1
|
Thuan NH, Lam BD, Trung NT. Rhamnosyltransferases: Biochemical activities, potential biotechnology for production of natural products and their applications. Enzyme Microb Technol 2025; 189:110656. [PMID: 40239361 DOI: 10.1016/j.enzmictec.2025.110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Rhamnosyltransferase is an enzyme that catalyzes the transfer of rhamnose moieties from an activated donor molecule, typically nucleotide diphosphate-rhamnose (NDP-rhamnose), to a wide range of acceptor molecules, including proteins, lipids, saccharides, glycoproteins, glycans, and glycolipids. This enzymatic process, known as rhamnosylation, plays a fundamental role in the biosynthesis of critical biomolecules, such as components of the cell wall, plasma membrane channels, receptors, antigens, signaling molecules, antibiotics, and other secondary metabolites. Due to its essential involvement in both primary and secondary metabolic pathways, rhamnosyltransferase is indispensable for various biological processes and exhibits significant potential for applications in human health and industrial biotechnology. In recent years, this enzyme has garnered substantial attention from the scientific community, owing to its unique biochemical properties and its utility in diverse sectors, including medicine, food technology, and cosmetics. This review aims to synthesize recent advancements in the study of rhamnosyltransferase, with a focus on its catalytic mechanisms, biological significance, and emerging applications in biotechnological innovation.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Center for Pharmaceutical Biotechnology, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Viet Nam.
| | - Bui Dinh Lam
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen 250000, Viet Nam
| | - Nguyen Thanh Trung
- Center for Pharmaceutical Biotechnology, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Viet Nam
| |
Collapse
|
2
|
Fan B, Liang X, Li Y, Li M, Yu T, Qin Y, Li B, An T, Wang G. Biosynthesis and metabolic engineering of natural sweeteners. AMB Express 2025; 15:50. [PMID: 40100508 PMCID: PMC11920521 DOI: 10.1186/s13568-025-01864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Natural sweeteners have attracted widespread attention because they are eco-friendly, healthy, low in calories, and tasty. The demand for natural sweeteners is increasing together with the popularity of green, low-carbon, sustainable development. With the development of synthetic biology, microbial cell factories have emerged as an effective method to produce large amounts of natural sweeteners. This technology has significantly progressed in recent years. This review summarizes the pathways and the enzymes related to the biosynthesis of natural sweeteners, such as mogrosides, steviol glycosides, glycyrrhizin, glycyrrhetinic acid, phlorizin, trilobatin, erythritol, sorbitol, mannitol, thaumatin, monellin, and brazzein. Moreover, it focuses on the research about the microbial production of these natural sweeteners using synthetic biology methods, aiming to provide a reference for future research on the production of natural sweeteners.
Collapse
Affiliation(s)
- Bengui Fan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yichi Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tongle Yu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yuan Qin
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Bohan Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
3
|
Elling L. Enzyme cascades for nucleotide sugar regeneration in glycoconjugate synthesis. Appl Microbiol Biotechnol 2025; 109:51. [PMID: 40014108 PMCID: PMC11868170 DOI: 10.1007/s00253-025-13432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
Leloir glycosyltransferases are instrumental in the synthesis of glycoconjugates. Nucleotide sugars as their donor substrates are still considered expensive making preparative enzymatic syntheses economically unattractive. The review highlights the development and advancements of in situ regeneration cycles that utilize nucleotides as byproducts from glycosyltransferase reactions to synthesize respective nucleotide sugars. This approach reduces costs and avoids inhibition of Leloir glycosyltransferases. Regeneration cycles for ten nucleotide sugars are explored emphasizing enzyme cascades from salvage pathways and nucleotide biosynthesis. Additionally, the review highlights advancements involving sucrose synthase for the in situ regeneration of nucleotide sugars from sucrose. Sucrose synthase as the first example of a reversible glycosyltransferase reaction paved the way to establish economic syntheses of glycosylated natural products. Important aspects like enzyme immobilization and protein fusion to optimize processes are discussed. Overall, the review underscores the significance of advanced in situ regeneration cycles for nucleotide sugars for cost-effective access to high-value glycoconjugates. KEY POINTS: • Enzyme cascades for in situ regeneration of nucleotide sugars • Effective cycles for large-scale synthesis of glycoconjugates • Regeneration of nucleotide sugars from sucrose by sucrose synthase.
Collapse
Affiliation(s)
- Lothar Elling
- Laboratory for Biomaterials, Institute of Biotechnology, and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Wang A, Hu H, Yuan Y, Mei S, Zhu G, Yue Q, Zhang Y, Jiang S. Structure, Properties, and Biomedical Activity of Natural Sweeteners Steviosides: An Update. Food Sci Nutr 2025; 13:e70002. [PMID: 39898123 PMCID: PMC11787980 DOI: 10.1002/fsn3.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
Stevioside is a natural sweetener with the characteristics of low calorie and high sweetness. It comprises a diverse range of monomers that play crucial roles in numerous biological processes. Due to these attributes, it has gained widespread application in agriculture, food, and pharmaceutical industries. As a substitute for sugar, stevioside also shows good pharmacological activities on glucose metabolism, bodyweight keeping, blood pressure maintenance, and shows anti-inflammatory, anti-oxidation, anti-tumor, antibacterial, and immune regulation activities. This review summarized the update on the food safety, sweet structure-activity relationship, pharmacological activity of stevia glycosides recently, and discussed the limitations of its application in food and medicine.
Collapse
Affiliation(s)
- Aoyi Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Huiqin Hu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Yadan Yuan
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Shiran Mei
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Qiaoyan Yue
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western MedicineNanjingChina
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western MedicineNanjingChina
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western MedicineNanjingChina
| |
Collapse
|
5
|
Chen J, Pan H, Xie J, Tang K, Li Y, Jia H, Zhu L, Yan M, Wei P. Semirational Design of a UDP-Glycosyltransferase from Nicotiana tomentosiformis for Efficient Biosynthesis of Rebaudioside M2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27334-27345. [PMID: 39625115 DOI: 10.1021/acs.jafc.4c09051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Rebaudioside M2 (RebM2) is characterized as 13-[(2-O-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(2-O-β-d-glucopyranosyl-6-O-β-d-glucopyranosyl-β-d-glucopyranosyl) ester], an isomer of rebaudioside M with a 1 → 6 sugar linkage. The product was found in the biotransformation of rebaudioside D (RebD) catalyzed by a glycosyltransferase from Nicotiana tomentosiformis (NtUGT). Herein, guided by consensus engineering and molecular dynamics simulations, a variant NtUGTF72L/L123P/L157P with enhanced activity and thermostability was obtained. It exhibits a strikingly reduced Km (22.47 mM to 0.15 mM) toward RebD, and the catalytic efficiency was over 5000-fold higher than that of the wildtype. When an Arabidopsis sucrose synthase AtSuSy was used for UDP-glucose recycling, NtUGTF72L/L123P/L157P effectively converted 80 g/L RebD to 90.14 g/L RebM2. In a one-pot three-enzyme reaction involving an engineered glycosyltransferase UGTSL2N358F, which catalyzed the conversion of RebA into RebD, 78.8 g/L of RebM2 (with a yield of 84.56%) was produced from 70 g/L of RebA, avoiding the use of the naturally rare and poorly soluble RebD as the starting material. This work will provide a promising biocatalyst for RebM2 biosynthesis on a large scale and create an opportunity to accelerate the exploration of the biological activity of RebM2 and its potential as a candidate for superior SG sweeteners.
Collapse
Affiliation(s)
- Jiajie Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huayi Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiangtao Xie
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kexin Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liping Zhu
- Shandong Engineering Research Center for Natural Product Metabolic Engineering and Synthetic Biology, Weifang 255178, China
- Dongtai Hirye Biotechnology Co., Ltd, Jiangsu 224200, China
| | - Ming Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Sun C, Lou M, Li Z, Cheng F, Li Z. Combining an Enhanced Polyphosphate Kinase-Driven UDP-Glucose Regeneration System with the Screening of Key Glycosyltransferases for Efficient In Vitro Synthesis of Nucleoside Disaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20557-20567. [PMID: 39250657 DOI: 10.1021/acs.jafc.4c05329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nucleoside disaccharides are essential glycosides that naturally occur in specific living organisms. This study developed an enhanced UDP-glucose regeneration system to facilitate the in vitro multienzyme synthesis of nucleoside disaccharides by integrating it with nucleoside-specific glycosyltransferases. The system utilizes maltodextrin and polyphosphate as cost-effective substrates for UDP-glucose supply, catalyzed by α-glucan phosphorylase (αGP) and UDP-glucose pyrophosphorylase (UGP). To address the low activity of known polyphosphate kinases (PPKs) in the UDP phosphorylation reaction, a sequence-driven screening identified RhPPK with high activity against UDP (>1000 U/mg). Computational design further led to the creation of a double mutant with a 2566-fold increase in thermostability at 50 °C. The enhanced UDP-glucose regeneration system increased the production rate of nucleoside disaccharide synthesis by 25-fold. In addition, our UDP-glucose regeneration system is expected to be applied to other glycosyl transfer reactions.
Collapse
Affiliation(s)
- Chuanqi Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Miaozi Lou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zonglin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Feiyan Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
7
|
Yang L, Yang M, Deng Z, Luo Z, Yuan Z, Rao Y, Zhang Y. Highly Efficient Biosynthesis of Rebaudioside M8 through Structure-Guided Engineering of Glycosyltransferase UGT94E13. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15823-15831. [PMID: 38959519 DOI: 10.1021/acs.jafc.4c03565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Given the low-calorie, high-sweetness characteristics of steviol glycosides (SGs), developing SGs with improved taste profiles is a key focus. Rebaudioside M8 (Reb M8), a novel non-natural SG derivative obtained through glycosylation at the C-13 position of rebaudioside D (Reb D) using glycosyltransferase UGT94E13, holds promise for further development due to its enhanced sweetness. However, the low catalytic activity of UGT94E13 hampers further research and commercialization. This study aimed to improve the enzymatic activity of UGT94E13 through semirational design, and a variant UGT94E13-F169G/I185G was obtained with the catalytic activity improved by 13.90 times. A cascade reaction involving UGT94E13-F169G/I185G and sucrose synthase AtSuSy was established to recycle uridine diphosphate glucose, resulting in an efficient preparation of Reb M8 with a yield of 98%. Moreover, according to the analysis of the distances between the substrate Reb D and enzymes as well as between Reb D and the glucose donor through molecular dynamics simulations, it is found that the positive effect of shortening the distance on glycosylation reaction activity accounts for the improved catalytic activity of UGT94E13-F169G/I185G. Therefore, this study addresses the bottleneck in the efficient production of Reb M8 and provides a foundation for its widespread application in the food industry.
Collapse
Affiliation(s)
- Lifeng Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Mengliang Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
8
|
Bidart GN, Hyeuk S, Alter TB, Yang L, Welner DH. A growth selection system for sucrose synthases (SuSy): design and test. AMB Express 2024; 14:70. [PMID: 38865019 PMCID: PMC11169191 DOI: 10.1186/s13568-024-01727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
High throughput screening (HTS) methods of enzyme variants are essential for the development of robust biocatalysts suited for low impact, industrial scale, biobased synthesis of a myriad of compounds. However, for the majority of enzyme classes, current screening methods have limited throughput, or need expensive substrates in combination with sophisticated setups. Here, we present a straightforward, high throughput selection system that couples sucrose synthase activity to growth. Enabling high throughput screening of this enzyme class holds the potential to facilitate the creation of robust variants, which in turn can significantly impact the future of cost effective industrial glycosylation.
Collapse
Affiliation(s)
- Gonzalo N Bidart
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark
| | - Se Hyeuk
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark
| | - Tobias Benedikt Alter
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark
- RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Lei Yang
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
9
|
Li S, Luo S, Zhao X, Gao S, Shan X, Lu J, Zhou J. Efficient Conversion of Stevioside to Rebaudioside M in Saccharomyces cerevisiae by a Engineering Hydrolase System and Prolonging the Growth Cycle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8140-8148. [PMID: 38563232 DOI: 10.1021/acs.jafc.4c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Rebaudioside (Reb) M is an important sweetener with high sweetness, but its low content in Stevia rebaudiana and low catalytic capacity of the glycosyltransferases in heterologous microorganisms limit its production. In order to improve the catalytic efficiency of the conversion of stevioside to Reb M by Saccharomyces cerevisiae, several key issues must be resolved including knocking out endogenous hydrolases, enhancing glycosylation, and extending the enzyme catalytic process. Herein, endogenous glycosyl hydrolase SCW2 was knocked out in S. cerevisiae. The glycosylation process was enhanced by screening glycosyltransferases, and UGT91D2 from S. rebaudiana was identified as the optimum glycosyltransferase. The UDP-glucose supply was enhanced by overexpressing UGP1, and co-expressing UGT91D2 and UGT76G1 achieved efficient conversion of stevioside to Reb M. In order to extend the catalytic process, the silencing information regulator 2 (SIR2) which can prolong the growth cycle of S. cerevisiae was introduced. Finally, combining these modifications produced 12.5 g/L Reb M and the yield reached 77.9% in a 5 L bioreactor with 10.0 g/L stevioside, the highest titer from steviol glycosides to Reb M reported to date. The engineered strain could facilitate the industrial production of Reb M, and the strategies provide references for the production of steviol glycosides.
Collapse
Affiliation(s)
- Shan Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Shuangshuang Luo
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Xingying Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Xiaoyu Shan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Jian Lu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Ma S, Ma Y. A sustainable strategy for biosynthesis of Rebaudioside D using a novel glycosyltransferase of Solanum tuberosum. Biotechnol J 2024; 19:e2300628. [PMID: 38403450 DOI: 10.1002/biot.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/07/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Bioconversion of Rebaudioside D faces high-cost obstacles. Herein, a novel glycosyltransferase StUGT converting Rebaudioside A to Rebaudioside D was screened and characterized, which exhibits stronger affinity and substrate specificity for Rebaudioside A than previously reported enzymes. A whole-cell catalytic system was thus developed using the StUGT strain. The production of Rebaudioside D was enhanced significantly by enhancing cell permeability, and the maximum production of 6.12 g/L and the highest yield of 98.08% by cell catalyst was obtained by statistical-based optimization. A new cascade process utilizing this recombinant strain and E. coli expressing sucrose synthase was further established to reduce cost through replacing expensive UDPG with sucrose. A StUGT-GsSUS1 system exhibited high catalytic capability, and 5.27 g L-1 Rebaudioside D was achieved finally without UDPG addition by systematic optimization. This is the best performance reported in cell-cascaded biosynthesis, which paves a new cost-effective strategy for sustainable synthesis of scarce premium sweeteners from biomass.
Collapse
Affiliation(s)
- Siyuan Ma
- Department of Biochemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuanyuan Ma
- Department of Biochemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- School of Marine Science and Technology, Tianjin University, Tianjin, China
- Biomass Conversion Laboratory, Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Chen K, Lin L, Ma R, Ding J, Pan H, Tao Y, Li Y, Jia H. Identification of sucrose synthase from Micractinium conductrix to favor biocatalytic glycosylation. Front Microbiol 2023; 14:1220208. [PMID: 37649634 PMCID: PMC10465243 DOI: 10.3389/fmicb.2023.1220208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 09/01/2023] Open
Abstract
Sucrose synthase (SuSy, EC 2.4.1.13) is a unique glycosyltransferase (GT) for developing cost-effective glycosylation processes. Up to now, some SuSys derived from plants and bacteria have been used to recycle uridine 5'-diphosphate glucose in the reactions catalyzed by Leloir GTs. In this study, after sequence mining and experimental verification, a SuSy from Micractinium conductrix (McSuSy), a single-cell green alga, was overexpressed in Escherichia coli, and its enzymatic properties were characterized. In the direction of sucrose cleavage, the specific activity of the recombinant McSuSy is 9.39 U/mg at 37°C and pH 7.0, and the optimum temperature and pH were 60°C and pH 7.0, respectively. Its nucleotide preference for uridine 5'-diphosphate (UDP) was similar to plant SuSys, and the enzyme activity remained relatively high when the DMSO concentration below 25%. The mutation of the predicted N-terminal phosphorylation site (S31D) significantly stimulated the activity of McSuSy. When the mutant S31D of McSuSy was applied by coupling the engineered Stevia glycosyltransferase UGT76G1 in a one-pot two-enzyme reaction at 10% DMSO, 50 g/L rebaudioside E was transformed into 51.06 g/L rebaudioside M in 57 h by means of batch feeding, with a yield of 76.48%. This work may reveal the lower eukaryotes as a promising resource for SuSys of industrial interest.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | | |
Collapse
|
12
|
Tao Y, Xu J, Shao J, He X, Cai R, Chen K, Li Y, Jia H. Three Glycosyltransferase Mutants in a One-Pot Multi-enzyme System with Enhanced Efficiency for Biosynthesis of Quercetin-3,4'- O-diglucoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6662-6672. [PMID: 37079496 DOI: 10.1021/acs.jafc.3c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Quercetin-3,4'-O-diglucoside (Q3,4'G), among the major dietary flavonoids, is superior to quercetin aglycone or quercetin monoglucoside in solubility. However, its low content in nature makes it hard to be prepared in large quantities by traditional extraction methods. In the present study, the F378S mutant of UGT78D2 (78D2_F378S) derived from Arabidopsis thaliana with improved regioselectivity and the V371A mutant of UGT73G1 (73G1_V371A) derived from Allium cepa were adopted to realize a two-step continuous glycosylation of quercetin to produce Q3,4'G. The mutation S31D was introduced to the sucrose synthase from Micractinium conductrix with enhanced activity, which was responsible for regenerating UDP-glucose by coupling with 78D2_F378S and 73G1_V371A. Using the aforementioned enzymes, prepared from the three-enzyme co-expression strain, 4.4 ± 0.03 g/L (7.0 ± 0.05 mM, yield 21.2%) Q3,4'G was produced from 10 g/L quercetin after reaction for 24 h at 45 °C.
Collapse
Affiliation(s)
- Yehui Tao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiaojiao Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junlan Shao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoying He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruxin Cai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
13
|
Zerva A, Mohammadi M, Dimopoulos G, Taoukis P, Topakas E. Transglycosylation of Stevioside by a Commercial β-Glucanase with Fungal Extracted β-Glucans as Donors. WASTE AND BIOMASS VALORIZATION 2023; 14:1-11. [PMID: 36713934 PMCID: PMC9872074 DOI: 10.1007/s12649-023-02052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Abstract Alternative sweeteners, such as steviol glucosides from the plant Stevia rebaudiana Bertoni, are becoming increasingly popular for the design of next-generation foodstuffs. However, the bitter aftertaste of native steviol glucosides is one of the main reasons behind consumer reluctance towards stevia-containing products. Biocatalysis could be a sustainable solution to this problem, through addition of glucosyl moieties to the molecule. Glycoside hydrolases are enzymes performing transglycosylation reactions, and they can be exploited for such modifications. In the present work, the commercial β-glucanase Finizym 250L® was employed for the transglycosylation of stevioside. After optimization of several reaction parameters, the maximal reaction yield obtained was 19%, with barley β-glucan as the glycosyl donor. With the aim to develop a sustainable process, β-glucan extracts from different fungal sources were prepared. Pulsed Electric Field pretreatment of mycelial biomass resulted in extracts with higher β-glucan content. The extracts were tested as alternative glucosyl donors, reaching up to 15.5% conversion yield, from Pleurotus-extracted β-glucan. Overall, in the present work a novel enzymatic process for the modification of stevioside is proposed, with concomitant valorization of β-glucans extracted from fungal biomass, potentially generated as a byproduct from other applications, in concert with the principles of circular economy. Graphical Abstract
Collapse
Affiliation(s)
- Anastasia Zerva
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Milad Mohammadi
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Georgios Dimopoulos
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Petros Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Evangelos Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
14
|
Yang L, Ping Q, Yuan Z, Jiang J, Guo B, Liu C, Rao Y, Shi J, Zhang Y. Highly efficient synthesis of mono-β-1,6-Glucosylated Rebaudioside A derivative catalyzed by glycosyltransferase YjiC. Carbohydr Res 2023; 523:108737. [PMID: 36657220 DOI: 10.1016/j.carres.2022.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Steviol glycosides have attracted great interest because of their high levels of sweetness and safety, and absence of calories. Improvement of their sensory qualities via glycosylation modification by glycosyltransferase is a research hotspot. In this study, YjiC, a uridine diphosphate-dependent glycosyltransferase from Bacillus subtilis 168, was found with the ability to glycosylate rebaudioside A (Reb A) to produce a novel mono β-1, 6-glycosylated Reb A derivative rebaudioside L2 (Reb L2). It has an improved sweetness compared with Reb A. Next, a cascade reaction was established by combining YjiC with sucrose synthase AtSuSy from Arabidopsis thaliana for scale-up preparation of Reb L2. It shows that Reb L2 (30.94 mg/mL) could be efficiently synthesized with an excellent yield of 91.34% within 12 h. Therefore, this study provides a potential approach for the production and application of new steviol glycoside Reb L2, expanding the scope of steviol glycosides.
Collapse
Affiliation(s)
- Lifeng Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Qian Ping
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Jiejuan Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Baodang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
15
|
Yang S, Hou X, Deng Z, Yang L, Ping Q, Yuan Z, Zhang Y, Rao Y. Improving the thermostability of glycosyltransferase YojK by targeting mutagenesis for highly efficient biosynthesis of rebaudioside D. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Pan H, Xiao L, Tang K, Xia H, Li Y, Jia H, Wei P, Yan M. Screening UDP-Glycosyltransferases for Effectively Transforming Stevia Glycosides: Enzymatic Synthesis of Glucosylated Derivatives of Rubusoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15178-15188. [PMID: 36424346 DOI: 10.1021/acs.jafc.2c06185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Five plant-derived uridine diphosphate glycosyltransferases (UGTs) that catalyzed the glucosylation of stevia glycosides (SGs) were uncovered as the result of sequence mining considering the catalytic residues and conserved motifs of the known UGTs. Thereinto, LbUGT from Lycium barbarum with high activity toward rubusoside has been enzymatically characterized. The recombinant LbUGT was demonstrated to catalyze the β-1,6-glucosylation at C19 of rubusoside, producing a monoglucosyl derivative 13-[(O-β-d-glucopyranosyl) oxy] ent-kaur-16-en-19-oic acid-[(6-O-β-d-glucopyranosyl-β-d-glucopyranosyl) ester], which was then submitted to a β-1,2-glucosylation by LbUGT, resulting in a diglucosyl derivative 13-[(O-β-d-glucopyranosyl) oxy] ent-kaur-16-en-19-oic acid-[(2-O-β-d-glucopyranosyl-6-O-β-d-glucopyranosyl-β-d-glucopyranosyl) ester]. The di-glycosylated product of rubusoside showed an obvious increase in sweetness intensity (134 times sweeter than 5% sucrose) and almost eliminated the unpleasant bitter taste. This work will provide a reference for the taste improvement of SGs.
Collapse
Affiliation(s)
- Huayi Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liang Xiao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kexin Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haojun Xia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ming Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
17
|
Zerva A, Chorozian K, Mohammadi M, Topakas E. Transxylosylation of stevioside by a novel GH39 β-xylosidase, and simultaneous valorization of agroindustrial byproducts. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Besagarhally Shivappa S, Krishnegowda A. Spectrophotometric determination of glucose in human serum samples using para‐phenylenediamine and alpha‐naphthol as a chromogenic reagent. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Efficient synthesis of rebaudioside D2 through UGT94D1-catalyzed regio-selective glycosylation. Carbohydr Res 2022; 522:108687. [DOI: 10.1016/j.carres.2022.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022]
|
20
|
Guo B, Hou X, Zhang Y, Deng Z, Ping Q, Fu K, Yuan Z, Rao Y. Highly efficient production of rebaudioside D enabled by structure-guided engineering of bacterial glycosyltransferase YojK. Front Bioeng Biotechnol 2022; 10:985826. [PMID: 36091437 PMCID: PMC9452701 DOI: 10.3389/fbioe.2022.985826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Owing to zero-calorie, high-intensity sweetness and good taste profile, the plant-derived sweetener rebaudioside D (Reb D) has attracted great interest to replace sugars. However, low content of Reb D in stevia rebaudiana Bertoni as well as low soluble expression and enzymatic activity of plant-derived glycosyltransferase in Reb D preparation restrict its commercial usage. To address these problems, a novel glycosyltransferase YojK from Bacillus subtilis 168 with the ability to glycosylate Reb A to produce Reb D was identified. Then, structure-guided engineering was performed after solving its crystal structure. A variant YojK-I241T/G327N with 7.35-fold increase of the catalytic activity was obtained, which allowed to produce Reb D on a scale preparation with a great yield of 91.29%. Moreover, based on the results from molecular docking and molecular dynamics simulations, the improvement of enzymatic activity of YojK-I241T/G327N was ascribed to the formation of new hydrogen bonds between the enzyme and substrate or uridine diphosphate glucose. Therefore, this study provides an engineered bacterial glycosyltransferase YojK-I241T/G327N with high solubility and catalytic efficiency for potential industrial scale-production of Reb D.
Collapse
Affiliation(s)
- Baodang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qian Ping
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Kai Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- *Correspondence: Yijian Rao,
| |
Collapse
|
21
|
De novo biosynthesis of rubusoside and rebaudiosides in engineered yeasts. Nat Commun 2022; 13:3040. [PMID: 35650215 PMCID: PMC9160076 DOI: 10.1038/s41467-022-30826-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
High-sugar diet causes health problems, many of which can be addressed with the use of sugar substitutes. Rubusoside and rebaudiosides are interesting molecules, considered the next generation of sugar substitutes due to their low-calorie, superior sweetness and organoleptic properties. However, their low abundance in nature makes the traditional plant extraction process neither economical nor environmental-friendly. Here we engineer baker's yeast Saccharomyces cerevisiae as a chassis for the de novo production of rubusoside and rebaudiosides. In this process, we identify multiple issues that limit the production, including rate-liming steps, product stress on cellular fitness and unbalanced metabolic networks. We carry out a systematic engineering strategy to solve these issues, which produces rubusoside and rebaudiosides at titers of 1368.6 mg/L and 132.7 mg/L, respectively. The rubusoside chassis strain here constructed paves the way towards a sustainable, large-scale fermentation-based manufacturing of diverse rebaudiosides.
Collapse
|
22
|
Yu J, Tao Y, Pan H, Lin L, Sun J, Ma R, Li Y, Jia H. Mutation of Stevia glycosyltransferase UGT76G1 for efficient biotransformation of rebaudioside E into rebaudioside M. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
23
|
Immobilized glucosyltransferase and sucrose synthase on Fe3O4@Uio-66 in cascade catalysis for the one-pot conversion of rebaudioside D from rebaudioside A. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Zhang T, Myint KZ, Xia Y, Wu J. A comparative study on physicochemical and micellar solubilization performance between monoglucosyl rebaudioside A and rebaudioside A. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2651-2659. [PMID: 34687452 DOI: 10.1002/jsfa.11604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rebaudioside A (RA) and its monoglucosyl derivative, as like rebaudioside D (RD) are the most popular stevia glycosides but possess poor solubility in water, which limited their application as edible surfactants, the applications as in micellar solubilization and drug delivery. Meanwhile, effect of the monoglucosyl attached to RA moiety remains unclear. RESULTS Monoglucosyl rebaudioside A (RAG1) was synthesized via hydrolyzing the transglycosylation product of RA with 95% of RA converted. RAG1 content in raw reaction mixture was as high as 69.5% of total glycosides, and harvested with a content of 88.2% by simple filtration. The RAG1 exhibited an aqueous solubility of 87 folds of RA or 391 folds of RD at 25 °C. The surface activity of RAG1 solution was higher than RA and invincible to RD. The RAG1 micelles promoted aqueous solubility of idebenone (IDE) up to 500 folds higher at 25 °C. The cumulative release rate of IDE encapsulated in RAG1 micelles was 777.5% or 456.7% higher of that of free IDE in simulated gastric/intestinal fluids in 14 h, respectively. The RAG1-IDE remained the same in 98 days at 25 °C. CONCLUSION The α-linked glucosyl to RA induced higher hydrophilicity and surface activity than that resulted by β-linked glucosyl, making RAG1 not only dramatically raise the aqueous solubility of RA, but also endow IDE folds higher in bioaccessibility, yet making the capsule stable at storage. The results would provide a new edible delivery nanocarrier for encapsulation of hydrophobic bioactive components. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tongtong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Khaing Zar Myint
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
25
|
Chen M, Song F, Qin Y, Han S, Rao Y, Liang S, Lin Y. Improving Thermostability and Catalytic Activity of Glycosyltransferase From Panax ginseng by Semi-Rational Design for Rebaudioside D Synthesis. Front Bioeng Biotechnol 2022; 10:884898. [PMID: 35573234 PMCID: PMC9092651 DOI: 10.3389/fbioe.2022.884898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
As a natural sweetener and sucrose substitute, the biosynthesis and application of steviol glycosides containing the component rebaudioside D have attracted worldwide attention. Here, a glycosyltransferase PgUGT from Panax ginseng was first reported for the biosynthesis of rebaudioside D. With the three-dimensional structures built by homology modeling and deep-learning–based modeling, PgUGT was semi-rationally designed by FireProt. After detecting 16 site-directed variants, eight of them were combined in a mutant Mut8 with both improved enzyme activity and thermostability. The enzyme activity of Mut8 was 3.2-fold higher than that of the wild type, with an increased optimum reaction temperature from 35 to 40°C. The activity of this mutant remained over 93% when incubated at 35°C for 2 h, which was 2.42 times higher than that of the wild type. Meanwhile, when the enzymes were incubated at 40°C, where the wild type was completely inactivated after 1 h, the residual activity of Mut8 retained 59.0% after 2 h. This study would provide a novel glycosyltransferase with great potential for the industrial production of rebaudioside D and other steviol glycosides.
Collapse
Affiliation(s)
- Meiqi Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fangwei Song
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuxi Qin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Shuli Liang, ; Ying Lin,
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Shuli Liang, ; Ying Lin,
| |
Collapse
|
26
|
Exploring the Strategy of Fusing Sucrose Synthase to Glycosyltransferase UGT76G1 in Enzymatic Biotransformation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Uridine diphosphate glycosyltransferases (UGTs) as fine catalysts of glycosylation are increasingly used in the synthesis of natural products. Sucrose synthase (SuSy) is recognized as a powerful tool for in situ regenerating sugar donors for the UGT-catalyzed reaction. It is crucial to select the appropriate SuSy for cooperation with UGT in a suitable way. In the present study, eukaryotic SuSy from Arabidopsisthaliana (AtSUS1) helped stevia glycosyltransferase UGT76G1 achieve the complete conversion of stevioside (30 g/L) into rebaudioside A (RebA). Position of the individual transcription units containing the genes encoding AtSUS1 and UGT76G1 in the expression plasmid has an effect, but less than that of the fusion order of these genes on RebA yield. Fusion of the C-terminal of AtSUS1 and the N-terminal of UGT76G1 with rigid linkers are conducive to maintaining enzyme activities. When the same fusion strategy was applied to a L637M-T640V double mutant of prokaryotic SuSy from Acidithiobacillus caldus (AcSuSym), 18.8 ± 0.6 g/L RebA (a yield of 78.2%) was accumulated in the reaction mixture catalyzed by the fusion protein Acm-R3-76G1 (the C-terminal of AcSuSym and the N-terminal of UGT76G1 were linked with (EAAAK)3). This work would hopefully reveal the potential of UGT-SuSy fusion in improving the cascade enzymatic glycosylation.
Collapse
|
27
|
Mao Y, Chen Z, Ren Y, Sun Y, Wang Y. Whole-Cell Biocatalyst for Rubusoside Production in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13155-13163. [PMID: 34699718 DOI: 10.1021/acs.jafc.1c04873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rubusoside (Rub) is a highly sweet diterpene glycoside mainly isolated from the leaves of Rubus suavissimus (Rosaceae). It has been used as a low-calorie natural sweetener for decades and was recently found to be a potential drug lead. In this study, we designed a whole-cell biocatalyst to achieve the glycosylation of steviol to Rub in Saccharomyces cerevisiae. The sucrose synthases were applied to construct a uridine diphosphate glucose regeneration system, which were coupled with optimal combinations of different uridine diphosphate (UDP) glycosyltransferases from multiple plant species. After optimization of reaction conditions, the residues in SrUGT74G1 probably influencing glycosylation efficiency were subjected to site-directed mutagenesis. Double mutations of S84A/E87A reduced the accumulation of intermediates, finally glucosylating 1.27 g/L steviol to 0.45 ± 0.06 g/L steviolmonoside (conversion rate = 23.3%) and 1.92 ± 0.17 g/L Rub (conversion rate = 74.9%). A high efficiency of Rub biosynthesis could be achieved without supply of additional UDPG. This work provided the first example of multi-step glycosylation reactions in whole-cell biocatalysis, which laid a foundation of scalable production of the value-added diterpene sweetener in the future.
Collapse
Affiliation(s)
- Yaping Mao
- East China University of Science and Technology, Shanghai 200237, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhuo Chen
- University of Chinese Academy of Sciences, Beijing 100039, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuhong Ren
- East China University of Science and Technology, Shanghai 200237, China
| | - Yuwei Sun
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong Wang
- East China University of Science and Technology, Shanghai 200237, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
28
|
Li Y, Zhu W, Cai J, Liu W, Akihisa T, Li W, Kikuchi T, Xu J, Feng F, Zhang J. The role of metabolites of steviol glycosides and their glucosylated derivatives against diabetes-related metabolic disorders. Food Funct 2021; 12:8248-8259. [PMID: 34319319 DOI: 10.1039/d1fo01370j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus (DM), characterized by abnormal carbohydrate, lipid, and protein metabolism, is a metabolic disorder caused by a shortage of insulin secretion or decreased sensitivity of target cells to insulin. In addition to changes in lifestyle, a low-calorie diet is recommended to reduce the development of DM. Steviol glycosides (SGs), as natural sweeteners, have gained attention as sucrose alternatives because of their advantages of high sweetness and being low calorie. Most SGs with multiple bioactivities are beneficial to regulate physiological functions. Though SGs have been widely applied in food industry, there is little data on their glucosylated derivatives that are glucosylated steviol glycosides (GSGs). In this review, we have discussed the metabolic fate of GSGs in contrast to SGs, and the molecular mechanisms of glycoside metabolites against diabetes-related metabolic disorders are also summarized. SGs are generally extracted from the Stevia leaf, while GSGs are mainly manufactured using enzymes that transfer glucose units from a starch source to SGs. Results from this study suggest that SGs and GSGs share same bioactive metabolites, steviol and steviol glucuronide (SVG), which exhibit anti-hyperglycemic effects by activating glucose-induced insulin secretion to enhance pancreatic β-cell function. In addition, steviol and SVG have been found to ameliorate the inflammatory response, lipid imbalance, myocardial fibrosis and renal functions to modulate diabetes-related metabolic disorders. Therefore, both SGs and GSGs may be used as potential sucrose alternatives and/or pharmacological alternatives for preventing and treating metabolic disorders.
Collapse
Affiliation(s)
- Yuqi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wanfang Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China and Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China and Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China and Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223003, China
| |
Collapse
|
29
|
Metabolic engineering for the synthesis of steviol glycosides: current status and future prospects. Appl Microbiol Biotechnol 2021; 105:5367-5381. [PMID: 34196745 DOI: 10.1007/s00253-021-11419-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
With the pursuit of natural non-calorie sweeteners, steviol glycosides (SGs) have become one of the most popular natural sweeteners in the market. The SGs in Stevia are a mixture of SGs synthesized from steviol (a terpenoid). SGs are diterpenoids. Different SGs depend on the number and position of sugar groups on the core steviol backbone. This diversity comes from the processing of glycoside steviol by various glycosyltransferases. Due to the differences in glycosylation, each SG has unique sensory properties. At present, it is more complicated to extract high-quality SGs from plants, so the excavation of the metabolic pathways of engineered microorganisms to synthesize SGs has been extensively studied. Specifically, the expression of different glycosyltransferases in microbes is key to the synthesis of various SGs by engineered microorganisms. To trigger more researches on the functional characterization of the enzymes encoded by these genes, this review describes the latest research progresses of the related enzymes involved in SG biosynthesis and metabolic engineering.Key points• Outlines the research progress of key enzymes in the biosynthetic pathway of SGs• Factors affecting the catalytic capacity of stevia glucosyltransferase• Provide guidance for the efficient synthesis of SGs in microbial cell factories.
Collapse
|
30
|
Hou M, Wang R, Zhao S, Wang Z. Ginsenosides in Panax genus and their biosynthesis. Acta Pharm Sin B 2021; 11:1813-1834. [PMID: 34386322 PMCID: PMC8343117 DOI: 10.1016/j.apsb.2020.12.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides are a series of glycosylated triterpenoids which belong to protopanaxadiol (PPD)-, protopanaxatriol (PPT)-, ocotillol (OCT)- and oleanane (OA)-type saponins known as active compounds of Panax genus. They are accumulated in plant roots, stems, leaves, and flowers. The content and composition of ginsenosides are varied in different ginseng species, and in different parts of a certain plant. In this review, we summarized the representative saponins structures, their distributions and the contents in nearly 20 Panax species, and updated the biosynthetic pathways of ginsenosides focusing on enzymes responsible for structural diversified ginsenoside biosynthesis. We also emphasized the transcription factors in ginsenoside biosynthesis and non-coding RNAs in the growth of Panax genus plants, and highlighted the current three major biotechnological applications for ginsenosides production. This review covered advances in the past four decades, providing more clues for chemical discrimination and assessment on certain ginseng plants, new perspectives for rational evaluation and utilization of ginseng resource, and potential strategies for production of specific ginsenosides.
Collapse
Key Words
- ABA, abscisic acid
- ADP, adenosine diphosphate
- AtCPR (ATR), Arabidopsis thaliana cytochrome P450 reductase
- BARS, baruol synthase
- Biosynthetic pathway
- Biotechnological approach
- CAS, cycloartenol synthase
- CDP, cytidine diphosphate
- CPQ, cucurbitadienol synthase
- CYP, cytochrome P450
- DDS, dammarenediol synthase
- DM, dammarenediol-II
- DMAPP, dimethylallyl diphosphate
- FPP, farnesyl pyrophosphate
- FPPS (FPS), farnesyl diphosphate synthase
- GDP, guanosine diphosphate
- Ginsenoside
- HEJA, 2-hydroxyethyl jasmonate
- HMGR, HMG-CoA reductase
- IPP, isopentenyl diphosphate
- ITS, internal transcribed spacer
- JA, jasmonic acid
- JA-Ile, (+)-7-iso-jasmonoyl-l-isoleucine
- JAR, JA-amino acid synthetase
- JAZ, jasmonate ZIM-domain
- KcMS, Kandelia candel multifunctional triterpene synthases
- LAS, lanosterol synthase
- LUP, lupeol synthase
- MEP, methylerythritol phosphate
- MVA, mevalonate
- MVD, mevalonate diphosphate decarboxylase
- MeJA, methyl jasmonate
- NDP, nucleotide diphosphate
- Non-coding RNAs
- OA, oleanane or oleanic acid
- OAS, oleanolic acid synthase
- OCT, ocotillol
- OSC, oxidosqualene cyclase
- PPD, protopanaxadiol
- PPDS, PPD synthase
- PPT, protopanaxatriol
- PPTS, PPT synthase
- Panax species
- RNAi, RNA interference
- SA, salicylic acid
- SE (SQE), squalene epoxidase
- SPL, squamosa promoter-binding protein-like
- SS (SQS), squalene synthase
- SUS, sucrose synthase
- TDP, thymine diphosphate
- Transcription factors
- UDP, uridine diphosphate
- UGPase, UDP-glucose pyrophosphosphprylase
- UGT, UDP-dependent glycosyltransferase
- WGD, whole genome duplication
- α-AS, α-amyrin synthase
- β-AS, β-amyrin synthase
Collapse
Affiliation(s)
- Maoqi Hou
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rufeng Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
31
|
Zerva A, Chorozian K, Kritikou AS, Thomaidis NS, Topakas E. β-Glucosidase and β-Galactosidase-Mediated Transglycosylation of Steviol Glycosides Utilizing Industrial Byproducts. Front Bioeng Biotechnol 2021; 9:685099. [PMID: 34178968 PMCID: PMC8220073 DOI: 10.3389/fbioe.2021.685099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Stevia rebaudiana Bertoni is a plant cultivated worldwide due to its use as a sweetener. The sweet taste of stevia is attributed to its numerous steviol glycosides, however, their use is still limited, due to their bitter aftertaste. The transglycosylation of steviol glycosides, aiming at the improvement of their taste, has been reported for many enzymes, however, glycosyl hydrolases are not extensively studied in this respect. In the present study, a β-glucosidase, MtBgl3a, and a β-galactosidase, TtbGal1, have been applied in the transglycosylation of two steviol glycosides, stevioside and rebaudioside A. The maximum conversion yields were 34.6 and 33.1% for stevioside, while 25.6 and 37.6% were obtained for rebaudioside A conversion by MtBgl3a and TtbGal1, respectively. Low-cost industrial byproducts were employed as sugar donors, such as cellulose hydrolyzate and acid whey for TtbGal1- and MtBgl3a- mediated bioconversion, respectively. LC-HRMS analysis identified the formation of mono- and di- glycosylated products from stevioside and rebaudioside A. Overall, the results of the present work indicate that both biocatalysts can be exploited for the design of a cost-effective process for the modification of steviol glycosides.
Collapse
Affiliation(s)
- Anastasia Zerva
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Koar Chorozian
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anastasia S Kritikou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
32
|
Libik-Konieczny M, Capecka E, Tuleja M, Konieczny R. Synthesis and production of steviol glycosides: recent research trends and perspectives. Appl Microbiol Biotechnol 2021; 105:3883-3900. [PMID: 33914136 PMCID: PMC8140977 DOI: 10.1007/s00253-021-11306-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 01/13/2023]
Abstract
Abstract Steviol glycosides (SvGls) are plant secondary metabolites belonging to a class of chemical compounds known as diterpenes. SvGls have been discovered only in a few plant species, including in the leaves of Stevia rebaudiana Bertoni. Over the last few decades, SvGls have been extensively researched for their extraordinary sweetness. As a result, the nutritional and pharmacological benefits of these secondary metabolites have grown increasingly apparent. In the near future, SvGls may become a basic, low-calorie, and potent sweetener in the growing natural foods market, and a natural anti-diabetic remedy, a highly competitive alternative to commercially available synthetic drugs. Commercial cultivation of stevia plants and the technologies of SvGls extraction and purification from plant material have already been introduced in many countries. However, new conventional and biotechnological solutions are still being sought to increase the level of SvGls in plants. Since many aspects related to the biochemistry and metabolism of SvGls in vivo, as well as their relationship to the overall physiology of S. rebaudiana are not yet understood, there is also a great need for in-depth scientific research on this topic. Such research may have positive impact on optimization of the profile and SvGls concentration in plants and thus lead to obtaining desired yield. This research summarizes the latest approaches and developments in SvGls production. Key points • Steviol glycosides (SvGls) are found in nature in S. rebaudiana plants. • They exhibit nutraceutical properties. • This review provides an insight on different approaches to produce SvGls. • The areas of research that still need to be explored have been identified.
Collapse
Affiliation(s)
- Marta Libik-Konieczny
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Krakow, Poland.
| | - Ewa Capecka
- Department of Horticulture, Faculty of Biotechnology and Agriculture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Monika Tuleja
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, ul. Gronostajowa 9, 30-387, Krakow, Poland
| | - Robert Konieczny
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, ul. Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
33
|
Wang Z, Liu W, Liu W, Ma Y, Li Y, Wang B, Wei X, Liu Z, Song H. Co-immobilized recombinant glycosyltransferases efficiently convert rebaudioside A to M in cascade. RSC Adv 2021; 11:15785-15794. [PMID: 35481200 PMCID: PMC9029319 DOI: 10.1039/d0ra10574k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Rebaudioside M (Reb M), as a natural and healthy Stevia sweetener, is produced by two glycosyltransferases that catalyze the serial glycosylation of Rebaudioside A (Reb A) and Rebaudioside D (Reb D) in cascade. Meanwhile, it is of great importance in developing an immobilization strategy to improve the reusability of glycosyltransferases in reducing the production cost of Reb M. Here, the recombinant glycosyltransferases, i.e., OsEUGT11 (UGT1) and SrUGT76G1 (UGT2), were expressed in Escherichia coli and covalently immobilized onto chitosan beads. UGT1 and UGT2 were individually immobilized and co-immobilized onto the beads that catalyze Reb A to Reb M in one-pot. The co-immobilized enzymes system exhibited ∼3.2-fold higher activity than that of the mixed immobilized enzymes system. A fairly high Reb A conversion rate (97.3%) and a high Reb M yield of 72.2% (4.82 ± 0.11 g L-1) were obtained with a feeding Reb A concentration of 5 g L-1. Eventually, after 4 and 8 reused cycles, the co-immobilized enzymes retained 72.5% and 53.1% of their original activity, respectively, showing a high stability to minimize the total cost of enzymes and suggesting that the co-immobilized UGTs is of potentially signficant value for the production of Reb M.
Collapse
Affiliation(s)
- Zhenyang Wang
- College of Material Science and Engineering, Northeast Forestry University Harbin 150040 China
- R&D Division, Sinochem Health Company Ltd. Qingdao 266071 China
| | - Wenbin Liu
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Qingdo Institute of Ocean Engineering of Tianjin University Qingdao 266237 China
| | - Wei Liu
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Qingdo Institute of Ocean Engineering of Tianjin University Qingdao 266237 China
| | - Yuanyuan Ma
- Biomass Conversion Laboratory, Tianjin R&D Center for Petrochemical Technology, Tianjin University Tianjin 300072 China
- Frontier Technology Institute (Wuqing), Tianjin University Tianjin 30072 China
| | - Yatong Li
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Qingdo Institute of Ocean Engineering of Tianjin University Qingdao 266237 China
| | - Baoqi Wang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Qingdo Institute of Ocean Engineering of Tianjin University Qingdao 266237 China
| | - Xiaozhen Wei
- R&D Division, Sinochem Health Company Ltd. Qingdao 266071 China
| | - Zhiming Liu
- College of Material Science and Engineering, Northeast Forestry University Harbin 150040 China
| | - Hao Song
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Qingdo Institute of Ocean Engineering of Tianjin University Qingdao 266237 China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Frontier Technology Institute (Wuqing), Tianjin University Tianjin 30072 China
| |
Collapse
|
34
|
Zhao L, Ma Z, Yin J, Shi G, Ding Z. Biological strategies for oligo/polysaccharide synthesis: biocatalyst and microbial cell factory. Carbohydr Polym 2021; 258:117695. [PMID: 33593568 DOI: 10.1016/j.carbpol.2021.117695] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Oligosaccharides and polysaccharides constitute the principal components of carbohydrates, which are important biomacromolecules that demonstrate considerable bioactivities. However, the variety and structural complexity of oligo/polysaccharides represent a major challenge for biological and structural explorations. To access structurally defined oligo/polysaccharides, biological strategies using glycoenzyme biocatalysts have shown remarkable synthetic potential attributed to their regioselectivity and stereoselectivity that allow mild, structurally controlled reaction without addition of protecting groups necessary in chemical strategies. This review summarizes recent biotechnological approaches of oligo/polysaccharide synthesis, which mainly includes in vitro enzymatic synthesis and cell factory synthesis. We have discussed the important factors involved in the production of nucleotide sugars. Furthermore, the strategies established in the cell factory and enzymatic syntheses are summarized, and we have highlighted concepts like metabolic flux rebuilding and regulation, enzyme engineering, and route design as important strategies. The research challenges and prospects are also outlined and discussed.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
35
|
Effective Glycosylation of Cucurbitacin Mediated by UDP-Glycosyltransferase UGT74AC1 and Molecular Dynamics Exploration of Its Substrate Binding Conformations. Catalysts 2020. [DOI: 10.3390/catal10121466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cucurbitacins, a group of diverse tetracyclic triterpenes, display a variety of biological effects. Glycosylation mediated by glycosyltransferases (UGTs) plays a vital role in structural and functional diversity of natural products and influences their biological activities. In this study, GT-SM, a mutant of UGT74AC1 from Siraitia grosvenorii, was chosen as a potential catalyst in glycosylation of cucurbitacins, and its optimal pH, temperature, and divalent metal ions were detected. This enzyme showed high activity (kcat/Km, 120 s−1 µM−1) toward cucurbitacin F 25-O-acetate (CA-F25) and only produced CA-F25 2-O-β-d-glucose which was isolated and confirmed by 1D and 2D nuclear magnetic resonance. A pathway for uridine diphosphate glucose (UDP-Glc) regeneration and cucurbitacin glycoside synthesis was constructed by combing GT-SM and sucrose synthase to cut down the costly UDP-Glc. The molar conversion of CA-F25 was 80.4% in cascade reaction. Molecular docking and dynamics simulations showed that CA-F25 was stabilized by hydrophobic interactions, and the C2-OH of CA-F25 showed more favorable catalytic conformation than that of C3-OH, explaining the high regioselectivity toward the C2-OH rather than the ortho-C3-OH of CA-F25. This work proved the important potential application of UGT74AC1 in cucurbitacins and provided an understanding of glycosylation of cucurbitacins.
Collapse
|
36
|
Recent progress in synthesis of carbohydrates with sugar nucleotide-dependent glycosyltransferases. Curr Opin Chem Biol 2020; 61:81-95. [PMID: 33310623 DOI: 10.1016/j.cbpa.2020.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Sugar nucleotide-dependent glycosyltransferases (GTs) are key enzymes that catalyze the formation of glycosidic bonds in nature. They have been increasingly applied in the synthesis of complex carbohydrates and glycoconjugates with or without in situ generation of sugar nucleotides. Human GTs are becoming more accessible and new bacterial GTs have been identified and characterized. An increasing number of crystal structures elucidated for GTs from mammalian and bacterial sources facilitate structure-based design of mutants as improved catalysts for synthesis. Automated platforms have also been developed for chemoenzymatic synthesis of carbohydrates. Recent progress in applying sugar nucleotide-dependent GTs in enzymatic and chemoenzymatic synthesis of mammalian glycans and glycoconjugates, bacterial surface glycans, and glycosylated natural products from bacteria and plants are reviewed.
Collapse
|
37
|
Chen L, Pan H, Cai R, Li Y, Jia H, Chen K, Yan M, Ouyang P. Bioconversion of Stevioside to Rebaudioside E Using Glycosyltransferase UGTSL2. Appl Biochem Biotechnol 2020; 193:637-649. [PMID: 33057971 DOI: 10.1007/s12010-020-03439-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
Rebaudioside E, one of the minor components of steviol glycosides, was first isolated and identified from Stevia rebaudiana in 1977. It is a high-intensity sweetener that tastes about 150-200 times sweeter than sucrose and is also a precursor for biosynthesis of rebaudioside D and rebaudioside M, the next-generation Stevia sweeteners. In this work, new unknown steviol glycosides were enzymatically synthesized from stevioside by coupling UDP-glucosyltransferase UGTSL2 from Solanum lycopersicum and sucrose synthase StSUS1 from Solanum tuberosum. Rebaudioside E was speculated to be the main product of glucosylation of the Glc(β1→C-19) residue of stevioside along with the formation of a (β1→2) linkage based on the analysis of the regioselectivity and stereoselectivity of UGTSL2, and verified afterwards by LC-MS/MS with standard. In a 20-ml bioconversion reaction of 20 g/l stevioside by UGTSL2 and StSUS1, 15.92 g/l rebaudioside E was produced for 24 h.
Collapse
Affiliation(s)
- Liangliang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Huayi Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Ruxin Cai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China.
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Ming Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| |
Collapse
|
38
|
Shao J, Sun Y, Liu H, Wang Y. Pathway elucidation and engineering of plant-derived diterpenoids. Curr Opin Biotechnol 2020; 69:10-16. [PMID: 33032240 DOI: 10.1016/j.copbio.2020.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022]
Abstract
Plant-derived diterpenoids are indispensable to plant development, stress-resistance and interaction with environmental microorganisms. Besides significant roles in plant fitness and adaption, many bioactivities beneficial to human beings are also found in diterpenoids from terrestrial plants. However, these high-value compounds are always present in limited species with low-abundance. Complicated chemosynthesis hardly meets the needs of sufficient supplies. To overcome these obstacles, it is necessary to investigate how diterpenoids are biosynthesized in planta, and followed by engineering the biosynthetic pathway to achieve high yield production. This review will summarize the recent progress of plant diterpenoid biosynthetic pathway discovery and engineering, hoping to offer an inspiration for concerned researchers.
Collapse
Affiliation(s)
- Jie Shao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuwei Sun
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Haili Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
39
|
Wang Z, Hong J, Ma S, Huang T, Ma Y, Liu W, Liu W, Liu Z, Song H. Heterologous expression of EUGT11 from Oryza sativa in Pichia pastoris for highly efficient one-pot production of rebaudioside D from rebaudioside A. Int J Biol Macromol 2020; 163:1669-1676. [PMID: 32976903 DOI: 10.1016/j.ijbiomac.2020.09.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/28/2022]
Abstract
Rebaudioside D is a promising sweetener due to its zero calorie and high sweetness. Here, a transglucosylase gene eugt11 from Oryza sativa was for the first time expressed in Pichia pastoris, and transformant XE-3 showed the highest expression levels in pH 5.5 BMMY media containing 0.75% methanol. The affinity-purified EUGT11 from XE-3 displayed the highest activity at pH 6.0-6.5 and 45 °C, compared to pH 8.5 and 35 °C for EUGT11 from Escherichia coli. One-pot synthesis with orthogonal design was employed to optimize the rebaudioside D production using XE-3, and the initial pH 7.0 of the medium appears to be a significant factor and delivers the highest conversion efficiency. A two-step temperature-control strategy was developed, and a conversion rate of 95.31% was achieved at 28/35 °C vs. 62.41% in a one-step process at 28 °C. This study provides a high-efficient whole-cell biocatalysts technology for the sweetener production.
Collapse
Affiliation(s)
- Zhenyang Wang
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; R&D Division, Sinochem Health Company Ltd., Qingdao 266071, China
| | - Jiefang Hong
- Biomass Conversion Laboratory, Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
| | - Siyuan Ma
- Biomass Conversion Laboratory, Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tong Huang
- Biomass Conversion Laboratory, Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuanyuan Ma
- Biomass Conversion Laboratory, Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China; Frontier Technology Institute (Wuqing), Tianjin University, Tianjin 30072, China.
| | - Wei Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenbin Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiming Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Hao Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China; Frontier Technology Institute (Wuqing), Tianjin University, Tianjin 30072, China.
| |
Collapse
|
40
|
Enhanced Heterologous Production of Glycosyltransferase UGT76G1 by Co-Expression of Endogenous prpD and malK in Escherichia coli and Its Transglycosylation Application in Production of Rebaudioside. Int J Mol Sci 2020; 21:ijms21165752. [PMID: 32796599 PMCID: PMC7460871 DOI: 10.3390/ijms21165752] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Steviol glycosides (SGs) with zero calories and high-intensity sweetness are the best substitutes of sugar for the human diet. Uridine diphosphate dependent glycosyltransferase (UGT) UGT76G1, as a key enzyme for the biosynthesis of SGs with a low heterologous expression level, hinders its application. In this study, a suitable fusion partner, Smt3, was found to enhance the soluble expression of UGT76G1 by 60%. Additionally, a novel strategy to improve the expression of Smt3-UGT76G1 was performed, which co-expressed endogenous genes prpD and malK in Escherichia coli. Notably, this is the first report of constructing an efficient E. coli expression system by regulating prpD and malK expression, which remarkably improved the expression of Smt3-UGT76G1 by 200% as a consequence. Using the high-expression strain E. coli BL21 (DE3) M/P-3-S32U produced 1.97 g/L of Smt3-UGT76G1 with a yield rate of 61.6 mg/L/h by fed-batch fermentation in a 10 L fermenter. The final yield of rebadioside A (Reb A) and rebadioside M (Reb M) reached 4.8 g/L and 1.8 g/L, respectively, when catalyzed by Smt3-UGT76G1 in the practical UDP-glucose regeneration transformation system in vitro. This study not only carried out low-cost biotransformation of SGs but also provided a novel strategy for improving expression of heterologous proteins in E. coli.
Collapse
|
41
|
Lin M, Wang F, Zhu Y. Modeled structure-based computational redesign of a glycosyltransferase for the synthesis of rebaudioside D from rebaudioside A. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Chen L, Cai R, Weng J, Li Y, Jia H, Chen K, Yan M, Ouyang P. Production of rebaudioside D from stevioside using a UGTSL2 Asn358Phe mutant in a multi-enzyme system. Microb Biotechnol 2020; 13:974-983. [PMID: 32011106 PMCID: PMC7264896 DOI: 10.1111/1751-7915.13539] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 01/22/2023] Open
Abstract
Rebaudioside D is a sweetener from Stevia rebaudiana with superior sweetness and organoleptic properties, but its production is limited by its minute abundance in S. rebaudiana leaves. In this study, we established a multi-enzyme reaction system with S. rebaudiana UDP-glycosyltransferases UGT76G1, Solanum lycopersicum UGTSL2 and Solanum tuberosum sucrose synthase StSUS1, achieving a two-step glycosylation of stevioside to produce rebaudioside D. However, an increase in the accumulation of rebaudioside D required the optimization of UGTSL2 catalytic activity towards glucosylation of rebaudioside A and reducing the formation of the side-product rebaudioside M2. On the basis of homology modelling and structural analysis, Asn358 in UGTSL2 was subjected to saturating mutagenesis, and the Asn358Phe mutant was used instead of wild-type UGTSL2 for bioconversion. The established multi-enzyme reaction system employing the Asn358Phe mutant produced 14.4 g l-1 (1.6 times of wild-type UGTSL2) rebaudioside D from 20 g l-1 stevioside after reaction for 24 h. This system is useful for large-scale rebaudioside D production and expands our understanding of the pathways involved in its synthesis.
Collapse
Affiliation(s)
- Liangliang Chen
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800China
| | - Ruxin Cai
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800China
| | - Jingyuan Weng
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800China
| | - Yan Li
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800China
| | - Ming Yan
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800China
| |
Collapse
|
43
|
Mrudulakumari Vasudevan U, Lee EY. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 2020; 41:107550. [PMID: 32360984 DOI: 10.1016/j.biotechadv.2020.107550] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, terpenoids, and polyketides are structurally diverse secondary metabolites used widely as pharmaceuticals and nutraceuticals. Most of these molecules exist in nature as glycosides, in which sugar residues act as a decisive factor in their architectural complexity and bioactivity. Engineering glycosylation through selective trimming or extension of the sugar residues in these molecules is a prerequisite to their commercial production as well to creating novel derivatives with specialized functions. Traditional chemical glycosylation methods are tedious and can offer only limited end-product diversity. New in vitro and in vivo biocatalytic tools have emerged as outstanding platforms for engineering glycosylation in these three classes of secondary metabolites to create a large repertoire of versatile glycoprofiles. As knowledge has increased about secondary metabolite-associated promiscuous glycosyltransferases and sugar biosynthetic machinery, along with phenomenal progress in combinatorial biosynthesis, reliable industrial production of unnatural secondary metabolites has gained momentum in recent years. This review highlights the significant role of sugar residues in naturally occurring flavonoids, terpenoids, and polyketide antibiotics. General biocatalytic tools used to alter the identity and pattern of sugar molecules are described, followed by a detailed illustration of diverse strategies used in the past decade to engineer glycosylation of these valuable metabolites, exemplified with commercialized products and patents. By addressing the challenges involved in current bio catalytic methods and considering the perspectives portrayed in this review, exceptional drugs, flavors, and aromas from these small molecules could come to dominate the natural-product industry.
Collapse
Affiliation(s)
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
44
|
Efficient Biocatalytic Preparation of Rebaudioside KA: Highly Selective Glycosylation Coupled with UDPG Regeneration. Sci Rep 2020; 10:6230. [PMID: 32277148 PMCID: PMC7148340 DOI: 10.1038/s41598-020-63379-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/30/2020] [Indexed: 11/30/2022] Open
Abstract
Rebaudioside KA is a diterpene natural sweetener isolated in a trace amount from the leaves of Stevia rebaudiana. Selective glycosylation of rubusoside, a natural product abundantly presented in various plants, is a feasible approach for the biosynthesis of rebaudioside KA. In this study, bacterial glycosyltransferase OleD was identified to selectively transfer glucose from UDPG to 2′-hydroxyl group with a β-1,2 linkage at 19-COO-β-D-glucosyl moiety of rubusoside for the biosynthesis of rebaudioside KA. To eliminate the use of UDPG and improve the productivity, a UDPG regeneration system was constructed as an engineered Escherichia coli strain to couple with the glycosyltransferase. Finally, rubusoside at 22.5 g/L (35.0 mM) was completely converted to rebaudioside KA by the whole cells without exogenous addition of UDPG. This study provides an efficient and scalable method for highly selective biosynthesis of rebaudioside KA.
Collapse
|
45
|
Zhang L, Gao Y, Liu X, Guo F, Ma C, Liang J, Feng X, Li C. Mining of Sucrose Synthases from Glycyrrhiza uralensis and Their Application in the Construction of an Efficient UDP-Recycling System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11694-11702. [PMID: 31558015 DOI: 10.1021/acs.jafc.9b05178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sucrose synthase (SUS) plays an important role in carbohydrate metabolism in plants. The SUS genes in licorice remain unknown. To reveal the sucrose metabolic pathway in licorice, all the 12 putative SUS genes of Glycyrrhiza uralensis were systematically identified by genome mining, and two novel SUSs (GuSUS1 and GuSUS2) were isolated and characterized for the first time. Furthermore, we found that the flexible N-terminus was responsible for the low stability of plant SUSs, and deletion of redundant N-terminus improved the stability of GuSUS1 and GuSUS2. The half-life of both GuSUS1 and GuSUS2 mutants was increased by 2-fold. Finally, the GuSUS1 mutant was coupled with UGT73C11 for the glycosylation of glycyrrhetinic acid (GA) with uridine 5'-diphosphate disodium salt hydrate (UDP) in situ recycling, and GA conversion was increased by 7-fold. Our study not only identified the SUS genes in licorice but also provided a stable SUS mutant for the construction of an efficient UDP-recycling system for GA glycosylation.
Collapse
Affiliation(s)
- Liang Zhang
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Yanan Gao
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Xiaofei Liu
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Fang Guo
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Congxuan Ma
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Jianhua Liang
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Xudong Feng
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
46
|
Lee SH, Ko JA, Kim HS, Jo MH, Kim JS, Kim D, Cho JY, Wee YJ, Kim YM. Enzymatic Synthesis of Glucosyl Rebaudioside A and its Characterization as a Sweetener. J Food Sci 2019; 84:3186-3193. [PMID: 31589348 DOI: 10.1111/1750-3841.14821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Rebaudioside A was modified via glucosylation by recombinant dextransucrase of Leuconostoc lactis EG001 in Escherichia coli BL21 (DE3), forming single O-α-D-glucosyl-(1″→6') rebaudioside A with yield of 86%. O-α-D-glucosyl-(1″→6') rebaudioside A was purified using HPLC and Diaion HP-20 and its properties were characterized for possible use as a food ingredient. Almost 98% of O-α-D-glucosyl-(1″→6') rebaudioside A was dissolved after 15 days of storage at room temperature, compared to only 11% for rebaudioside A. Compared to rebaudioside A, O-α-D-glucosyl-(1″→6') rebaudioside A showed similar or improved acidic or thermal stability in commercial drinks. Thus, O-α-D-glucosyl-(1″→6') rebaudioside A could be used as a highly pure and improved sweetener with high stability in commercial drinks. PRACTICAL APPLICATION: The proposed method can be used to generate glucosyl rebaudioside A by enzymatic glucosylation. Simple glucosyl rebaudioside A exhibited high acid/thermal stability and improved sweetener in commercialized drinks. This method can be applied to obtain high value-added bioactive compounds by enzymatic modification.
Collapse
Affiliation(s)
- So-Hyeon Lee
- Dept. of Food Science & Technology, Chonnam National Univ., Gwangju, 61186, Republic of Korea
| | - Jin-A Ko
- Radiation Breeding Research Center, Advanced Radiation Technology Inst., Korea Atomic Energy Research Inst., Jeongeup, Republic of Korea
| | - Hae-Soo Kim
- Dept. of Food Science & Technology, Chonnam National Univ., Gwangju, 61186, Republic of Korea
| | - Min-Ho Jo
- Dept. of Food Science & Technology, Chonnam National Univ., Gwangju, 61186, Republic of Korea
| | - Joong-Su Kim
- Bio-industrial Process Research Center, Korea Research Inst. of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Doman Kim
- Research Inst. of Food Industrialization, Inst. of Green Bio Science & Technology, Seoul National Univ., Pyeongchang, 25354, Korea
| | - Jeong-Yong Cho
- Dept. of Food Science & Technology, Chonnam National Univ., Gwangju, 61186, Republic of Korea
| | - Young-Jung Wee
- Dept. of Food Science and Technology, Yeungnam Univ., Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Young-Min Kim
- Dept. of Food Science & Technology, Chonnam National Univ., Gwangju, 61186, Republic of Korea
| |
Collapse
|
47
|
Natural Product Glycosylation: Biocatalytic Synthesis of Quercetin-3,4'-O-diglucoside. Appl Biochem Biotechnol 2019; 190:464-474. [PMID: 31385192 DOI: 10.1007/s12010-019-03103-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
Flavonoids have gained much attention for their proposed positive effects for human health. Glycosylation is a significant method for the structural modification of various flavanols, resulting in glycosides with increased solubility, stability, and bioavailability compared with the corresponding aglycone. Natural product glycosylation by using enzymes has emerged as a topic of interest as it offers a sustainable and economical alternative source so as to address supply scalability limitations associated with plant-based production. Quercetin-3,4'-O-diglucoside, as one of the major but trace bioactive flavonoids in onion (Allium cepa), is superior or at least equal to quercetin aglycone in its bioavailability. In the present study, the onion-derived enzyme, UGT73G1, coupled with sucrose synthase, StSUS1, from Solanum tuberosum formed a circulatory system to produce quercetin-3,4'-O-diglucoside from quercetin, which preferred sucrose as a sugar donor and quercetin as a sugar acceptor. The optimal conditions were determined in order to increase the production of quercetin-3,4'-O-diglucoside. The maximum concentration of quercetin-3,4'-O-diglucoside achieved in a 10-mL reaction was 427.11 mg/L, from the conversion of 1 g/L of quercetin for 16 h at 40 °C and pH 7.2.
Collapse
|
48
|
Guo Q, Zhang T, Wang N, Xia Y, Zhou Z, Wang JR, Mei X. RQ3, A Natural Rebaudioside D Isomer, Was Obtained from Glucosylation of Rebaudioside A Catalyzed by the CGTase Toruzyme 3.0 L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8020-8028. [PMID: 31259548 DOI: 10.1021/acs.jafc.9b02545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, a monoglucosyl rebaudioside A product was isolated from the mixture of glucosylated rebaudioside A obtained from the most reported and industrial used cyclodextrin glycosyl transferase, Toruzyme 3.0 L (CGTase, Toruzyme 3.0 L). The molecular structure of the monoglucosyl rebaudioside A was characterized using LC-MS/MS and methylation analysis combined with 1D and 2D NMR, indicating that it is 13-[(2-O-(3-α-O-D-glucopyranosyl)-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-D-glucopyranosyl ester (also known as RQ3, which naturally exists in Stevia extract as an isomer of rebaudioside D). This study may help to further understand the reaction mechanism of glucosylation of steviol glycoside assisted by Toruzyme 3.0 L in the aspect of molecule linkage pattern, and also benefit the application of the glucosylated rebaudiosides.
Collapse
Affiliation(s)
- Qingbin Guo
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology, Ministry of Education , Tianjin 300457 , China
| | - Tongtong Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
- School of Chemical and Materials Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology, Ministry of Education , Tianjin 300457 , China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
- School of Chemical and Materials Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Zhuoyu Zhou
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
- School of Chemical and Materials Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Jian-Rong Wang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medical , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Xuefeng Mei
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medical , Chinese Academy of Sciences , Shanghai 201203 , China
| |
Collapse
|
49
|
Biosynthesis of Raffinose and Stachyose from Sucrose via an In Vitro Multienzyme System. Appl Environ Microbiol 2019; 85:AEM.02306-18. [PMID: 30389762 DOI: 10.1128/aem.02306-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/28/2018] [Indexed: 01/09/2023] Open
Abstract
Herein, we present a biocatalytic method to produce raffinose and stachyose using sucrose as the substrate. An in vitro multienzyme system was developed using five enzymes, namely, sucrose synthase (SUS), UDP-glucose 4-epimerase (GalE), galactinol synthase (GS), raffinose synthase (RS), and stachyose synthase (STS), and two intermedia, namely, UDP and inositol, which can be recycled. This reaction system produced 11.1 mM raffinose using purified enzymes under optimal reaction conditions and substrate concentrations. Thereafter, a stepwise cascade reaction strategy was employed to circumvent the instability of RS and STS in this system, and a 4.2-fold increase in raffinose production was observed. The enzymatic cascade reactions were then conducted using cell extracts to avoid the need for enzyme purification and supplementation with UDP. Such modification further increased raffinose production to 86.6 mM and enabled the synthesis of 61.1 mM stachyose. The UDP turnover number reached 337. Finally, inositol in the reaction system was recycled five times, and 255.8 mM raffinose (128.9 g/liter) was obtained.IMPORTANCE Soybean oligosaccharides (SBOS) have elicited considerable attention because of their potential applications in the pharmaceutical, cosmetics, and food industries. This study demonstrates an alternative method to produce raffinose and stachyose, which are the major bioactive components of SBOS, from sucrose via an in vitro enzyme system. High concentrations of galactinol, raffinose, and stachyose were synthesized with the aid of a stepwise cascade reaction process, which can successfully address the issue of mismatched enzyme characteristics of an in vitro metabolic engineering platform. The biocatalytic approach presented in this work may enable the synthesis of other valuable galactosyl oligosaccharides, such as verbascose and higher homologs, which are difficult to obtain through plant extraction.
Collapse
|