sample preparation method. The matrix interference effect of biological sample become a reason of that. Molecularly imprinted SERS become a potential analytical method to be developed to answer this challenge. In this article, we review recent progress in MIP SERS application particularly in bioanalysis. Begin with the explanation about molecular imprinting technique and component, SERS principle, the combination of MIP SERS, and follow by various application of MIP SERS for analysis. Finally, the conclusion and future perspective were also discussed.
Collapse
|
16
|
Feng S, Hu Y, Chen L, Lu X. Molecularly imprinted core-shell Au nanoparticles for 2,4-dichlorophenoxyacetic acid detection in milk using surface-enhanced Raman spectroscopy. Anal Chim Acta 2022; 1227:340333. [DOI: 10.1016/j.aca.2022.340333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/01/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
|
17
|
Liu X, Song R, Wei R. Rapid Determination of Vitamin D 3 in Aquatic Products by Polypyrrole-Coated Magnetic Nanoparticles Extraction Coupled with High-Performance Liquid Chromatography Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1226. [PMID: 35407344 PMCID: PMC9002580 DOI: 10.3390/nano12071226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023]
Abstract
A method using polypyrrole-coated Fe3O4 (Fe3O4@PPy composites) based extraction coupled with high performance liquid chromatography was developed for adsorption and detection of trace vitamin D3 (VD3) in aquatic products. The fabricated Fe3O4@PPy composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Fe3O4@PPy composites showed efficient adsorption of VD3 at pH 9.0 and 25 °C with a dose of 25 mg per 10 mL of sample solution and an adsorption time of 11 min. Methanol was selected as the desorption solvent to recover VD3 from Fe3O4@PPy composites after 3 min of static treatment. Fe3O4@PPy composites can be used for VD3 adsorption at least two times. The developed method showed a good linearity for VD3 determination in the range of 0.1-10 μg/mL with a correlation coefficient of 0.9989. The limits of detection and quantification were 10 ng/mL and 33 ng/mL, respectively. The recovery of VD3 in a spiking test was 97.72% with a relative standard deviation value of 1.78%. The content of VD3 in nine aquatic products was determined with this method. Our results show that Fe3O4@PPy composites provide a convenient method for the adsorption and determination of VD3 from the complex matrix of aquatic products.
Collapse
Affiliation(s)
- Xinyan Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Rongbian Wei
- School of Chemistry and Bioengineering, Guangxi Normal University for Nationalities, Chongzuo 532200, China
| |
Collapse
|
18
|
Bräuer B, Thier F, Bittermann M, Baurecht D, Lieberzeit PA. Raman Studies on Surface-Imprinted Polymers to Distinguish the Polymer Surface, Imprints, and Different Bacteria. ACS APPLIED BIO MATERIALS 2022; 5:160-171. [PMID: 35014817 PMCID: PMC8767538 DOI: 10.1021/acsabm.1c01020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecularly imprinted polymers (MIPs) are widely used as robust biomimetic recognition layers in sensing devices targeting a wide variety of analytes including microorganisms such as bacteria. Assessment of imprinting success and selectivity toward the target is of great importance in MIP quality control. We generated Escherichia coli-imprinted poly(styrene-co-DVB) as a model system for bacteria-imprinted polymers via surface imprinting using a glass stamp with covalently immobilized E. coli. Confocal Raman Microscopy was successfully employed to visualize bacteria, imprints, and polymer and to distinguish them from each other. The method has proven highly feasible for assessing if imprinting had been successful. In addition, we developed a method for selectivity investigation of bacteria MIPs based on combining Confocal Raman Microscopy and Partial Least Squares Discriminant Analysis (PLS-DA). The Raman spectra of E. coli and Bacillus cereus were acquired on E. coli-imprinted poly(styrene-co-DVB) and used to establish a PLS-DA model for differentiating between the bacteria species. Model validation demonstrated a correct classification of 95% of Raman spectra, indicating sufficient accuracy of the model for future use in MIP selectivity studies. Simultaneous differentiation of 3 bacteria species (E. coli, B. cereus, and Lactococcus lactis) on E. coli-imprinted poly(styrene-co-DVB) proved more difficult, which might be due to the limited depth resolution of the confocal Raman microscope resulting in the presence of interfering signals from the polymer substrate. It might be possible to overcome this obstacle by selective enhancement of the Raman signals originating from bacteria surfaces, such as tip enhanced Raman spectroscopy.
Collapse
Affiliation(s)
- Birgit Bräuer
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Felix Thier
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Marius Bittermann
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Dieter Baurecht
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
19
|
Novel Electrochemical Sensor Based on Molecularly Imprinted Polymers with MWCNTs-SiO2 for Selective and Sensitive Detecting 2,4-D. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02154-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Selective recognition and determination of malachite green in fish muscles via surface-enhanced Raman scattering coupled with molecularly imprinted polymers. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Dao DQ, Ngo TC, Le TTH, Trinh QT, Nguyen TLA, Huy BT, Tri NN, Trung NT, Nguyen MT. SERS Chemical Enhancement of 2,4,5-Trichlorophenoxyacetic Acid Adsorbed on Silver Substrate. J Phys Chem A 2021; 125:8529-8541. [PMID: 34554758 DOI: 10.1021/acs.jpca.1c04957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) was employed to gain an understanding of the chemical enhancement mechanism of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), an Agent Orange, adsorbed on a silver substrate surface. Experimental measurements were performed using a micro-Raman spectrophotometer with an excitation wavelength of 532 nm and successfully detected 2,4,5-T at a relatively low concentration of 0.4 nM. Density functional theory (DFT) calculations on the interactions of the 2,4,5-T molecule with some small silver clusters, Agn with n = 4, 8, and 20, as well as with extended Ag surfaces, demonstrate that the most stable adsorption configuration is formed via coordination of Cl9 sites and carbonyl C═O group on the 2,4,5-T ligand to the Ag atoms on surfaces. Analyses of charge transfer mechanism and frontier orbitals distributions show an electron transfer from 2,4,5-T to the cluster in the ground state, and an inversed trend occurs for the excited singlet state process, consequently leading to a chemical enhancement of SERS signals. The obtained results are of importance for subsequent work in guiding the design of mobile sensors specifically used for services of rapid screening and detection of these toxic compounds present in the environment, as well as agricultural and food products. Extensive computations pointed out that small silver clusters, in particular of Ag20 size, can be used as appropriate models for a metal nanoparticle surface.
Collapse
Affiliation(s)
- Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.,Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam
| | - Thi Chinh Ngo
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.,Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam
| | - Thi Thuy Huong Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Ha Noi 100000, Viet Nam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Ha Noi 100000, Viet Nam
| | - Quang Thang Trinh
- Institute of High Performance Computing (IHPC), Agency for Science Technology and Research (A*STAR), #16-16 Connexis, 1 Fusionopolis Way, Singapore 138632, Singapore
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.,Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam
| | - Bui The Huy
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Nguyen Ngoc Tri
- Laboratory of Computational Chemistry and Modelling (LCCM), and Department of Chemistry, Quy Nhon University, Quy Nhon 591300, Viet Nam
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modelling (LCCM), and Department of Chemistry, Quy Nhon University, Quy Nhon 591300, Viet Nam
| | - Minh Tho Nguyen
- Institute for Computational Science and Technology (ICST), Ho Chi Minh City 700000, Vietnam.,Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
22
|
Fang L, Jia M, Zhao H, Kang L, Shi L, Zhou L, Kong W. Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. Molecularly imprinted polymers for food applications: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Ma J, Yan M, Feng G, Ying Y, Chen G, Shao Y, She Y, Wang M, Sun J, Zheng L, Wang J, Abd El-Aty AM. An overview on molecular imprinted polymers combined with surface-enhanced Raman spectroscopy chemical sensors toward analytical applications. Talanta 2020; 225:122031. [PMID: 33592760 DOI: 10.1016/j.talanta.2020.122031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful and high-speed detection technology. It provides information on molecular fingerprint recognition with ultrahigh sensitive detection. However, it shows poor anti-interference capacity against complex matrices. Molecularly imprinted polymers (MIPs) can achieve specific recognition of targets from complex matrices. Through introducing the MIP separation system, the MIP-SERS chemical sensor can effectively overcome the limitation of complex matrix interference, and further improve the stability of sensors for detection. Herein, the materials and structures of integrated MIP-SERS sensors are systematically reviewed, and its application as a sensor for chemical detection of hazardous substances in environmental and food samples has been addressed as well. To broaden the prospects of application, we have discussed the current challenges and future perspectives that would accelerate the development of versatile MIP-SERS chemical sensors.
Collapse
Affiliation(s)
- Jun Ma
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Mengmeng Yan
- Institute of Quality Standard and Test Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, PR China
| | - Gege Feng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Ying Ying
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yong Shao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Miao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jianchun Sun
- Tibetan Inspection and Testing Center for Agricultural Product Quality and Safety, Lhasa, 850000, PR China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey.
| |
Collapse
|
25
|
Competitive plasmonic biomimetic enzyme-linked immunosorbent assay for sensitive detection of bisphenol A. Food Chem 2020; 344:128602. [PMID: 33272757 DOI: 10.1016/j.foodchem.2020.128602] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/16/2020] [Accepted: 11/06/2020] [Indexed: 11/23/2022]
Abstract
A plasmonic biomimetic enzyme-linked immunosorbent assay (PBELISA) method was developed for ultrasensitive and on-site visual detection of bisphenol A (BPA). The PBELISA was an enzyme-linked immunoassay using molecularly imprinted polymer (MIP) film as biomimetic antibody combined with catalase (CAT)-mediated growth of plasmonic gold nanoparticles (AuNPs). With the BPA concentration increased, a distinguished color change was observed from colorless to blue and then red. Therefore, the proposed method could be employed with naked-eye observation to detect BPA with visual limit of detection (LOD) of 40 pg/mL. For quantitative analysis, this method also exhibited a good dynamic linear response to the logarithmic BPA concentrations ranged from 10 pg/mL to 1.024 × 104 pg/mL with a correlation coefficient of R2 = 0.9922 and LOD of 6.20 pg/mL. The recovery rates in tap water, milk and orange juice ranged from 91.83% to 107.39%. In brief, the developed PBELISA method is sensitive, cost-effective and easy-to-use for BPA detection.
Collapse
|
26
|
Physical and Chemical Properties Characterization of 3D-Printed Substrates Loaded with Copper-Nickel Nanowires. Polymers (Basel) 2020; 12:polym12112680. [PMID: 33202831 PMCID: PMC7696011 DOI: 10.3390/polym12112680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022] Open
Abstract
This study deals with the laser stereolithography manufacturing feasibility of copper-nickel nanowire-loaded photosensitive resins. The addition of nanowires resulted in a novel resin suitable for additive manufacturing technologies based on layer-by-layer photopolymerization. The pure and nanowire-loaded resin samples were 3D printed in a similar way. Their morphological, mechanical, thermal, and chemical properties were characterized. X-ray computed tomography revealed that 0.06 vol % of the composite resin was filled with nanowires forming randomly distributed aggregates. The increase of 57% in the storage modulus and 50% in the hardness when loading the resin with nanowire was attributed to the load transfer. Moreover, the decrease in the glass transition temperature from 57.9 °C to 52.8 °C in the polymeric matrix with nanowires evidenced a decrease in the cross-linking density, leading to a higher mobility of the polymer chains during glass transition. Consequently, this research demonstrates the successful dispersion and use of copper-nickel nanowires as a reinforcement material in a commercial resin for laser stereolithography.
Collapse
|
27
|
Determination of 2,4-Dichlorophenoxyacetic Acid in Water and Edible Seeds Samples Using Salt-Assisted Liquid-Liquid Extraction Coupled with High-Performance Liquid Chromatography. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01903-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Wu B, Muhammad T, Aihebaier S, Karim K, Hu Y, Piletsky S. A molecularly imprinted polymer based monolith pipette tip for solid-phase extraction of 2,4-dichlorophenoxyacetic acid in an aqueous sample. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4913-4921. [PMID: 32996953 DOI: 10.1039/d0ay01587c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper presents a simple approach for fabrication of a pipette tip solid-phase extraction (PT-SPE) device, which possesses a monolith structure with low back pressure and has high selectivity to 2,4-dichlorophenoxyacetic acid (2,4-D). Pipette tips were packed with molecularly imprinted polymers (MIPs) as a selective adsorbent and high-density polyethylene (HDPE) as a co-sintering agent, and then heated to form a monolith extraction device. The key factors including the particle size and amount of packing material, and the type and volume of elution solvent, which influence PT-SPE device performance were optimized. A packing material of 40 mg/0.20 mL in a ratio of 4/6 (MIPs/HDPE) and treatment temperature of 150 °C was selected. By the determination with high-performance liquid chromatography (HPLC-SPD), the extraction device was found to have a good extraction recovery for a 2,4-D lake water sample at a low concentration (0.006 mg L-1) with an enrichment factor about 50. The proposed method provided a simple approach for the fabrication of a PT-SPE monolith device with reduced back pressure and wall effect, which are very important for improving the extraction efficiency. And the device will have promising application in the extraction of a variety of analytes in complex samples.
Collapse
Affiliation(s)
- Beibei Wu
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Molecularly imprinted polymers (MIPs) are currently widely used and further developed for biological applications. The MIP synthesis procedure is a key process, and a wide variety of protocols exist. The templates that are used for imprinting vary from the smallest glycosylated glycan structures or even amino acids to whole proteins or bacteria. The low cost, quick preparation, stability and reproducibility have been highlighted as advantages of MIPs. The biological applications utilizing MIPs discussed here include enzyme-linked assays, sensors, in vivo applications, drug delivery, cancer diagnostics and more. Indeed, there are numerous examples of how MIPs can be used as recognition elements similar to natural antibodies.
Collapse
|
30
|
Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115943] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Xu Y, Hassan MM, Ali S, Li H, Chen Q. SERS-based rapid detection of 2,4-dichlorophenoxyacetic acid in food matrices using molecularly imprinted magnetic polymers. Mikrochim Acta 2020; 187:454. [PMID: 32681368 DOI: 10.1007/s00604-020-04408-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/23/2020] [Indexed: 01/15/2023]
Abstract
In order to remove the limitations of natural antibodies or enzymes, a nano-magnetic biomimetic platform based on a surface-enhanced Raman scattering (SERS) sensor has been developed for highly sensitive capture and detection of 2,4-dichlorophenoxyacetic acid (2,4-D) in food and water samples. Magnetic-based molecular imprinted polymer nanoparticles (Mag@MIP NPs) were constructed to capture the target 2,4-D molecule via biomimetic recognition, and gold nanoparticles (Au NPs) served as SERS-based probes, which are bound to the Mag@MIP NPs by electrostatic adsorption. The as-prepared SERS-MIP sensor for sensing of 2,4-D achieved a good linear relationship with a low detection limit (LOD) of 0.00147 ng/mL within 2 h and exhibited high sensitivity. The sensor was successfully applied to detect 2,4-D in milk and tap water and achieved good recoveries ranging from 93.5 to 102.2%. Moreover, the designed sensor system exhibited satisfactory results (p > 0.05) compared to HPLC by validation analysis. Hence, the findings demonstrated that the proposed method has significant potential for practical application in food safety and environmental protection. Graphical abstract .
Collapse
Affiliation(s)
- Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
32
|
Qu F, Lin L, Cai C, Chu B, Wang Y, He Y, Nie P. Terahertz fingerprint characterization of 2,4-dichlorophenoxyacetic acid and its enhanced detection in food matrices combined with spectral baseline correction. Food Chem 2020; 334:127474. [PMID: 32688175 DOI: 10.1016/j.foodchem.2020.127474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022]
Abstract
Rapid and accurate detection of pesticide residues in food matrices are of great significance to food safety. This study aimed to characterize the fingerprint peaks of 2,4-dichlorophenoxyacetic acid (2,4-D) and to enhance its detection accuracy in food matrices by using terahertz (THz) time-domain spectroscopy. Density functional theory was used to simulate molecular dynamics of 2,4-D peaks (1.35, 1.60, 2.37 and 3.00 THz). Four baseline correction methods, including asymmetric least squares smoothing (AsLS), adaptive iteratively reweighted penalized least squares (AirPLS), background correction (Backcor), baseline estimation and denoising with sparsity (BEADS) were compared and used to eliminate spectral baselines of Zizania latifolia (ZIZLA), rice and maize containing 2,4-D residues, from 0.1 to 4 THz. Based on the peak information of 1.35 THz, the detection limit and accuracy of 2,4-D residues in these food matrices were significantly improved after THz spectral baseline correction, providing a new feasibility for food safety and agricultural applications.
Collapse
Affiliation(s)
- Fangfang Qu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
| | - Lei Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
| | - Chengyong Cai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
| | - Bingquan Chu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Yue Wang
- Department of Applied Physics, Xi'an University of Technology, South Jinhua Road, Xi'an, Shanxi 710048, China; Key Laboratory of Engineering Dielectric and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
33
|
Söylemez MA, Güven O. Radiation induced in-situ synthesis of membranes for removal of 2,4-dichlorophenoxy acetic acid from real water samples. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Li X, Cao X, Zhang Z, Zhang Z, Jiang Z, Yin J. Synthesis of molecularly imprinted polymer adsorbents for solid‐phase extraction of strobilurin fungicides from agricultural products. J Sep Sci 2020; 43:2133-2141. [DOI: 10.1002/jssc.201901261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Xinyi Li
- College of Life ScienceYantai University Yantai P. R. China
| | - Xiaolin Cao
- College of Life ScienceYantai University Yantai P. R. China
| | - Zheng Zhang
- College of Life ScienceYantai University Yantai P. R. China
| | - Ziping Zhang
- College of Life ScienceYantai University Yantai P. R. China
| | - Zejun Jiang
- College of Life SciencesChina Jiliang University Hangzhou P. R. China
| | - Jungang Yin
- College of Life ScienceYantai University Yantai P. R. China
| |
Collapse
|
35
|
Xu Y, Kutsanedzie FYH, Hassan M, Zhu J, Ahmad W, Li H, Chen Q. Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem 2020; 315:126300. [PMID: 32018077 DOI: 10.1016/j.foodchem.2020.126300] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/20/2019] [Accepted: 01/25/2020] [Indexed: 02/07/2023]
Abstract
In this study, a novel sensor fabricated with compactly arranged gold nanoparticles (AuNPs) templated from mesoporous silica film (MSF) via air-water interface has been confirmed as a promising surface-enhanced Raman scattering (SERS) substrate for detecting trace levels of 2,4-dichlorophenoxyacetic acid (2,4-D), pymetrozine and thiamethoxam. The densely arranged AuNPs@MSF had an average AuNPs size of 5.15 nm with small nanogaps (<2nm) between AuNPs, and exhibited a high SERS performance. SERS spectra of pesticides were collected after their adsorption on the AuNPs@MSF. The results showed that the concentration of 2,4-D, pymetrozine and thiamethoxam gave a good linear relationship with SERS intensity. Moreover, the designed SERS-based sensor (AuNPs@MSF) was stable for 3 months with ca. 3% relative standard deviation (RSD) and was applied successfully for the analysis of 2,4-D extraction from both environmental and food samples. The proposed SERS-based sensor was further validated by HPLC and showed satisfactory result (p > 0.05).
Collapse
Affiliation(s)
- Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Felix Y H Kutsanedzie
- Research and Innovation Center/Mechanical Engineering Department, Accra Technical University, Accra, Ghana
| | - Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jiaji Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
36
|
Mohammadnia M, Heydari R, Sohrabi MR. Determination of 2,4-Dichlorophenoxyacetic acid in food and water samples using a modified graphene oxide sorbent and high-performance liquid chromatography. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:293-300. [PMID: 31746259 DOI: 10.1080/03601234.2019.1692613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present work, dispersive micro-solid phase extraction (D-μ-SPE) method using magnetic graphene oxide tert-butylamine (GO/Fe3O4/TBA) nanocomposite, as an efficient sorbent, was applied for determining 2,4-dichlorophenoxyacetic acid (2,4-D) in water and food samples. Detection was carried out using high-performance liquid chromatography (HPLC) instrument. Influential parameters of D-μ-SPE such as sorbent and its amount, elution solvent and its volume, adsorption and desorption times and pH of sample solution were investigated and optimized. Under the optimized conditions, limit of detection and quantitation values were 0.007 and 0.02 μg/mL, respectively. Recovery data for several real samples were obtained within the range of 88.0-94.0% with a relative standard deviation (RSD) less than 7.5%. The proposed method was successfully applied to quantitative determination of 2,4-D in several vegetables and water samples.
Collapse
Affiliation(s)
- Maryam Mohammadnia
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rouhollah Heydari
- Research Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmoud Reza Sohrabi
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
37
|
Bernat A, Samiwala M, Albo J, Jiang X, Rao Q. Challenges in SERS-based pesticide detection and plausible solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12341-12347. [PMID: 31635458 DOI: 10.1021/acs.jafc.9b05077] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) can be used for the detection of trace amounts of pesticides in foods to ensure consumer safety. In this perspective, we highlight the trends of SERS-based assays in pesticide detection and the various challenges associated with their selectivity, reproducibility, and nonspecific binding. We also discuss and compare the target analyte capture techniques, such as the use of antibodies, aptamers, and molecularly imprinted polymers (MIPs), coupled with SERS to overcome the drawbacks as mentioned above. In addition, issues related to the nonspecific binding of analytes and its potential solution are discussed.
Collapse
Affiliation(s)
- Andrea Bernat
- Department of Nutrition, Food and Exercise Sciences , Florida State University , Tallahassee , Florida 32306 , United States
| | - Mustafa Samiwala
- Department of Nutrition, Food and Exercise Sciences , Florida State University , Tallahassee , Florida 32306 , United States
| | - Jonathan Albo
- Department of Chemical and Biomedical Engineering , Florida State University , Tallahassee , Florida 32310 , United States
| | - Xingyi Jiang
- Department of Nutrition, Food and Exercise Sciences , Florida State University , Tallahassee , Florida 32306 , United States
| | - Qinchun Rao
- Department of Nutrition, Food and Exercise Sciences , Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
38
|
Novel QCM and SPR sensors based on molecular imprinting for highly sensitive and selective detection of 2,4-dichlorophenoxyacetic acid in apple samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:483-491. [DOI: 10.1016/j.msec.2019.04.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/11/2019] [Accepted: 04/20/2019] [Indexed: 11/22/2022]
|
39
|
Yu X, Lee JK, Liu H, Yang H. Synthesis of magnetic nanoparticles to detect Sudan dye adulteration in chilli powders. Food Chem 2019; 299:125144. [PMID: 31323440 DOI: 10.1016/j.foodchem.2019.125144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/22/2022]
Abstract
Magnetic nanoparticles were synthesised to extract Sudan dyes from chilli powders. The adsorbents used were magnetic ferroferric oxide nanoparticles coated with polystyrene. The extraction procedures for Sudan dyes comprised liquid-solid extraction and magnetic solid phase extraction. The conditions were optimised to achieve efficient magnetic solid phase extraction, including extraction and desorption time, type and volume of the desorption solvent, and the mass of the adsorbents. Repeatability tests showed satisfactory recovery rates of 80.2-115.8%, with a relative standard deviation <3.8%. The results suggested that the proposed extraction method was effective and efficient to extract Sudan dyes from chilli powders. The extraction process was simpler compared with traditional approaches because the adsorbents can be rapidly removed from the sample matrix using a permanent magnet. The use of recyclable adsorbents decreased the cost greatly. Chilli powder samples collected from local markets in Singapore were tested using the proposed method under optimum conditions.
Collapse
Affiliation(s)
- Xi Yu
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Jun Kang Lee
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, PR China
| | - Hongshun Yang
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
40
|
A semen cassia gum-based film with visual–olfactory function for indicating the freshness change of animal protein-rich food. Int J Biol Macromol 2019; 133:243-252. [DOI: 10.1016/j.ijbiomac.2019.04.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/26/2019] [Accepted: 04/07/2019] [Indexed: 11/19/2022]
|
41
|
Zhang Z, Ma X, Jia M, Li B, Rong J, Yang X. Deposition of CdTe quantum dots on microfluidic paper chips for rapid fluorescence detection of pesticide 2,4-D. Analyst 2019; 144:1282-1291. [PMID: 30548046 DOI: 10.1039/c8an02051e] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapid detection of pesticides in fruits is an ongoing challenge. The objective of the present study was to develop novel fluorescent microfluidic paper chips for specific recognition and sensitive detection of the pesticide 2,4-D through the electron-transfer-induced fluorescence quenching mechanism. CdTe quantum dots (QDs) were deposited onto cellulose paper (base material) to yield imprinted paper chips (paper@QDs@MIPs). This method allows the transferability of the molecularly imprinted fluorescence sensor from the liquid phase to the solid phase (paper base) for rapid and portable analysis. The resultant imprinted paper chips were effectively characterized, and they exhibited ideal ordered spatial network structure, chemical stability, and fluorescence property. The paper@QDs@MIPs showed that 2,4-D binding significantly reduced the fluorescence intensity within less than 18 min, and it achieved satisfactory linearity in the range of 0.83-100 μM and high detectability of 90 nM. The recognition specificity for 2,4-D relative to its analogues was shown, and the imprinting factor was 2.13. In addition, the recoveries of the spiked bean sprouts at three concentration levels ranged within 94.2-107.0%, with a relative standard deviation of less than 5.9%. Collectively, the device provided an effective platform for rapid recognition, convenience, and detection of trace food pollutants in complex matrices, thereby ensuring food safety and further promoting surface imprinting studies.
Collapse
Affiliation(s)
- Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | | | | | |
Collapse
|
42
|
Cao L, Sun G, Zhang C, Liu W, Li J, Wang L. An Intelligent Film Based on Cassia Gum Containing Bromothymol Blue-Anchored Cellulose Fibers for Real-Time Detection of Meat Freshness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2066-2074. [PMID: 30721049 DOI: 10.1021/acs.jafc.8b06493] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To prepare intelligent cellulose fiber (ICF), cellulose fibers were modified by grafting hydroxypropyltriethylamine groups to which bromothymol blue (BTB) was anchored. The ICFs were incorporated into cassia gum (CG) to prepare a pH-sensitive intelligent film. The Fourier transform infrared results indicated that BTB has been introduced in the CG-ICF5 film. Scanning electronic microscopy indicated that the addition of ICF can loosen the structure of the film. The incorporation of ICF decreased light transmittance and water vapor permeability but did not significantly affect thermal stability. The mechanical properties were weakened with 3% ICF addition and were improved with 5% ICF addition. The release experiment indicated that 46.784% and 8.297% of BTB was released from the CG-ICF5 film under oscillating to 50% and 95% alcohol/water solution, respectively. The response of the intelligent films to triethylamine in environments with different relative humidities was investigated. A visible color change occurred in the triethylamine environment within 20 min. Pork and chicken spoilage experiments were performed to study the application of the intelligent film in monitoring meat freshness during spoilage. Obvious color changes appeared, demonstrating that the intelligent film has potential for use in real-time indication of meat spoilage.
Collapse
Affiliation(s)
- Lele Cao
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education , Northeast Forestry University , 26th Hexing Road , Xiangfang District, Harbin 150040 , P. R. China
- Research Center of Wood Bionic Intelligent Science , Northeast Forestry University , 51th Hexing Road , Xiangfang District, Harbin 150040 , P. R. China
| | - Guohou Sun
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education , Northeast Forestry University , 26th Hexing Road , Xiangfang District, Harbin 150040 , P. R. China
- Research Center of Wood Bionic Intelligent Science , Northeast Forestry University , 51th Hexing Road , Xiangfang District, Harbin 150040 , P. R. China
| | - Cijian Zhang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education , Northeast Forestry University , 26th Hexing Road , Xiangfang District, Harbin 150040 , P. R. China
| | - Wenbo Liu
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education , Northeast Forestry University , 26th Hexing Road , Xiangfang District, Harbin 150040 , P. R. China
| | - Jian Li
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education , Northeast Forestry University , 26th Hexing Road , Xiangfang District, Harbin 150040 , P. R. China
- Research Center of Wood Bionic Intelligent Science , Northeast Forestry University , 51th Hexing Road , Xiangfang District, Harbin 150040 , P. R. China
| | - Lijuan Wang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education , Northeast Forestry University , 26th Hexing Road , Xiangfang District, Harbin 150040 , P. R. China
- Research Center of Wood Bionic Intelligent Science , Northeast Forestry University , 51th Hexing Road , Xiangfang District, Harbin 150040 , P. R. China
| |
Collapse
|
43
|
Xu Y, Kutsanedzie FYH, Hassan MM, Li H, Chen Q. Synthesized Au NPs@silica composite as surface-enhanced Raman spectroscopy (SERS) substrate for fast sensing trace contaminant in milk. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:405-412. [PMID: 30170175 DOI: 10.1016/j.saa.2018.08.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 05/25/2023]
Abstract
With increased concerns on milk safety issues, the development of a simple and sensitive method to detect 2,4-dichlorophenoxyacetic acid (2,4-D), a common contaminant in milk, becomes relevant in safeguarding human health threats that results from its consumption. Surface-enhanced Raman spectroscopy (SERS) shows excellent ability for various targets analysis but its usage for rapid and accurate determination of analyte via SERS presents challenges. This study attempted the quantification of 2,4-dichlorophenoxyacetic acid (2,4-D) residue in milk using a novel SERS active substrate- decorated silica films with Au nanoparticles (Au NPs@ silica) coupled to chemometric algorithms. Au NPs@ silica composite was synthesized as a SERS sensor through self-assembly. Thereafter, the SERS spectrum of 2,4-D extract from milk with different concentrations based on the developed SERS sensor was collected and the spectra were analyzed by partial least squares (PLS), and variable selection algorithms - genetic algorithm-PLS (GA-PLS), competitive-adaptive reweighted sampling-PLS (CARS-PLS) and ant colony optimization-PLS (ACO-PLS), to develop quantitative models for 2,4-D prediction. The results obtained showed that the CARS-PLS model gave the optimum result with LOD of 0.01 ng/mL realized and a determination coefficient in the prediction set of (RP) = 0.9836 within a linear range of 10-2 to 106 ng/mL was achieved. Au NPs@ silica SERS sensor combined with CARS-PLS may be employed for rapid quantification of 2,4-D extract from milk towards its quality and safety monitoring.
Collapse
Affiliation(s)
- Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Felix Y H Kutsanedzie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
44
|
V-Niño ED, Díaz Lantada A, Lonne Q, Estupiñán Durán HA, Mejía-Ospino E, Ramírez-Caballero G, Endrino JL. Manufacturing of Polymeric Substrates with Copper Nanofillers through Laser Stereolithography Technique. Polymers (Basel) 2018; 10:polym10121325. [PMID: 30961249 PMCID: PMC6401789 DOI: 10.3390/polym10121325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 11/16/2022] Open
Abstract
This study presents the additive manufacture of objects using mass-functionalized photo-resins, which are additively photopolymerized using the laser stereolithography technique. The mass functionalization is based on the incorporation of copper nanowires used as fillers at different concentrations. Cylindrical and tensile test probes are designed and manufactured in a layer-by-layer approach using a low-cost laser stereolithography system working with a layer thickness of 100 µm. The morphological, mechanical, thermal and chemical results help to show the viability and potential that this combination of mass-functionalized resins and technological processes may have in the near future, once key challenges are solved. Finally, some potential applications are also discussed.
Collapse
Affiliation(s)
- Ely Dannier V-Niño
- Departamento de Ingeniería Mecánica, Universidad Politécnica de Madrid, 28006 Madrid, Spain.
- Materials Science and Technology Research Group, Foundation of Researchers in Science and Technology of Materials, 680003 Bucaramanga, Colombia.
| | - Andrés Díaz Lantada
- Departamento de Ingeniería Mecánica, Universidad Politécnica de Madrid, 28006 Madrid, Spain.
| | - Quentin Lonne
- School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK.
| | | | - Enrique Mejía-Ospino
- Escuela de Química e Ingeniería Química, Universidad Industrial de Santander, 680002 Bucaramanga, Colombia.
| | - Gustavo Ramírez-Caballero
- Escuela de Química e Ingeniería Química, Universidad Industrial de Santander, 680002 Bucaramanga, Colombia.
| | - José Luis Endrino
- School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
45
|
Zhao G, Chen X, Zou J, Li C, Liu L, Zhang T, Yu J, Jiao F. Activation of Peroxymonosulfate by Fe3O4–CsxWO3/NiAl Layered Double Hydroxide Composites for the Degradation of 2,4-Dichlorophenoxyacetic Acid. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04453] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Guoqing Zhao
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People’s Republic of China
| | - Xiaoqing Chen
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People’s Republic of China
| | - Jiao Zou
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People’s Republic of China
| | - Caifeng Li
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People’s Republic of China
| | - Lukai Liu
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People’s Republic of China
| | - Taiheng Zhang
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People’s Republic of China
| | - Jingang Yu
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People’s Republic of China
| | - Feipeng Jiao
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People’s Republic of China
| |
Collapse
|
46
|
Pan TT, Sun DW, Paliwal J, Pu H, Wei Q. New Method for Accurate Determination of Polyphenol Oxidase Activity Based on Reduction in SERS Intensity of Catechol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11180-11187. [PMID: 30209938 DOI: 10.1021/acs.jafc.8b03985] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Rapid and accurate measurement of polyphenol oxidase (PPO) activity is important in the food industry as PPOs play a vital role in catalyzing enzymatic reactions. The aim of this study was to develop surface-enhanced Raman scattering (SERS) approach for accurate determination of PPO activity in fruit and vegetables using the reduction in SERS intensity of catechol in reaction medium. Within a certain catechol concentration, when a purified PPO solution was analyzed, the reduction in SERS intensity (Δ I) was linear to PPO activity ( Ec) in a wide range of 500-50 000 U/L, and a linear regression equation of log Δ I/Δ t = 0.6223 log Ec + 0.8072, with a correlation coefficient of 0.9689 and a limit of detection of 224.65 U/L, was obtained. The method was used for detecting PPO activity in apple and potato samples, and the results were compared with those obtained from colorimetric assay, which demonstrated that the proposed method could be successfully used for detecting PPO activity in food samples.
Collapse
Affiliation(s)
- Ting-Tiao Pan
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Engineering and Technological Research Centre , Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Department of Biosystems Engineering , University of Manitoba , E2-376, EITC, 75A Chancellor's Circle , Winnipeg , R3T 2N2 Manitoba , Canada
| | - Da-Wen Sun
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Engineering and Technological Research Centre , Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre , University College Dublin , National University of Ireland, Belfield, Dublin 4 , Ireland
| | - Jitendra Paliwal
- Department of Biosystems Engineering , University of Manitoba , E2-376, EITC, 75A Chancellor's Circle , Winnipeg , R3T 2N2 Manitoba , Canada
| | - Hongbin Pu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Engineering and Technological Research Centre , Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
| | - Qingyi Wei
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Engineering and Technological Research Centre , Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
| |
Collapse
|
47
|
Cao L, Liang T, Zhang X, Liu W, Li J, Zhan X, Wang L. In-Situ pH-Sensitive Fibers via the Anchoring of Bromothymol Blue on Cellulose Grafted with Hydroxypropyltriethylamine Groups via Adsorption. Polymers (Basel) 2018; 10:polym10070709. [PMID: 30960634 PMCID: PMC6403565 DOI: 10.3390/polym10070709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
In-situ pH-sensitive cellulose fibers (IS-pH-SCF) were prepared by anchoring bromothymol blue (BTB) onto cellulose fibers (CF) modified with hydroxypropyltriethylamine (HPTTL) groups. Fourier transform infrared and X-ray photoelectron spectrum analyses demonstrated that the HPTTL groups were grafted onto the CF. X-ray diffraction proved that cellulose I in the CF transformed into cellulose II after quaternization. Scanning electron microscopy suggested that the quaternized CF (QCF) surface was clean and uniformly ridged. The adsorption of BTB onto QCF was carried out via batch adsorption experiments. A kinetic study illustrated that the adsorption was a spontaneous process and described well by pseudo-second-order, Freundlich and Temkin isotherms. The activation energy for the BTB adsorption onto QCF was 52.89 kJ/mol, which proved that the BTB adsorption onto QCFs was chemically controlled. The pH response demonstrated that the IS-pH-SCF was highly sensitive to pH, with an obvious color change for pH 4 to 8. The release tests showed that BTB was anchored on QCFs and that no BTB was released. IS-pH-SCF has a potential use for indicating pH changes in food.
Collapse
Affiliation(s)
- Lele Cao
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Research Center of Wood Bionic Intelligent Science, Northeast Forestry University, Harbin 150040, China.
| | - Tieqiang Liang
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Research Center of Wood Bionic Intelligent Science, Northeast Forestry University, Harbin 150040, China.
| | - Xipeng Zhang
- School of Environment, Harbin institute of Technology, Harbin 150040, China.
| | - Wenbo Liu
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Jian Li
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Research Center of Wood Bionic Intelligent Science, Northeast Forestry University, Harbin 150040, China.
| | - Xianxu Zhan
- Dehua TB New Decoration Material CO., LTD, Deqing 313200, China.
| | - Lijuan Wang
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Research Center of Wood Bionic Intelligent Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|