1
|
Cao Y, Xu A, Tao M, Wang S, Yu Q, Li S, Tu Z, Liu Z. Flavor evolution of unsweetened green tea beverage during actual storage: Insights from multi-omics analysis. Food Chem 2025; 481:144039. [PMID: 40157108 DOI: 10.1016/j.foodchem.2025.144039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/13/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
The flavor evolution of unsweetened green tea beverage (USGTB) under actual storage is critical for quality control yet remains unclear. Unlike previous studies conducted by accelerated shelf-life testing, this research investigated sensory-chemical changes in naturally stored USGTB (0-7 months) through multi-omics integrating metabolomics and sensomics. Results identified the 5-month as a critical point for flavor preservation. The EC-EGCG dimer emerged as a novel aging marker, contrasting with freshness indicators (ascorbic acid and other antioxidants). Protocatechuic acid and 2-furoic acid served as multi-flavor contributors (yellowish, sweetness and astringency), whereas L-tartaric acid and malic acid enhanced sourness. Concurrently, aroma deterioration was driven by the diminished (E)-β-ionone and accumulated methyl salicylate. Mechanistically, oxidations of ascorbic acid, catechins, and fresh aroma-related volatiles, flavonoid glycosylation, and oligosaccharides hydrolysis collectively drove color darkening, astringency enhancement, sweetness intensification, and cooked-off flavor development. These findings provided targeted quality control points for USGTB during actual shelf-life.
Collapse
Affiliation(s)
- Yanyan Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Anan Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Meng Tao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Shanshan Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Qinyan Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sixu Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; The College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Zheng Tu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhengquan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Fokuhl V, Gerlach EL, Glomb MA. Singlet Oxygen Produced by Aspalathin and Ascorbic Acid Leads to Fragmentation of Dihydrochalcones and Adduct Formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22316-22326. [PMID: 39326013 PMCID: PMC11468778 DOI: 10.1021/acs.jafc.4c07633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Singlet oxygen-mediated fragmentation of various dihydrochalcones and chalcones was reported. (Dihydro)cinnamic acids formed in the fragmentation showed a B-ring substitution pattern of the precursor (dihydro)chalcone. For the first time, the intrinsic generation of singlet oxygen by aspalathin and ascorbic acid under mild aqueous conditions (37 °C, pH 7.0) and exclusion of light was verified using HPLC-(+)-APCI-MS2 experiments. If a 4 molar excess of aspalathin or ascorbic acid was used, fragmentation of dihydrochalcones with monohydroxy and o-hydroxymethoxy B-ring substitution was induced up to 2 mol %, respectively. Incubations of the dihydrochalcone phloretin with ascorbic acid not only led to p-dihydrocoumaric acid but also to a novel ascorbyl adduct, which was isolated and identified as 2,4,6-trihydroxy-5-[3-(4-hydroxyphenyl)propanoyl]-2-[(1R, 2S)-1,2,3-trihydroxypropyl]-1-benzofuran-3(2H)-one. The impact of different structural elements on adduct formation was evaluated and verified to be a phloroglucinol structure linked to an acyl moiety. Formation of the ascorbyl adduct was shown to occur in apple puree when both ascorbic acid and phloretin were present at the same time.
Collapse
Affiliation(s)
- Vanessa
K. Fokuhl
- Institute of Chemistry, Food
Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| | - Emma L. Gerlach
- Institute of Chemistry, Food
Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| | - Marcus A. Glomb
- Institute of Chemistry, Food
Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| |
Collapse
|
3
|
Yu Y, Zhu X, Ouyang W, Chen M, Jiang Y, Wang J, Hua J, Yuan H. Effects of electromagnetic roller-hot-air-steam triple-coupled fixation on reducing the bitterness and astringency and improving the flavor quality of green tea. Food Chem X 2023; 19:100844. [PMID: 37780241 PMCID: PMC10534162 DOI: 10.1016/j.fochx.2023.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Despite the importance of fixation in determining green tea quality, its role in reducing the bitter and astringent taste of this beverage remains largely unknown. Herein, an electromagnetic roller-hot-air-steam triple-coupled fixation (ERHSF) device was developed, and its operating parameters were optimized (steam volume: 20 kg/h; hot-air temperature: 90 °C; hot-air blower speed: 1200 r/min). Compared with conventional fixation treated samples, the ratio of tea polyphenols to free amino acids and ester-catechins to simple-catechins in ERHSF-treated samples was reduced by 11.0% and 3.2%, reducing bitterness and astringency of green tea; amino acids, soluble sugars, and chlorophyll contents were significantly increased, enhancing the freshness, sweetness, and greenness; the color indexes, such as L/L* value of brightness and -a/-a* value of greenness, were also improved, and ERHSF-treated samples had the highest sensory scores. These results provided theoretical support and technical guidance for precise quality improvement of summer-autumn green tea.
Collapse
Affiliation(s)
| | | | - Wen Ouyang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| | - Ming Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| | - Yongwen Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| | - Jinjin Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| | - Jinjie Hua
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| | - Haibo Yuan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| |
Collapse
|
4
|
Liang D, Liu L, Zhao Y, Luo Z, He Y, Li Y, Tang S, Tang J, Chen N. Targeting extracellular matrix through phytochemicals: a promising approach of multi-step actions on the treatment and prevention of cancer. Front Pharmacol 2023; 14:1186712. [PMID: 37560476 PMCID: PMC10407561 DOI: 10.3389/fphar.2023.1186712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Extracellular matrix (ECM) plays a pivotal and dynamic role in the construction of tumor microenvironment (TME), becoming the focus in cancer research and treatment. Multiple cell signaling in ECM remodeling contribute to uncontrolled proliferation, metastasis, immune evasion and drug resistance of cancer. Targeting trilogy of ECM remodeling could be a new strategy during the early-, middle-, advanced-stages of cancer and overcoming drug resistance. Currently nearly 60% of the alternative anticancer drugs are derived from natural products or active ingredients or structural analogs isolated from plants. According to the characteristics of ECM, this manuscript proposes three phases of whole-process management of cancer, including prevention of cancer development in the early stage of cancer (Phase I); prevent the metastasis of tumor in the middle stage of cancer (Phase II); provide a novel method in the use of immunotherapy for advanced cancer (Phase III), and present novel insights on the contribution of natural products use as innovative strategies to exert anticancer effects by targeting components in ECM. Herein, we focus on trilogy of ECM remodeling and the interaction among ECM, cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), and sort out the intervention effects of natural products on the ECM and related targets in the tumor progression, provide a reference for the development of new drugs against tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Dan Liang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunjie Zhao
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Zhenyi Luo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yadi He
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Ye Y, Yan W, Peng L, Zhou J, He J, Zhang N, Cheng S, Cai J. Insights into the key quality components in Se-Enriched green tea and their relationship with Selenium. Food Res Int 2023; 165:112460. [PMID: 36869476 DOI: 10.1016/j.foodres.2023.112460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Selenium-enriched green tea (Se-GT) is of increasing interest because of its health benefits, but its quality components obtained limited research. In this study, Enshi Se-enriched green tea (ESST, high-Se green tea), Pingli Se-enriched green tea (PLST, low-Se green tea), and Ziyang green tea (ZYGT, common green tea) were subjected to sensory evaluation, chemical analysis, and aroma profiling. Chemical profiles in Se-GT were consistent with the taste attributes of the sensory analysis. 9 volatiles were identified as key odorants of Se-GT based on multivariate analysis. Correlations between Se and quality components were further assessed and highly Se-related compounds contents in these three tea samples were compared. The results showed that most amino acids and non-gallated catechins were highly negatively correlated with Se, while gallated catechins exhibited strong positive correlation with Se. And there were strong and significant associations between the key aroma compounds and Se. Moreover, 11 differential markers were found between Se-GTs and common green tea, including catechin, serine, glycine, threonine, l-theanine, alanine, valine, isoleucine, leucine, histidine, and lysine. These findings provide great potential for quality evaluation of Se-GT.
Collapse
Affiliation(s)
- Yuanyuan Ye
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wei Yan
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, China
| | - Lijun Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, China
| | - Jiaojiao Zhou
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Na Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
6
|
Li L, Lu J, Pang H, Zhang Z, Yang J, Li P, Yan X, Fan M. New insight into scale inhibition during tea brewing: Ca 2+/Mg 2+ complexing and alkalinity consumption. J Environ Sci (China) 2023; 124:901-914. [PMID: 36182193 DOI: 10.1016/j.jes.2022.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 06/16/2023]
Abstract
Scale not only affects the taste and color of water, but also increases the risks of osteoporosis and cardiovascular diseases associated with drinking it. As a popular beverage, tea is rich many substances that have considerable potential for scale inhibition, including protein, tea polyphenols and organic acids. In this study, the effect of tea brewing on scale formation was explored. It was found that the proteins, catechins and organic acids in tea leaves could be released when the green tea was brewed in water with sufficient hardness and alkalinity. The tea-released protein was able to provide carboxyl groups to chelate with calcium ions (Ca2+), preventing the Ca2+ from reacting with the carbonate ions (CO32-). The B rings of catechins were another important structure in the complexation of Ca2+ and magnesium ions (Mg2+). The carboxyl and hydroxyl groups on the organic acids was able to form five-membered chelating rings with Ca2+ and Mg2+, resulting in a significant decrease in Ca2+ from 100.0 to 60.0 mg/L. Additionally, the hydrogen ions (H+) provided by the organic acids consumed and decreased the alkalinity of the water from 250.0 to 131.4 mg/L, leading to a remarkable reduction in pH from 8.93 to 7.73. It further prevented the bicarbonate (HCO3-) from producing CO32- when the water was heated. The reaction of the tea constituents with the hardness and alkalinity inhibited the formation of scale, leading to a significant decrease in turbidity from 10.6 to 1.4 NTU. Overall, this study provides information to help build towards an understanding of the scale inhibition properties of tea and the prospects of tea for anti-scaling in industrial applications.
Collapse
Affiliation(s)
- Linjun Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jing Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pengpeng Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyu Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Miaomiao Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
7
|
Ye Y, Yan W, Peng L, He J, Zhang N, Zhou J, Cheng S, Cai J. Minerals and bioactive components profiling in Se-enriched green tea and the pearson correlation with Se. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Li C, Ding X, Li J, Yan S. Effects of different concentrations of ascorbic acid on the stability of (+) – Catechin under enzymatic conditions. Food Chem 2023; 399:133933. [DOI: 10.1016/j.foodchem.2022.133933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
|
9
|
Gharibzahedi SMT, Barba FJ, Zhou J, Wang M, Altintas Z. Electronic Sensor Technologies in Monitoring Quality of Tea: A Review. BIOSENSORS 2022; 12:bios12050356. [PMID: 35624658 PMCID: PMC9138728 DOI: 10.3390/bios12050356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
Tea, after water, is the most frequently consumed beverage in the world. The fermentation of tea leaves has a pivotal role in its quality and is usually monitored using the laboratory analytical instruments and olfactory perception of tea tasters. Developing electronic sensing platforms (ESPs), in terms of an electronic nose (e-nose), electronic tongue (e-tongue), and electronic eye (e-eye) equipped with progressive data processing algorithms, not only can accurately accelerate the consumer-based sensory quality assessment of tea, but also can define new standards for this bioactive product, to meet worldwide market demand. Using the complex data sets from electronic signals integrated with multivariate statistics can, thus, contribute to quality prediction and discrimination. The latest achievements and available solutions, to solve future problems and for easy and accurate real-time analysis of the sensory-chemical properties of tea and its products, are reviewed using bio-mimicking ESPs. These advanced sensing technologies, which measure the aroma, taste, and color profiles and input the data into mathematical classification algorithms, can discriminate different teas based on their price, geographical origins, harvest, fermentation, storage times, quality grades, and adulteration ratio. Although voltammetric and fluorescent sensor arrays are emerging for designing e-tongue systems, potentiometric electrodes are more often employed to monitor the taste profiles of tea. The use of a feature-level fusion strategy can significantly improve the efficiency and accuracy of prediction models, accompanied by the pattern recognition associations between the sensory properties and biochemical profiles of tea.
Collapse
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Zeynep Altintas
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| |
Collapse
|
10
|
A targeted and nontargeted metabolomics study on the oral processing of epicatechins from green tea. Food Chem 2022; 378:132129. [PMID: 35042106 DOI: 10.1016/j.foodchem.2022.132129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 01/14/2023]
Abstract
Oral processing (OP), referring to the whole process of food digestion in human mouth, has a major influence on food flavor perception. This study focused on the compositional changes of the four green tea epicatechins (viz., EC, EGC, ECG, EGCG) during OP, based on targeted and nontargeted metabolomics. It was found that the four epicatechins were all extensively lost through transformation undergoing OP, among which EC was the most stable one, whereas EGCG the least. EGCG was further revealed to be susceptible to human oral cavity in the simulated OP in vitro. It could be converted physically by precipitating with mucin in saliva, and chemically through hydrolysis and dimerization, mediated mainly by the neutral pH condition. The OP of epicatechins also caused salivary composition changes possibly involving health benefits of green tea. These findings could raise awareness of the interactions between epicatechins, or any other food materials, with human mouth.
Collapse
|
11
|
Liang S, Granato D, Zou C, Gao Y, Zhu Y, Zhang L, Yin JF, Zhou W, Xu YQ. Processing technologies for manufacturing tea beverages: From traditional to advanced hybrid processes. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Zhang R, Olomthong M, Fan YU, Wang L, Pan D, Shi Y, Ye W. Dissipation of Chlorpyrifos in Bottled Tea Beverages and the Effects of (-)-Epigallocatechin-3-Gallate. J Food Prot 2021; 84:1836-1843. [PMID: 34115868 DOI: 10.4315/jfp-21-119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/10/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Bottled tea beverages (BTB) are popular for the health benefits and convenience. Because chlorpyrifos (CP) is commonly used as a biomarker for exposure, as well as a pesticide in the field, it is important to determine the dynamics of CP dissipation in BTB to better perform risk assessments. This study focused on the dynamic behavior of CP for 22 days by fortifying bottled green tea, dark tea, and oolong tea beverages with the parent chemical and analyzing the degradation products. Photoinduction was used to generate the two transient intermediates: the reactive oxygen species from H2O2 and the triplet excited state of CP from the parent chemical in water were designed to observe the effects of (-)-epigallocatechin-3-gallate (EGCG) on the dissipation and transformation of CP. The results indicated that the CP degraded in BTB and the main products were detected. The half-life values of CP illustrated that EGCG increased the dissipation of CP by combination with CP and inhibited the generation of CP-oxon by scavenging the emerged oxidant, the reactive oxygen species, and interfering with the transformation of the triplet excited state of CP. This work suggests EGCG could play various roles in the dissipation and transformation of CP. Thus, a comprehensive identification of CP degradation should be performed when assessing the exposure risk in drinking BTB. HIGHLIGHTS
Collapse
Affiliation(s)
- Rong Zhang
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Mekky Olomthong
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Y U Fan
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Lijun Wang
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Dandan Pan
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Yanhong Shi
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Wenlin Ye
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| |
Collapse
|
13
|
Ghidoli M, Colombo F, Sangiorgio S, Landoni M, Giupponi L, Nielsen E, Pilu R. Food Containing Bioactive Flavonoids and Other Phenolic or Sulfur Phytochemicals With Antiviral Effect: Can We Design a Promising Diet Against COVID-19? Front Nutr 2021; 8:661331. [PMID: 34222300 PMCID: PMC8247467 DOI: 10.3389/fnut.2021.661331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Since in late 2019, when the coronavirus 2 (SARS-CoV-2) pathogen of coronavirus disease 2019 (COVID-19) started to spread all over the world, causing the awful global pandemic we are still experiencing, an impressive number of biologists, infectious disease scientists, virologists, pharmacologists, molecular biologists, immunologists, and other researchers working in laboratories of all the advanced countries focused their research on the setting up of biotechnological tools, namely vaccines and monoclonal antibodies, as well as of rational design of drugs for therapeutic approaches. While vaccines have been quickly obtained, no satisfactory anti-Covid-19 preventive, or therapeutic approach has so far been discovered and approved. However, among the possible ways to achieve the goal of COVID-19 prevention or mitigation, there is one route, i.e., the diet, which until now has had little consideration. In fact, in the edible parts of plants supplying our food, there are a fair number of secondary metabolites mainly belonging to the large class of the flavonoids, endowed with antiviral or other health beneficial activities such as immunostimulating or anti-inflammatory action that could play a role in contributing to some extent to prevent or alleviate the viral infection and/or counteract the development of SARS induced by the novel coronavirus. In this review, a number of bioactive phytochemicals, in particular flavonoids, proven to be capable of providing some degree of protection against COVID-19, are browsed, illustrating their beneficial properties and mechanisms of action as well as their distribution in cultivated plant species which supply food for the human diet. Furthermore, room is also given to information regarding the amount in food, the resistance to cooking processes and, as a very important feature, the degree of bioavailability of these compounds. Concluding, remarks and perspectives for future studies aimed at increasing and improving knowledge and the possibility of using this natural complementary therapy to counteract COVID-19 and other viral pathologies are discussed.
Collapse
Affiliation(s)
- Martina Ghidoli
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Federico Colombo
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Stefano Sangiorgio
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Michela Landoni
- Department of Bioscience, Università degli Studi di Milano, Milan, Italy
| | - Luca Giupponi
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas – CRC Ge.S.Di.Mont., Università degli Studi di Milano, Edolo, Italy
| | - Erik Nielsen
- Department of Biology and Biotechnology Università degli Studi di Pavia, Pavia, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas – CRC Ge.S.Di.Mont., Università degli Studi di Milano, Edolo, Italy
| |
Collapse
|
14
|
Wu Q, Zhou J. The application of polyphenols in food preservation. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:35-99. [PMID: 34507646 DOI: 10.1016/bs.afnr.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyphenols are a kind of complex secondary metabolites in nature, widely exist in the flowers, bark, roots, stems, leaves, and fruits of plants. Numerous studies have shown that plant-derived polyphenols have a variety of bioactivities due to their unique chemical structure, such as antioxidant, antimicrobial, and prevention of chronic diseases, cardiovascular disease, cancer, osteoporosis, and neurodegeneration. With the gradual rise of natural product development, plant polyphenols have gradually become one of the research hotspots in the field of food science due to their wide distribution in the plants, and the diversity of physiological functions. Owing to the extraordinary antioxidant and antibacterial activity of polyphenols, plant-derived polyphenols offer an alternative to chemical additives used in the food industry, such as oil, seafood, meat, beverages, and food package materials. Based on this, this chapter provides an overview of the potential antioxidant and antibacterial mechanisms of plant polyphenols and their application in food preservation, it would be providing a reference for the future development of polyphenols in the food industry.
Collapse
Affiliation(s)
- Qian Wu
- Hubei University of Technology, Wuhan, China.
| | - Jie Zhou
- Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|
15
|
Gorai T, Sakthivel S, Maitra U. An Inexpensive Paper-Based Photoluminescent Sensor for Gallate Derived Green Tea Polyphenols. Chem Asian J 2020; 15:4023-4027. [PMID: 33078577 DOI: 10.1002/asia.202001054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/16/2020] [Indexed: 11/10/2022]
Abstract
This work describes a terbium luminescence-based protocol to selectively detect gallate-derived green tea polyphenols on a supramolecular gel immobilised paper platform for the first time. This user-friendly, inexpensive (€ 0.0015) approach requires very low sample volumes for the analysis. The developed strategy enables simultaneous detection of gallate polyphenols in multiple tea samples with the potential for practical applications.
Collapse
Affiliation(s)
- Tumpa Gorai
- Current address: School of Chemistry Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Shruthi Sakthivel
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Uday Maitra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
16
|
Dehydroascorbic Acid Affects the Stability of Catechins by Forming Conjunctions. Molecules 2020; 25:molecules25184076. [PMID: 32906587 PMCID: PMC7570458 DOI: 10.3390/molecules25184076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/28/2022] Open
Abstract
Although tea catechins in green tea and green tea beverages must be stable to deliver good sensory quality and healthy benefits, they are always unstable during processing and storage. Ascorbic acid (AA) is often used to protect catechins in green tea beverages, and AA is easily oxidized to form dehydroascorbic acid (DHAA). However, the function of DHAA on the stability of catechins is not clear. The objective of this study was to determine the effects of DHAA on the stability of catechins and clarify the mechanism of effects by conducting a series of experiments that incubate DHAA with epigallocatechin gallate (EGCG) or catechins. Results showed that DHAA had a dual function on EGCG stability, protecting its stability by inhibiting hydrolysis and promoting EGCG consumption by forming ascorbyl adducts. DHAA also reacted with (−)-epicatechin (EC), (−)-epicatechin gallate (ECG), and (−)-epigallocatechin (EGC) to form ascorbyl adducts, which destabilized them. After 9 h of reaction with DHAA, the depletion rates of EGCG, ECG, EC, and EGC were 30.08%, 22.78%, 21.45%, and 13.55%, respectively. The ability of DHAA to promote catechins depletion went from high to low: EGCG, ECG, EGC, and EC. The results are important for the processing and storage of tea and tea beverages, as well as the general exploration of synergistic functions of AA and catechins.
Collapse
|
17
|
Zhou H, Fu H, Wu X, Wu B, Dai C. Discrimination of tea varieties based on FTIR spectroscopy and an adaptive improved possibilistic c‐means clustering. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Haoxiang Zhou
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
- High‐tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province Jiangsu University Zhenjiang China
| | - Haijun Fu
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
| | - Xiaohong Wu
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
- High‐tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province Jiangsu University Zhenjiang China
| | - Bin Wu
- Department of Information Engineering Chuzhou Polytechnic Chuzhou China
| | - Chunxia Dai
- School of Electrical and Information Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
18
|
Jiang H, Zhang M, Wang D, Yu F, Zhang N, Song C, Granato D. Analytical strategy coupled to chemometrics to differentiate Camellia sinensis tea types based on phenolic composition, alkaloids, and amino acids. J Food Sci 2020; 85:3253-3263. [PMID: 32856300 DOI: 10.1111/1750-3841.15390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 11/26/2022]
Abstract
Catechins, amino acids, and alkaloids are primary chemical components of tea and play a crucial role in determining tea quality. Their composition and content largely vary among different types of tea. In this study, a convenient chemical classification method was developed for six Camellia sinensis tea types (white, green, oolong, black, dark, and yellow) based on the quantification of their major components. Twenty-one free amino acids, 6 catechins, 2 alkaloids, and gallic acid in 24 teas were quantified using ultra-high-performance liquid chromatography (UHPLC). The total catechin contents in these tea samples ranged from 10.96 to 95.67 mg/g, while total free amino acid content ranged from 2.63 to 25.89 mg/g. Theanine (Thea) was the most abundant amino acid in all tea varieties. Catechin and amino acid levels in tea were markedly reduced upon fermentation of tea. Furthermore, high-temperature processing (roasting) during tea production induced degradation and epimerization of catechins, yielding epimerized catechins, simple catechins, and gallic acid. Principal component analysis revealed that major ester-catechins (EGCG and ECG), major amino acids (Thea), and major alkaloids (caffeine) are potential factors for distinguishing different types of tea. Linear discriminant analysis showed that 100% of teas were correctly classified in which (+)-catechin, ECG, EGC, gallic acid, GABA, cysteine, lysine, and threonine were the most discriminating compounds. This study shows that quantification of the major tea components combined with chemometric analysis, can serve as a simple, convenient, and reliable approach for classifying tea according to fermentation level. PRACTICAL APPLICATION: Different Camellia sinensis tea types can be produced worldwide but it is still challenging to know which chemical markers can be used to trace their production. in this paper we used a targeted methodology to classify six tea types (white, green, oolong, black, dark, and yellow) based on phenolic composition, alkaloids, and amino acids. The main chemical markers responsible for the discrimination were pinpointed with the use of chemometric tools.
Collapse
Affiliation(s)
- Hao Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China.,School of Tea and Food Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China.,School of Tea and Food Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Feng Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China.,School of Tea and Food Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Na Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China.,School of Tea and Food Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China.,School of Tea and Food Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Daniel Granato
- Food Processing and Quality, Natural Resources Institute Finland, Tietotie 2, Espoo, 02150, Finland
| |
Collapse
|
19
|
Zhang P, Wang W, Liu XH, Yang Z, Gaur R, Wang JJ, Ke JP, Bao GH. Detection and quantification of flavoalkaloids in different tea cultivars and during tea processing using UPLC-TOF-MS/MS. Food Chem 2020; 339:127864. [PMID: 32858385 DOI: 10.1016/j.foodchem.2020.127864] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/18/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022]
Abstract
Flavoalkaloids have been found from tea. However, there is limited information about their content in different teas. Herein, 51 tea samples were screened for flavoalkaloid content. Twelve teas with relatively higher contents of flavoalkaloids were further quantified by UPLC-TOF-MS/MS. The cultivars Yiwu and Bulangshan had the highest levels, with total flavoalkaloid contents of 3063 and 2727 µg g-1, respectively. Each of the six flavoalkaloids were at levels > 198 µg g-1 in these cultivars. Of the flavoalkaloids, etc-pyrrolidinone A had the highest content in the teas, reaching 835 µg g-1 in Yiwu. The content of the flavoalkaloids varied among tea cultivars and with processing procedures, particularly heating. The potential of using flavoalkaloids to discriminate grades of Keemun black tea was studied and discussed. The teas identified in this work with high levels of flavoalkaloids can be used in the future to study the mechanisms by which flavoalkaloids are synthesized in tea.
Collapse
Affiliation(s)
- Peng Zhang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Wei Wang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Huan Liu
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Zi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Rashmi Gaur
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jing-Jing Wang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jia-Ping Ke
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Guan-Hu Bao
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
20
|
Xie HF, Kong YS, Li RZ, Nothias LF, Melnik AV, Zhang H, Liu LL, An TT, Liu R, Yang Z, Ke JP, Zhang P, Bao GH, Xie ZW, Li DX, Wan XC, Dai QY, Zhang L, Zhao M, An MQ, Long YH, Ling TJ. Feature-Based Molecular Networking Analysis of the Metabolites Produced by In Vitro Solid-State Fermentation Reveals Pathways for the Bioconversion of Epigallocatechin Gallate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7995-8007. [PMID: 32618197 DOI: 10.1021/acs.jafc.0c02983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dark teas are prepared by a microbial fermentation process. Flavan-3-ol B-ring fission analogues (FBRFAs) are some of the key bioactive constituents that characterize dark teas. The precursors and the synthetic mechanism involved in the formation of FBRFAs are not known. Using a unique solid-state fermentation system with β-cyclodextrin inclusion complexation as well as targeted chromatographic isolation, spectroscopic identification, and Feature-based Molecular Networking on the Global Natural Products Social Molecular Networking web platform, we reveal that dihydromyricetin and the FBRFAs, including teadenol A and fuzhuanin A, are derived from epigallocatechin gallate upon exposure to fungal strains isolated from Fuzhuan brick tea. In particular, the strains from subphylum Pezizomycotina were key drivers for these B-/C-ring oxidation transformations. These are the same transformations seen during the fermentation process of dark teas. These discoveries set the stage to enrich dark teas and other food products for these health-promoting constituents.
Collapse
Affiliation(s)
- Hao-Fen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Ya-Shuai Kong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Ru-Ze Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California 92093, United States
| | - Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California 92093, United States
| | - Hong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Lu-Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Ting-Ting An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Rui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Zi Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Jia-Ping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Peng Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Guan-Hu Bao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Zhong-Wen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, Anhui, P. R. China
| | - Da-Xiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, Anhui, P. R. China
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Qian-Ying Dai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, Anhui, P. R. China
| | - Ming Zhao
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, P. R. China
| | - Mao-Qiang An
- Yiyang Fu Cha Industry Development Co. Ltd., 690 North Datao Road, Yiyang 413000, Hunan, P. R. China
| | - Yan-Hua Long
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, Anhui, P. R. China
| |
Collapse
|
21
|
Dual effects of ascorbic acid on the stability of EGCG by the oxidation product dehydroascorbic acid promoting the oxidation and inhibiting the hydrolysis pathway. Food Chem 2020; 337:127639. [PMID: 32799157 DOI: 10.1016/j.foodchem.2020.127639] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/16/2020] [Accepted: 07/19/2020] [Indexed: 11/21/2022]
Abstract
A series of incubation systems of pure (-)-Epigallocatechin gallate (EGCG), ascorbic acid (AA) and dehydroascorbic acid (DHAA) at 80 °C were performed to investigated the effect and mechanism of AA on the stability of EGCG. Results shows the dual function of AA, protect action at low concentration and promoting degradation at high concentration, and the critical concentration is about 10 mmol/L. The protective properties of AA due to the reversible reaction from AA to DHAA inhibiting oxidation pathway of EGCG to EGCG quinone or other activated intermediates, and both AA and DHAA can inhibit the hydrolysis of EGCG. The properties of promoting degradation is mainly due to the fact that DHAA, the oxidation product of AA, can react with EGCG to generate some ascorbyl adducts of EGCG. This result is helpful to control the stability of catechins and further clarify the complex interaction on healthy between EGCG and AA.
Collapse
|
22
|
Yu J, Cui H, Tang W, Hayat K, Hussain S, Tahir MU, Gao Y, Zhang X, Ho CT. Interaction of (-)-Epigallocatechin Gallate and Deoxyosones Blocking the Subsequent Maillard Reaction and Improving the Yield of N-(1-Deoxy-d-xylulos-1-yl)alanine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1714-1724. [PMID: 31957424 DOI: 10.1021/acs.jafc.0c00200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
(-)-Epigallocatechin gallate (EGCG) had a significant effect on Maillard reaction intermediate formation in the xylose/alanine model system. A trapping effect of EGCG on the reactive deoxyosones was observed to change the reaction pathways. The rate constant of Amadori rearrangement product (ARP) conversion to deoxyosones was decreased with EGCG addition, indicating an inhibition of ARP degradation. Dehydration improved the ARP formation during the thermal reaction and synergistically improved the yield of ARP with the EGCG trapping effect on the deoxyosones. Additionally, EGCG decreased the activation energy for the conversion of xylose/alanine to ARP (from 77.8 to 62.8 kJ/mol) and in turn accelerated the ARP formation. The effect of EGCG was further facilitated at the optimal conditions of 90 °C, at pH 7.5, and a molar ratio of xylose to alanine of 2:1, which improved the yield of ARP (N-(1-deoxy-d-xylulos-1-yl)alanine) from 2 to 95%.
Collapse
Affiliation(s)
- Junhe Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P. R. China
| | - Wei Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P. R. China
| | - Khizar Hayat
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences , King Saud University , P. O. Box 2460, Riyadh 11451 , Saudi Arabia
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences , King Saud University , P. O. Box 2460, Riyadh 11451 , Saudi Arabia
| | - Muhammad Usman Tahir
- Department of Plant Production, College of Food and Agricultural Sciences , King Saud University , P. O. Box 2460, Riyadh 11451 , Saudi Arabia
| | - Yahui Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P. R. China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P. R. China
| | - Chi-Tang Ho
- Department of Food Science , Rutgers University , 65 Dudley Road , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
23
|
Spizzirri U, Carullo G, De Cicco L, Crispini A, Scarpelli F, Restuccia D, Aiello F. Synthesis and characterization of a (+)-catechin and L-(+)-ascorbic acid cocrystal as a new functional ingredient for tea drinks. Heliyon 2019; 5:e02291. [PMID: 31463397 PMCID: PMC6709408 DOI: 10.1016/j.heliyon.2019.e02291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/12/2019] [Accepted: 08/08/2019] [Indexed: 11/30/2022] Open
Abstract
Tea (Camellia Sinensis) is one of the most popular drink, consumed as infusion or bottled ready to drink beverages. Although tea leaves contain many antioxidants compounds, after processing they can drastically decrease, sometimes up to a full degradation, as in the case of catechin, a very healthy flavan-3-ol. In this context, the synthesis of a cocrystal between (+)-catechin and L-(+)-ascorbic acid, was proved to be a useful strategy to make a new ingredient able to ameliorate the antioxidant profile of both infusions and bottled teas. The obtained cocrystal showed a three-fold higher solubility than (+)catechin and its formation was elucidated unambiguously by FT-IR, thermal (DSC) and diffraction (PXRD) analyses. Antioxidant characteristics of the samples were evaluated by colorimetric assays. As expected, infusions showed much better antioxidant features than ready-to-use lemon and peach teas. The same trend was confirmed after the addition of the cocrystal at two concentration levels. In particular, supplementation at concentration of 2 mg mL-1 improved the bottled tea antioxidant values to the level showed by the not-added infusion tea.
Collapse
Affiliation(s)
- U.G. Spizzirri
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende (CS), Italy
| | - G. Carullo
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende (CS), Italy
| | - L. De Cicco
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende (CS), Italy
| | - A. Crispini
- Dipartimento di Chimica e Tecnologie Chimiche, Laboratorio MAT_IN LAB, Università della Calabria, Rende (CS), Italy
| | - F. Scarpelli
- Dipartimento di Chimica e Tecnologie Chimiche, Laboratorio MAT_IN LAB, Università della Calabria, Rende (CS), Italy
| | - D. Restuccia
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende (CS), Italy
| | - F. Aiello
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende (CS), Italy
| |
Collapse
|
24
|
Meng Q, Li S, Huang J, Wei CC, Wan X, Sang S, Ho CT. Importance of the Nucleophilic Property of Tea Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5379-5383. [PMID: 30406649 DOI: 10.1021/acs.jafc.8b05917] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tea is the second most popular beverage in the world after water. Vast accumulative evidence attest that tea consumption may promote human health, such as antioxidant, anti-obesity, and anticancer activities. Therefore, tea phytochemicals have drawn exceeding attention from researchers in structure confirmation, formation mechanism, component clarification, and bioactivity screening of interested constituents. Particularly, most investigations of chemical or biochemical reactions of catechins have concentrated on the B ring of the C6-C3-C6 skeleton. Hence, in this perspective, we reviewed the profound findings of the carbon-carbon (C-C) connection from the unambiguous characterization of novel A-ring addition derivatives of tea catechins, including catechin-carbonyl and catechin-theanine conjugates and the C-C formation mechanisms, and offered our view of the potential effects of catechin-carbonyl interactions on flavor generation and bioactive action in tea.
Collapse
Affiliation(s)
- Qing Meng
- Department of Tea Science , Southwest University , Chongqing 400715 , People's Republic of China
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources , Huanggang Normal University , Huanggang , Hubei 438000 , People's Republic of China
| | - Junqing Huang
- Department of Food Science , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
- School of Traditional Chinese Medicine , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| | - Chia-Cheng Wei
- Department of Food Science , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
- Institute of Food Safety and Health, College of Public Health , National Taiwan University , Taipei 10051 , Taiwan
| | | | - Shengmin Sang
- Laboratory for Functional Foods and Human Nutrition, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, Kannapolis , North Carolina 28080 , United States
| | - Chi-Tang Ho
- Department of Food Science , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
25
|
Jiang H, Yu F, Qin L, Zhang N, Cao Q, Schwab W, Li D, Song C. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Xu L, Xia G, Luo Z, Liu S. UHPLC analysis of major functional components in six types of Chinese teas: Constituent profile and origin consideration. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|