1
|
Li W, Antoniadi L, Zhou H, Chen H, Angelis A, Halabalaki M, Skaltsounis LA, Qi Z, Wang C. Sodium cholate-coated Olea europaea polyphenol nanoliposomes: Preparation, stability, release, and bioactivity. Food Chem 2025; 469:142580. [PMID: 39721438 DOI: 10.1016/j.foodchem.2024.142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Ultra-flexible nanoliposomes (UNL) coated with sodium cholate were fabricated using the thin film hydration technique to encapsulate oleocanthal (OLEO), oleacein (OLEA), oleuropein (OLEU), and hydroxytyrosol (HT) for improving their stability and bioactivity. Their physicochemical properties were further validated through DLS, FTIR, XRD, TGA, and DSC analyses. Negative-staining TEM imaging revealed well-dispersed UNL with laminar vesicles inside. Additionally, their transdermal studies in vitro demonstrated that UNL enhanced the cumulative release of OLEO, OLEA, OLEU, and HT by 3.13, 2.76, 2.59, and 2.83 times, respectively. Furthermore, their release mechanisms were better approximated the Peppas-Sahlin model rather than the Korsmeyer-Peppas and Higuchi models, which governed by Fickian diffusion. Moreover, comparing to their compounds, UNL structure exhibited improved their antioxidant and cytotoxicity properties, highlighting their potential as effective delivery agents in humans. These results offer a novel approach for stabilizing biologically active polyphenols from Olea europaea, paving the way for enhanced human health applications.
Collapse
Affiliation(s)
- Wenjun Li
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Lemonia Antoniadi
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece; Pharmagnose S.A., 57th km Athens-lamia National Road, Oinofyta 32011, Greece
| | - Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Hongxia Chen
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China.
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
2
|
Li Y, Liu Y, Qiao J, Xing B, Yun J, Niu J, Chen M, Yang P, Zhao S, Zhang L. Foxtail millet prolamin-pectin nanoparticles enhanced the stability and bioavailability of β-sitosterol. Food Res Int 2025; 205:115998. [PMID: 40032481 DOI: 10.1016/j.foodres.2025.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
Herein, β-sitosterol-loaded foxtail millet prolamin (FMP)-pectin composite nanoparticles (FSNs) were successfully produced using an antisolvent precipitation method to encapsulate β-sitosterol and improve its bioaccessibility. Results indicated that the nanoparticles prepared at a FMP-to-pectin mass ratio of 10:2 not only showed lower particle size (401.7 ± 14.7 nm, p < 0.05) and higher net zeta potential (-33.3 ± 6.1 mV, p < 0.05) but also exhibited higher encapsulation efficiency (81.5 % ± 0.3 %, p < 0.05). FSNs successfully encapsulated β-sitosterol through electrostatic and hydrophobic interactions and hydrogen bonding. β-sitosterol changed from a crystalline to an amorphous state. Meanwhile, FMP-pectin composite nanoparticles (FNs) and FSNs displayed similar irregular lamellar structures and exhibited excellent physical stability at different environments (pH > 4, salt ions <100 mM, different temperatures and storage at 4 °C). The simulated digestion result showed that FSNs could target the release of β-sitosterol at the intestinal stage with a release rate of 72.23 ± 1.19 % (p < 0.05). Moreover, the bioaccessibility of β-sitosterol in FSNs significantly increased by about 68.58 ± 2.39 % (p < 0.05) compared with free β-sitosterol. Nonetheless, this study provided a novel β-sitosterol delivery system based on FMP-pectin complexes with a broad prospect in the processing of food, pharmaceuticals and nutrition.
Collapse
Affiliation(s)
- Yue Li
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yongxia Liu
- Iinstitute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan 571101, China
| | - Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Bao Xing
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Junyan Yun
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiahui Niu
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Muwen Chen
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Pu Yang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Shaojie Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
3
|
Hamze F, Amiri M, Islami ZS, Shamspur T, Razavi R, Khazaeli P. Synthesis and evaluation of antibacterial and antioxidant effects of propolis nanoparticles and cinnamon nanostructures in preventive dentistry: Experimental and theoretical approaches. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 38973088 DOI: 10.1002/pca.3405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Natural products such as green propolis and cinnamon have been used traditionally in medicine due to their medicinal value. Recently, interest has grown in developing nanotechnology-based approaches to enhance the biological activity of these compounds. OBJECTIVE This study evaluated the antioxidant and antibacterial properties of macro-sized and nanostructured forms of green propolis and cinnamon against Streptococcus mutans (S. mutans) and the 2,2-diphenyl-2-picrylhydrazyl (DPPH) assay. MATERIAL AND METHODS The sonochemical method was used to synthesize green propolis nanoparticles (PNPs) and cinnamon nanoparticles (CNPs). Their size was confirmed by scanning electron microscopy (SEM) and dynamic light scattering measurements, while they were compared with propolis (P) and cinnamon (C). The antioxidant activity was measured using the DPPH assay, while the minimum inhibitory concentration (MIC) test determined the antibacterial activity against S. mutans. One-way analysis of variance (ANOVA) and Tukey's post hoc tests (α = 0.05) were conducted to analyze the data. Furthermore, docking calculations were carried out to examine the potential of incorporating any new supplements or therapies into your routine. RESULTS The MIC were 5.46, 21.87, 21.87, and 175 g/L for PNPs, P, CNPs, and C groups, respectively. The PNPs exhibited the most significant antibacterial effect while C was weakest. About antioxidant activity, PNPs and P exhibited significant differences from other groups (P = 0.000 and 0.001, respectively), while CNPs and C showed no significant difference between each other (P = 0.07). The docking calculations revealed a strong interaction between both nanoparticles and S. mutans. The binding energy of dihydroflavonols on propolis nanoparticles was -6.83 kcal/mol, indicating a stable connection.
Collapse
Affiliation(s)
- Faeze Hamze
- Department of Operative Dentistry, Shahed Dental School, Shahed University, Theran, Iran
| | - Mahnaz Amiri
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Tayebeh Shamspur
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Payam Khazaeli
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| |
Collapse
|
4
|
Shalaby ES, Abdelhameed MF, Ismail SA, Ahmed YH, Aboutaleb S. Innovative Indian Propolis Loaded Carnauba Wax Based Lipid Structured Nanocarriers: Preparation, Characterization and In Vitro /In Vivo Antifungal Activities. BIONANOSCIENCE 2024; 14:1726-1743. [DOI: 10.1007/s12668-024-01361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 01/03/2025]
|
5
|
Vaseghi A, Parchin RA, Chamanie KR, Herb M, Maleki H, Sadeghizadeh M. Encapsulation of propolis extracted with methylal in the chitosan nanoparticles and its antibacterial and cell cytotoxicity studies. BMC Complement Med Ther 2024; 24:165. [PMID: 38641781 PMCID: PMC11027551 DOI: 10.1186/s12906-024-04472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
In this study we develop novel type of antibacterial chitosan-propolis NPs to improve theantimicrobial activity against various pathogens. To this aim, we primarily extracted propolis with methylal and ethanol as green solvents and its encapsulation with chitosan NPs. The developed propolis loaded chitosan NPs indicated antimicrobial and anti-biofilm properties against various gram positive and negative. FTIR revealed the successful encapsulation of the propolis extract with Ethanol (PE) and Methylal (PM) into the chitosan nano career matrix. HPLC and GC-MASS also confirmed the presence of flavonoids and phenols compounds of propolis extracted with both solvents. In addition, we confirmed the total phenolic and flavonoid compounds in propolis by calorimetric method of Folin-Ciocalteu and aluminum trichloride complex formation assays, respectively. PE-CH and PM-CH were optimized regarding physicochemical properties such as particle size, zeta potential, and poly dispersity index (PDI) index. DLS and SEM micrographs confirmed a spherical morphology in a range of 360-420 nm with Z potential values of 30-48 mV and PDI of 0.105-0.166 for PE-CH and PM-CH, respectively. The encapsulation efficiency was evaluated using colorimetric analysis, with median values ranging from 90 to 92%. The MIC values within the range of 2 to 230 µg/ml and MBC values between 3 to 346 μg/ml against both gram-positive and negative bacteria. While both PE and PM showed a significant reduction in the number of E. coli, S. aureus, and S. epidermidis, the use of PE-CH and PM-CH led to a statistically significant and greater reduction in number of E. coli, S. aureus, and S. epidermidis strains on the biofilm, pre-formed biofilm and planktonic phases. Besides, the DPPH assay showed significant antioxidant activity for these NPs within the range of 36 to 92%. MTT assay for MHFB-1, HFF, L929, MDF, and MCF-7 cells exhibited statistically significant differences in each other that show the IC50 between 60-160 µg/ml for normal cells and 20 for cancer cells. Finally the present study indicated that both PM and PM-CH greater than PE and PE-CH in which contain high flavonoid and phenolic contents with a high antioxidation potential antioxidant properties, which could be beneficial for cell proliferation and antibiotic and anticancer applications.
Collapse
Affiliation(s)
- Akbar Vaseghi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Ashrafi Parchin
- Excir Faravaran Sabalan Company, Ardabil Science and Technology Park, Ardabil, Iran
| | | | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, 50935, Germany
| | - Hajar Maleki
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne, 50939, Germany
- Center for Molecular Medicine Cologne, CMMC Research Center, Cologne, 50931, Germany
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AleAhmad St, Tehran, Iran.
| |
Collapse
|
6
|
Blanco-Morales V, Mercatante D, Rodriguez-Estrada MT, Garcia-Llatas G. Current and New Insights on Delivery Systems for Plant Sterols in Food. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:403-435. [PMID: 38036891 DOI: 10.1007/978-3-031-43883-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Plant sterols are minor bioactive components of food lipids, which are often used for the formulation of functional foods due to their cholesterol-lowering properties. However, they have low solubility and tend to crystallize, which may affect their biological effects, the sensory profile of the sterol-enriched food, and its consumer acceptability. Moreover, due to the unsaturated structure of sterols, they are susceptible to oxidation, so different encapsulation systems have been developed to improve their dispersibility/solubility, stability, delivery, and bioaccessibility. This chapter provides an overview of the main encapsulation systems currently used for plant sterols and their application in model and food systems, with a particular focus on their efficiency and impact on sterol bioaccessibility.
Collapse
Affiliation(s)
- V Blanco-Morales
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - D Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - M T Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
- CIRI-Agrifood (Interdepartmental Centre of Industrial Agrifood Research), Alma Mater Studiorum-University of Bologna, Cesena, Italy.
| | - G Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
7
|
Guo SJ, Wang XD, Ma YX, Hu YY, Yang RN, Ma CG. Guar gum series affect nanostructured lipid carriers via electrostatic assembly or steric hindrance: Improving their oral delivery for phytosterols. Int J Biol Macromol 2023; 253:126667. [PMID: 37660846 DOI: 10.1016/j.ijbiomac.2023.126667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/11/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Surface modification of nanostructured lipid carriers (NLCs) can be an effective way to improve their oral delivery for active ingredients. In this study, four type of guar gum series modified NLCs for the delivery of phytosterols (PS) were constructed and the effects of the polysaccharides on their structure and physicochemical properties were studied. DLS and AFM results revealed that positively charged polysaccharides could bind to PS-NLCs through electrostatic attraction and made the complexes finally take positive charges, while negatively charged polysaccharides were more likely to fill in the gaps of NLC systems to achieve a balance between electrostatic repulsion and intermolecular forces. Although all four polysaccharides exhibited good storage stability and controlled release of PS in simulated intestinal digestion, PS-NLCs modified with partially hydrolyzed cationic guar gum (PHCG) at medium or high concentrations exhibited better gastric stability, mucoadhesion, and cellular uptake, which had considerable significance for improving the oral bioavailability of PS. This might be related to the coating structure of PHCG-PS-NLCs confirmed by AFM, FTIR, and Raman characterization. This study provide a reference value for designing suitable PS-NLC complexes without synthetic surfactants.
Collapse
Affiliation(s)
- Shu-Jing Guo
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Xue-De Wang
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Yu-Xiang Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Yu-Yuan Hu
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Rui-Nan Yang
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Chuan-Guo Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| |
Collapse
|
8
|
Cheng D, Guo Y, Du L, Khan I, Liu R, Chang M. Regulate structure and properties of κ-carrageenan/konjac glucomannan composite hydrogel by filling effects of Quillaja saponin-stabilized solid lipid nanostructure. Int J Biol Macromol 2023; 253:127090. [PMID: 37758107 DOI: 10.1016/j.ijbiomac.2023.127090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
κ-Carrageenan/konjac glucomannan (κ-CA/KGM) composite hydrogels often fail to meet industrial requirements due to their low gel strength and poor mechanical properties, while solid lipid nanoparticles are potential materials to address this challenge due to their good biocompatibility. In the study, we propose using Quillaja saponin-stabilized solid lipid nanoparticle (QSLN) as nanofillers to enhance properties of κ-carrageenan/konjac glucan (κ-CA/KGM) composite hydrogels, and with emphasis on the effect of QSLN filling concentration on the structure and properties of composite hydrogels and the possible mechanisms were investigated. The best performance of QSLN-filled composite hydrogels was achieved at the QSLN concentration of 2.4 %. QSLN was uniformly distributed in the hydrogel matrix and formed electrostatic interactions and hydrogen bonding interactions with the matrix at an appropriate filling level, which enhanced the textural and rheological properties of the hydrogel greatly. In addition, the results of low-field NMR experiments showed that the filling of QSLN reduced the water mobility by enhancing the entanglement of polymer chains in the hydrogel matrix, which improved the freeze-thaw stability and regulated the swelling and deswelling behavior of the composite hydrogel. However, with the increasing of QSLN filling concentration, the above improvements were weakened by the depletion of van der Waals interactions due to the large amount of QSLN aggregation and the weakening of electrostatic interaction. In turn, the hydrogel was found to modulate the crystalline behavior of QSLN by X-ray diffraction and differential scanning calorimeter monitoring. Overall, the optimal synergistic effect between structure and properties could be achieved when the QSLN filling concentration was 2.4 %. These results provide a basis for the development of products that require excellent gel properties and structure.
Collapse
Affiliation(s)
- Dekun Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yiwen Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liyang Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Imad Khan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruijie Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Taha EF, Hamed NS, Khateeb S. Etoricoxib nanostructured lipid carriers attenuate inflammation by modulating Cyclooxygenase-2 signaling and activation of nuclear factor-κB-p65 pathways in radiation-induced acute cardiotoxicity in rats. Eur J Pharmacol 2023; 957:176029. [PMID: 37648012 DOI: 10.1016/j.ejphar.2023.176029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
The current investigation aimed to explore the potential of etoricoxib nanostructured lipid carriers (ET-NLCs) as an anti-inflammatory drug in radiation-exposed rats, with a focus on assessing its efficacy in reducing inflammation while minimizing cardiac toxicity compared to conventional etoricoxib (ET) treatment. The ET-NLCs were prepared by the low-temperature melt emulsification solidification technique. Various techniques were employed to characterize the NLCs. Rats were exposed to gamma-irradiation (6 Gy) to induce cardiac inflammation and injury, followed by oral administration of ET or ET-NLCs (10 mg/kg b.w.) for 14 consecutive days. Results demonstrated a significant increase in the levels of malondialdehyde (MDA), cyclooxygenase-2 (COX-2), nuclear factor kappa-B p65 (NF-κB-p65), and poly ADP-ribose polymerase (PARP-1) in the heart tissues of gamma-irradiated rats compared to the control group. This increase was accompanied by a reduction in the activity of antioxidant enzymes. However, treatment with ET and ET-NLCs exhibited a positive impact on these levels. Interestingly, the efficacy of ET-NLCs in mitigating radiation-induced inflammation in heart tissue was found to be superior to that of ET. In conclusion, the study suggests that the utilization of NLCs as a drug delivery system for ET may not only enhance its therapeutic efficacy but also help reduce the cardiovascular risks associated with ET, specifically focused on individuals who had been exposed to gamma radiation. These findings open new avenues for further research in the development of effective and safer therapeutic strategies for managing inflammatory diseases and their impact on cardiovascular health.
Collapse
Affiliation(s)
- Eman Fs Taha
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Noha Sayed Hamed
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Sahar Khateeb
- Biochemistry Division, Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt.
| |
Collapse
|
10
|
Malekmohammadi M, Ghanbarzadeh B, Hanifian S, Samadi Kafil H, Gharekhani M, Falcone PM. The Gelatin-Coated Nanostructured Lipid Carrier (NLC) Containing Salvia officinalis Extract: Optimization by Combined D-Optimal Design and Its Application to Improve the Quality Parameters of Beef Burger. Foods 2023; 12:3737. [PMID: 37893630 PMCID: PMC10606122 DOI: 10.3390/foods12203737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The current study aims to synthesize the gelatin-coated nanostructured lipid carrier (NLC) to encapsulate sage extract and use this nanoparticle to increase the quality parameters of beef burger samples. NLCs were prepared by formulation of gelatin (as surfactant and coating biopolymer), tallow oil (as solid lipid), rosemary essential oil (as liquid lipid), sage extract (as active material or encapsulant), polyglycerol ester and Tween 80 (as low-molecular emulsifier) through the high-shear homogenization-sonication method. The effects of gelatin concentrations and the solid/liquid ratio on the particle size, polydispersity index (PDI), and encapsulation efficiency (EE%) of sage extract-loaded NLCs were quantitatively investigated and optimized using a combined D-optimal design. Design expert software suggested the optimum formulation with a gelatin concentration of 0.1 g/g suspension and solid/liquid lipid ratio of 60/40 with a particle size of 100.4 nm, PDI of 0.36, and EE% 80%. The morphology, interactions, thermal properties, and crystallinity of obtained NLC formulations were investigated by TEM, FTIR, DSC, and XRD techniques. The optimum sage extract-loaded/gelatin-coated NLC showed significantly higher antioxidant activity than free extract after 30 days of storage. It also indicated a higher inhibitory effect against E. coli and P. aeruginosa than free form in MIC and MBC tests. The optimum sage extract-loaded/gelatin-coated NLC, more than free extract, increased the oxidation stability of the treated beef burger samples during 90 days of storage at 4 and -18 °C (verified by thiobarbituric acid and peroxide values tests). Incorporation of the optimum NLC to beef burgers also effectively decreased total counts of mesophilic bacteria, psychotropic bacteria, S. aureus, coliform, E. coli, molds, and yeasts of treated beef burger samples during 0, 3, and 7 days of storage in comparison to the control sample. These results suggested that the obtained sage extract-loaded NLC can be an effective preservative to extend the shelf life of beef burgers.
Collapse
Affiliation(s)
- Maedeh Malekmohammadi
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
| | - Shahram Hanifian
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz P.O. Box 51656-65811, Iran;
| | - Mehdi Gharekhani
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Pasquale M. Falcone
- Department of Agricultural, Food and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 10, 60131 Ancona, Italy
| |
Collapse
|
11
|
Evtyugin DD, Evtuguin DV, Casal S, Domingues MR. Advances and Challenges in Plant Sterol Research: Fundamentals, Analysis, Applications and Production. Molecules 2023; 28:6526. [PMID: 37764302 PMCID: PMC10535520 DOI: 10.3390/molecules28186526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Plant sterols (PS) are cholesterol-like terpenoids widely spread in the kingdom Plantae. Being the target of extensive research for more than a century, PS have topped with evidence of having beneficial effects in healthy subjects and applications in food, cosmetic and pharmaceutical industries. However, many gaps in several fields of PS's research still hinder their widespread practical applications. In fact, many of the mechanisms associated with PS supplementation and their health benefits are still not fully elucidated. Furthermore, compared to cholesterol data, many complex PS chemical structures still need to be fully characterized, especially in oxidized PS. On the other hand, PS molecules have also been the focus of structural modifications for applications in diverse areas, including not only the above-mentioned but also in e.g., drug delivery systems or alternative matrixes for functional foods and fats. All the identified drawbacks are also superimposed by the need of new PS sources and technologies for their isolation and purification, taking into account increased environmental and sustainability concerns. Accordingly, current and future trends in PS research warrant discussion.
Collapse
Affiliation(s)
- Dmitry D. Evtyugin
- CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.D.E.); (D.V.E.)
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Dmitry V. Evtuguin
- CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.D.E.); (D.V.E.)
| | - Susana Casal
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Akl MA, Ryad S, Ibrahim MF, Kassem AA. Formulation, and Optimization of Transdermal Atorvastatin Calcium-Loaded Ultra-flexible Vesicles; Ameliorates Poloxamer 407-caused Dyslipidemia. Int J Pharm 2023; 638:122917. [PMID: 37019321 DOI: 10.1016/j.ijpharm.2023.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Atorvastatin calcium (AC), a cholesterol-lowering medication, has limited oral bioavailability (14%) and adverse impacts on the gastrointestinal tract (GIT), liver, and muscle. So, in an effort to improve the poor availability and overcome the hepatotoxicity complications attendant to peroral AC administration, transdermal transfersomal gel (AC-TFG) was developed as a convenient alternative delivery technique. The impact of utilizing an edge activator (EA) and varying the phosphatidylcholine (PC): EA molar ratio on the physico-chemical characteristics of the vesicles was optimized through a Quality by Design (QbD) strategy. The optimal transdermal AC-TFG was tested in an ex-vivo permeation study employing full-thickness rat skin, Franz cell experiments, an in-vivo pharmacokinetics and pharmacodynamics (PK/PD) evaluation, and a comparison to oral AC using poloxamer-induced dyslipidemic Wister rats. The optimized AC-loaded TF nanovesicles predicted by the 23-factorial design strategy had a good correlation with the measured vesicle diameter of 71.72 ± 1.159 nm, encapsulation efficiency of 89.13 ± 0.125%, and cumulative drug release of 88.92 ± 3.78% over 24 hours. Ex-vivo data revealed that AC-TF outperformed a free drug in terms of permeation. The pharmacokinetic parameters of optimized AC-TFG demonstrated 2.5- and 13.3-fold significant improvements in bioavailability in comparison to oral AC suspension (AC-OS) and traditional gel (AC-TG), respectively. The transdermal vesicular technique preserved the antihyperlipidemic activity of AC-OS without increasing hepatic markers. Such enhancement was proven histologically by preventing the hepatocellular harm inflicted by statins. The results showed that the transdermal vesicular system is a safe alternative way to treat dyslipidemia with AC, especially when given over a long period of time.
Collapse
|
13
|
Gu S, Liu F, Xie X, Ding M, Wang Z, Xing X, Xiao T, Sun X. β-Sitosterol blocks the LEF-1-mediated Wnt/β-catenin pathway to inhibit proliferation of human colon cancer cells. Cell Signal 2023; 104:110585. [PMID: 36603684 DOI: 10.1016/j.cellsig.2022.110585] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES This study aimed to investigate the LEF-1-mediated Wnt/β-catenin pathway for its biological functions and prognostic value in colon cancer (CC). Furthermore, the potential molecular mechanism of β-sitosterol in CC was investigated in vitro. METHODS Clinical information and gene expression profiles from CC patients were obtained based on Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. In addition, we applied R software "Limma" package for the differential analysis of LEF-1 between cancer and para-carcinoma tissue samples. Kaplan-Meier (KM) survival analysis was adopted for analyzing whether LEF-1 was of prognostic significance. Moreover, gene set enrichment analysis (GSEA) was adopted for pathway enrichment analysis and visualization. In addition, CCK8, plate cloning, scratch and high-content screening (HCS) imaging assays were performed to examine the therapeutic efficacy of β-sitosterol in human CC HCT116 cells. siRNA technology was employed to knock down LEF1 expression in HCT116 cells. qRT-PCR and Western-blot (WB) analysis were carried out to analyze the HCT-116 mRNA and protein expression levels, respectively. RESULTS LEF-1 was up-regulated within CC and acted as an oncogenic gene. LEF-1 up-regulation predicted the dismal prognostic outcome and activated the Wnt/β-catenin pathway. β-sitosterol effectively suppressed HCT116 cells proliferation and invasion. For the mechanism underlying β-sitosterol, β-sitosterol was found to significantly down-regulate LEF-1 gene and protein expression and disrupt Wnt/β-catenin pathway transmission in HCT116 cells. After suppressing LEF-1 expression, its downstream targets including C-myc, Survivin and CCND1 were also down-regulated. CONCLUSION According to our results, LEF-1 down-regulation can effectively block Wnt/β-catenin pathway, inhibit CC cell growth and migration. Collectively, β-sitosterol can be used to treat CC, which can provide anti-tumor activity by targeting LEF-1.
Collapse
Affiliation(s)
- Shengliang Gu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Fahui Liu
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xueheng Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Meng Ding
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Xiaoyan Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Tianbao Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| |
Collapse
|
14
|
Guo S, Ma C, Hu Y, Song Z, Wang T, Yang R. A notable impact of lipid matrices on cholesterol bioaccessibility from phytosterols-loaded nanostructured lipid carriers during in vitro intestinal digestion. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
15
|
Shu X, Wei Y, Luo X, Liu J, Mao L, Yuan F, Gao Y. κ-Carrageenan/konjac glucomannan composite hydrogel filled with rhamnolipid-stabilized nanostructured lipid carrier: Improvement of structure and properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Nanostructured lipid carriers (NLCs) stabilized by natural or synthetic emulsifiers for lutein delivery: Improved physicochemical stability, antioxidant activity, and bioaccessibility. Food Chem 2022; 403:134465. [DOI: 10.1016/j.foodchem.2022.134465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
|
17
|
Li W, Chountoulesi M, Antoniadi L, Angelis A, Lei J, Halabalaki M, Demetzos C, Mitakou S, Skaltsounis LA, Wang C. Development and physicochemical characterization of nanoliposomes with incorporated oleocanthal, oleacein, oleuropein and hydroxytyrosol. Food Chem 2022; 384:132470. [DOI: 10.1016/j.foodchem.2022.132470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/12/2022] [Accepted: 02/12/2022] [Indexed: 12/11/2022]
|
18
|
Truong TH, Alcantara KP, Bulatao BPI, Sorasitthiyanukarn FN, Muangnoi C, Nalinratana N, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Chitosan-coated nanostructured lipid carriers for transdermal delivery of tetrahydrocurcumin for breast cancer therapy. Carbohydr Polym 2022; 288:119401. [PMID: 35450653 DOI: 10.1016/j.carbpol.2022.119401] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 01/05/2023]
Abstract
Chitosan (Ch)-coated nanostructured lipid carriers (NLCs) have great potential for transdermal delivery with high localization of chemotherapeutics in breast cancer. This study used tetrahydrocurcumin (THC), a primary metabolite of curcumin with enhanced antioxidant and anticancer properties, as a model compound to prepare NLCs. Response surface methodology was employed to optimize THC-loaded Ch-coated NLCs (THC-Ch-NLCs) fabricated by high-shear homogenization. The optimized THC-Ch-NLCs had particle size of 244 ± 18 nm, zeta potential of -17.5 ± 0.5 mV, entrapment efficiency of 76.6 ± 0.2% and drug loading of 0.28 ± 0.01%. In vitro release study of THC-Ch-NLCs showed sustained release following the Korsmeyer-Peppas model with Fickian and non-Fickian diffusion at pH 7.4 and 5.5, respectively. THC-Ch-NLCs demonstrated significantly enhanced in vitro skin permeation, cell uptake, and remarkable cytotoxicity toward MD-MBA-231 breast cancer cells compared to the unencapsulated THC, suggesting Ch-NLCs as potential transdermal nanocarriers of THC for triple-negative breast cancer treatment.
Collapse
Affiliation(s)
- Thien Hoang Truong
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bryan Paul I Bulatao
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Feuangthit Niyamissara Sorasitthiyanukarn
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
19
|
Guo SJ, Ma CG, Hu YY, Bai G, Song ZJ, Cao XQ. Solid lipid nanoparticles for phytosterols delivery: The acyl chain number of the glyceride matrix affects the arrangement, stability, and release. Food Chem 2022; 394:133412. [DOI: 10.1016/j.foodchem.2022.133412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/30/2022]
|
20
|
da Silva MG, de Godoi KRR, Gigante ML, Cardoso LP, Ribeiro APB. Nanostructured lipid carriers for delivery of free phytosterols: Effect of lipid composition and chemical interesterification on physical stability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Shirvani A, Goli SAH, Varshosaz J, Sedaghat Doost A. Cinnamaldehyde encapsulation within new natural wax-based nanoparticles; formation, optimization and characterization. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2044843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Atefe Shirvani
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Jaleh Varshosaz
- Isfahan Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Sedaghat Doost
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
22
|
Han C, Yang C, Li X, Liu E, Meng X, Liu B. DHA loaded nanoliposomes stabilized by β-sitosterol: Preparation, characterization and release in vitro and vivo. Food Chem 2022; 368:130859. [PMID: 34425339 DOI: 10.1016/j.foodchem.2021.130859] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
DHA loaded nanoliposomes, stabilized by β-sitosterol, were prepared by thin film hydration-sonication method. The characteristics and membranes properties of DHA-NLs with different β-sitosterol content were measured. The samples with the same formulation were used to measure the resistance of environment stress and controlled release & absorption of DHA in vitro and in vivo. The results showed that the maximal encapsulation efficiency of DHA-NLs was (86.95 ± 0.95)%, when the ratio of soybean lecithin to β-sitosterol was 5:1. The particle size of all samples was within 200 nm and relative retention rate was more than 60% after 3 weeks storage. The area under the curve of DHA concentration of DHA-NLs and DHA-emulsion groups was 1.32 and 1.08, respectively. In summary, the nanoliposomes were promising to improve the absorption of DHA in form of ethyl ester.
Collapse
Affiliation(s)
- Chenlu Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chen Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiao Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Enchao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
23
|
Machado M, Rodriguez-Alcalá LM, Gomes AM, Pintado M. Vegetable oils oxidation: mechanisms, consequences and protective strategies. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2026378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Manuela Machado
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado,Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Luís M. Rodriguez-Alcalá
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado,Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana M Gomes
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado,Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado,Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
24
|
Mendez-Pfeiffer P, Juarez J, Hernandez J, Taboada P, Virués C, Valencia D, Velazquez C. Nanocarriers as drug delivery systems for propolis: A therapeutic approach. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Feng S, Wang L, Shao P, Sun P, Yang CS. A review on chemical and physical modifications of phytosterols and their influence on bioavailability and safety. Crit Rev Food Sci Nutr 2021; 62:5638-5657. [PMID: 33612007 DOI: 10.1080/10408398.2021.1888692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phytosterols have been shown to lower cholesterol levels and to have antioxidant, anti-inflammatory and other biological activities. However, the high melting point and poor solubility limit their bioavailability and practical application. It is advantageous to modify phytosterols chemically and physically. This article reviews and discusses the chemical and physical modifications of phytosterols, as well as their effects on the bioavailability and possible toxicity in vivo. The current research on chemical modifications is mainly focused on esterification to increase the oil solubility and water solubility. For physical modifications (mainly microencapsulation), there are biopolymer-based, surfactant-based and lipid-based nanocarriers. Both chemical and physical modifications of phytosterols can effectively increase the absorption and bioavailability. The safety of modified phytosterols is also an important issue. Phytosterol esters are generally considered to be safe. However, phytosterol oxides, which may be produced during the synthesis of phytosterol esters, have shown toxicity in animal models. The toxicity of nanocarriers also needs further studies.
Collapse
Affiliation(s)
- Simin Feng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Liling Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
26
|
Rostamabadi H, Falsafi SR, Assadpour E, Jafari SM. Evaluating the structural properties of bioactive‐loaded nanocarriers with modern analytical tools. Compr Rev Food Sci Food Saf 2020; 19:3266-3322. [DOI: 10.1111/1541-4337.12653] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hadis Rostamabadi
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| |
Collapse
|
27
|
Impact of liquid lipid on development and stability of trimyristin nanostructured lipid carriers for oral delivery of resveratrol. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113734] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Soleimanian Y, Goli SAH, Shirvani A, Elmizadeh A, Marangoni AG. Wax‐based delivery systems: Preparation, characterization, and food applications. Compr Rev Food Sci Food Saf 2020; 19:2994-3030. [DOI: 10.1111/1541-4337.12614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Yasamin Soleimanian
- Department of Food Science and Technology, College of Agriculture Isfahan University of Technology Isfahan Iran
| | - Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture Isfahan University of Technology Isfahan Iran
| | - Atefe Shirvani
- Department of Food Science and Technology, College of Agriculture Isfahan University of Technology Isfahan Iran
| | - Ameneh Elmizadeh
- Department of Food Science and Technology, College of Agriculture Isfahan University of Technology Isfahan Iran
| | | |
Collapse
|
29
|
Mohammadi M, Jafari SM, Hamishehkar H, Ghanbarzadeh B. Phytosterols as the core or stabilizing agent in different nanocarriers. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
β-Sitosterol Loaded Nanostructured Lipid Carrier: Physical and Oxidative Stability, In Vitro Simulated Digestion and Hypocholesterolemic Activity. Pharmaceutics 2020; 12:pharmaceutics12040386. [PMID: 32331384 PMCID: PMC7237988 DOI: 10.3390/pharmaceutics12040386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 02/02/2023] Open
Abstract
The objective of the present study was to explore the potential of nanostructured lipid carriers (NLCs) for improving the oral delivery of β-sitosterol, a poorly water-soluble bioactive component with hypocholesterolemic activity. Two β-sitosterol formulations with different solid lipid compositions were prepared by melt emulsification, followed by the sonication technique, and the effect of storage conditions and simulated digestion on the physical, chemical and oxidative stability, bioaccessibility and release were extensively studied. Both NLC preparations remained relatively stable during the four weeks of storage at different conditions (4, 25 and 40 °C), with more superior stability at lower temperatures. The in vitro digestion experiment indicated a high physical stability after exposure to the simulated mouth and stomach stages and an improved overall β-sitosterol bioaccessibility at the end of the digestion. The NLCs presented an increased solubility and gradual release which could be justified by the remarkable affinity of β-sitosterol to the complex lipid mixture. An in vivo study demonstrated an improved reduction in the total cholesterol and low-density lipoprotein cholesterol plasma levels in mice compared with the drug suspension. These investigations evidenced the potential of the developed NLC formulations for the enhancement of solubility and in vivo performance of β-sitosterol.
Collapse
|
31
|
Wang Z, Zhan Y, Xu J, Wang Y, Sun M, Chen J, Liang T, Wu L, Xu K. β-Sitosterol Reverses Multidrug Resistance via BCRP Suppression by Inhibiting the p53-MDM2 Interaction in Colorectal Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3850-3858. [PMID: 32167760 DOI: 10.1021/acs.jafc.0c00107] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phytosterols are widely present in vegetable oils, nuts, cereal products, fruits, and berries. Phytosterol-induced treatment sensitivity has recently shed light on alleviating multidrug resistance in cancer therapy. Here, we demonstrated that β-sitosterol, the most common dietary phytosterol, recovers oxaliplatin (OXA) sensitivity in drug-resistant colorectal cancer (CRC) cells by inhibiting breast cancer resistance protein (BCRP) expression. We further showed evidence that β-sitosterol could activate p53 by disrupting the p53-MDM2 interaction, leading to an increase in p53 translocation to the nucleus and silencing the nuclear factor-κB (NF-κB) pathway, which is necessary for BCRP expression. Finally, we suggested that the combination of OXA and β-sitosterol has a synergistic tumor suppression effect in vivo using a xenograft mouse model. These results revealed that β-sitosterol is able to mediate the p53/NF-κB/BCRP signaling axis to regulate the response of CRC to chemotherapy. The combined application of β-sitosterol and OXA can be a potential way to improve CRC treatment.
Collapse
Affiliation(s)
- Ziyuan Wang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yueping Zhan
- Interventional Cancer Institute of Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai 200062, China
| | - Jian Xu
- Interventional Cancer Institute of Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai 200062, China
| | - Yang Wang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jia Chen
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Tingyu Liang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Lili Wu
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Ke Xu
- Interventional Cancer Institute of Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai 200062, China
| |
Collapse
|
32
|
Chu CC, Hasan ZABA, Chua SK, Nyam KL. Formulation and Characterization of Novel Nanostructured Lipid Carriers with Photoprotective Properties Made from Carnauba Wax, Beeswax, Pumpkin Seed Oil, and UV Filters. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chee Chin Chu
- Department of Food Science with Nutrition, Faculty of Applied SciencesUCSI University Kuala Lumpur 56000 Malaysia
| | - Zafarizal Aldrin Bin Azizul Hasan
- Consumer Product Development Unit, Advanced Oleochemical Technology DivisionMalaysian Palm Oil Board Bandar Baru Bangi, Kajang Selangor 43000 Malaysia
| | - Siaw Kim Chua
- Consumer Product Development Unit, Advanced Oleochemical Technology DivisionMalaysian Palm Oil Board Bandar Baru Bangi, Kajang Selangor 43000 Malaysia
| | - Kar Lin Nyam
- Department of Food Science with Nutrition, Faculty of Applied SciencesUCSI University Kuala Lumpur 56000 Malaysia
| |
Collapse
|
33
|
Jurić S, Jurić M, Siddique MAB, Fathi M. Vegetable Oils Rich in Polyunsaturated Fatty Acids: Nanoencapsulation Methods and Stability Enhancement. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Slaven Jurić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Department of Food Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Md Abu Bakar Siddique
- Department of Agriculture and Food Science, University College Dublin (UCD) Belfield, Dublin, Ireland
| | - Milad Fathi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
34
|
Hasibi F, Nasirpour A, Varshosaz J, García‐Manrique P, Blanco‐López MC, Gutiérrez G, Matos M. Formulation and Characterization of Taxifolin‐Loaded Lipid Nanovesicles (Liposomes, Niosomes, and Transfersomes) for Beverage Fortification. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Forough Hasibi
- Department of Food Science and TechnologyCollege of AgricultureIsfahan University of Technology Isfahan 84156‐83111 Iran
- Department of Chemical Engineering and Environmental TechnologyUniversity of Oviedo, Faculty of Chemistry c/Julián Clavería 8 33006 Oviedo Spain
| | - Ali Nasirpour
- Department of Food Science and TechnologyCollege of AgricultureIsfahan University of Technology Isfahan 84156‐83111 Iran
| | - Jaleh Varshosaz
- Department of PharmaceuticsFaculty of Pharmacy and Novel Drug Delivery Systems Research CenterIsfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| | - Pablo García‐Manrique
- Department of Chemical Engineering and Environmental TechnologyUniversity of Oviedo, Faculty of Chemistry c/Julián Clavería 8 33006 Oviedo Spain
| | - Maria Carmen Blanco‐López
- Department of Physical and Analytical ChemistryUniversity of Oviedo, Oviedo, Spain, Faculty of Chemistry c/Julián Clavería 8 33006 Oviedo Spain
| | - Gemma Gutiérrez
- Department of Chemical Engineering and Environmental TechnologyUniversity of Oviedo, Faculty of Chemistry c/Julián Clavería 8 33006 Oviedo Spain
| | - María Matos
- Department of Chemical Engineering and Environmental TechnologyUniversity of Oviedo, Faculty of Chemistry c/Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
35
|
Montes C, Villaseñor MJ, Ríos Á. Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Zewail M, Nafee N, Helmy MW, Boraie N. Coated nanostructured lipid carriers targeting the joints – An effective and safe approach for the oral management of rheumatoid arthritis. Int J Pharm 2019; 567:118447. [DOI: 10.1016/j.ijpharm.2019.118447] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/02/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
|
37
|
Koshani R, Jafari SM. Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Adv Colloid Interface Sci 2019; 270:123-146. [PMID: 31226521 DOI: 10.1016/j.cis.2019.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/09/2019] [Accepted: 06/09/2019] [Indexed: 12/30/2022]
Abstract
Developing green and facile approaches to produce nanostructures suitable for bioactives, nanoencapsulation faces some challenges in the nutraceutical and food bioactive industries due to potential risks arising from nanomaterials fabrication and consumption. High-intensity ultrasound is an effective technology to generate different bio-based structures in sub-micron or nanometer scale. This technique owing to some intrinsic advantages such as safety, straightforward operation, energy efficiency, and scale-up potential, as well as, ability to control over size and morpHology has stood out among various nanosynthetic routes. Ultrasonically-provided energy is mainly transferred to the droplets and particles via acoustic cavitation (which is formation, growth, and implosive collapse of bubbles in solvent). This review provides an outlook on the fundamentals of ultrasonication and some applicable setups in nanoencapsulation. Different kinds of nanostructures based on surfactants, lipids, proteins and carbohydrates formed by sonication, along with their advantages and disadvantages are assessed from the viewpoint of stability, particle size, and process impacts on some functionalities. The gastrointestinal fate and safety issues of ultrasonically prepared nanostructures are also discussed. Sonication, itself or in combination with other encapsulation approaches, alongside biopolymers generate nano-engineered carriers with enough stability, small particle sizes, and a low polydispersity. The nano-sized systems improve techno-functional activities of encapsulated bioactive agents including stability, solubility, dissolution, availability, controlled and targeted release profile in vitro and in vivo plus other bioactive properties such as antioxidant and antimicrobial capacities. Ultrasonically prepared nanocarriers show a great potential in fortifying food products with desired bioactive components, especially for the industrial applications.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemistry, Quebec Centre for Advanced Materials, Pulp and Paper Research Centre, McGill University, Montreìal, Queìbec H3A 0B8, Canada; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
38
|
Chu CC, Tan CP, Nyam KL. Development of Nanostructured Lipid Carriers (NLCs) Using Pumpkin and Kenaf Seed Oils with Potential Photoprotective and Antioxidative Properties. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chee Chin Chu
- Department of Food Science with NutritionFaculty of Applied SciencesUCSI UniversityKuala Lumpur56000Malaysia
| | - Chin Ping Tan
- Department of Food TechnologyFaculty of Food Science and TechnologyUniversiti Putra MalaysiaSerdang43400SelangorMalaysia
| | - Kar Lin Nyam
- Department of Food Science with NutritionFaculty of Applied SciencesUCSI UniversityKuala Lumpur56000Malaysia
| |
Collapse
|
39
|
Correa YX, Valenzuela AL, Ardila ÁM, Rojas MA, Mora CE. Colombian propolis as starting material for the preparation of nanostructured lipid carriers. REVISTA BRASILEIRA DE FARMACOGNOSIA 2019. [DOI: 10.1016/j.bjp.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Seibert JB, Bautista-Silva JP, Amparo TR, Petit A, Pervier P, Dos Santos Almeida JC, Azevedo MC, Silveira BM, Brandão GC, de Souza GHB, de Medeiros Teixeira LF, Dos Santos ODH. Development of propolis nanoemulsion with antioxidant and antimicrobial activity for use as a potential natural preservative. Food Chem 2019; 287:61-67. [PMID: 30857719 DOI: 10.1016/j.foodchem.2019.02.078] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 02/06/2023]
Abstract
Propolis has demonstrated potential use as food preservative but it presents strong and unpleasant flavor that alters the sensory characteristics foods. A nanoemulsion was proposed to carry the Brazilian propolis extracts for use as natural food preservative. Antimicrobial and antioxidant activities and chemical constituents of the extracts were investigated. The latter were made by sequential extraction using different solvents (hexane, ethyl acetate and ethanol). Antimicrobial activity was evaluated by agar diffusion and microdilution methods and antioxidant activity by DPPH and ABTS assays. Extracts showed antibacterial and antioxidant activity, highlighting the ethanolic which contained artepillin-C, kaempferide, drupanin and p-coumaric acid as main compounds by LC-MS analysis. The nanoemulsion developed by phase inversion method was characterized and stable under thermal-stress and centrifugation conditions. Biological properties evaluated were effectively maintained by the formulation. It was concluded that the nanoemulsion can be used as a food preservative, preventing degradation and masking the propolis off-flavor.
Collapse
Affiliation(s)
- Janaína Brandão Seibert
- Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | | | - Tatiane Roquete Amparo
- Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - Alicia Petit
- Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - Pauline Pervier
- Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | | | - Mariana Costa Azevedo
- Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - Benila Maria Silveira
- Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - Geraldo Célio Brandão
- Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
42
|
Soleimanian Y, Goli SAH, Varshosaz J, Maestrelli F. β-sitosterol Lipid Nano Carrier Based on Propolis Wax and Pomegranate Seed Oil: Effect of Thermal Processing, pH, and Ionic Strength on Stability and Structure. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yasamin Soleimanian
- Food Science and Technology Department, College of Agriculture, Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Sayed Amir Hossein Goli
- Food Science and Technology Department, College of Agriculture, Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences; Isfahan 81746-73461 Iran
| | - Francesca Maestrelli
- Department of Chemistry, University of Florence; via Schiff 6, Sesto Fiorentino 50019 Florence Italy
| |
Collapse
|