1
|
Yue Q, Peng Y, Li Z, Deng Y, Yi J, Zhou L. High pressure processing of glutinous rice starch complexed with Buddleja officinalis Maxim. Extract: Structural stability and digestibility improvements. Int J Biol Macromol 2025; 311:143454. [PMID: 40280515 DOI: 10.1016/j.ijbiomac.2025.143454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
This study investigated the impact of high pressure processing (HPP) on yellow glutinous rice starch (Y-GRS) formed by glutinous rice starch (GRS) complexed with Buddleja officinalis Maxim. extract (BOME). Y-GRS at 500 MPa achieved the highest complex index (0.506), indicating stronger starch-BOME interactions. Particle size analysis revealed that Y-GRS exhibited superior resistance to swelling, with D[4,3] increasing by 18.97 μm for Y-GRS and 31.64 μm for GRS as the pressure increased from 400 to 600 MPa. Y-GRS retained higher thermal stability, with an enthalpy change of 1.55 J/g at 500 MPa, compared with 0.83 J/g for GRS. The relative crystallinity of Y-GRS was 8.81 % higher than that of GRS. Structural analyses confirmed BOME mitigated higher pressure-induced damage to starch granule, preserving double helix and crystal structure. Rheologically, Y-GRS exhibited stable peak viscosity, weaker shear thinning behavior, and greater resistance to deformation than GRS. Following HPP, Y-GRS contained lower levels of rapidly digestible starch (RDS) and higher levels of resistant starch (RS) than GRS. In conclusion, these findings highlight HPP as a promising strategy for enhancing the functional properties of Y-GRS, offering improved stability and digestibility for starch-based food applications.
Collapse
Affiliation(s)
- Qisheng Yue
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Yijin Peng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Zi Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Yishu Deng
- College of Architecture and Engineering, Yunnan Agricultural University, Kunming, Yunnan Province 650201, China.
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
2
|
Tan W, Zhang Q, Chen P, Sun Q, Wei C, Xu X, Donlao N, Tian J. Effect of safflower seed oil on the molecular structural and enzyme hydrolysis properties of maize starch-lipid complexes. Food Chem 2025; 471:142735. [PMID: 39778478 DOI: 10.1016/j.foodchem.2024.142735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
To investigate the impact of safflower seed oil on the structural and digestive properties of complexes formed by fatty acids of varying chain lengths with maize starch, the starch-fatty acid ternary complexes were prepared by a hydrothermal method. The results indicated that safflower seed oil inhibited the complexation of relatively short-chain fatty acids (C10:0, C12:0, and C16:0) with starch, and promoted the complexation of long-chain fatty acids (C18:0). Intriguingly, safflower seed oil showed no significant impact on the formation of linoleic acid (C18:2) complexes, suggesting selective interactions within the starch-fatty acid complexes. In addition, the addition of safflower seed oil did not affect the thermal stability of the complexes, but significantly improved the anti-digestibility properties of the starch-complexes in each group, with the RS content reaching 59.08 % in the C16:0 group. In conclusion, this study provides insights for the development of high-quality resist starch-lipid ternary complexes.
Collapse
Affiliation(s)
- Wen Tan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qinjun Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Pin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Changqing Wei
- Food college, Shihezi University, Shihezi 310058, China
| | - Xinwen Xu
- Yili Yaqina Agricultural Development Co., Ltd, Yili, 835000, China
| | - Natthawuddhi Donlao
- School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Zhejiang University-Wuxi Xishan Joint Modern Agricultural Research Center, Wuxi 214100, China.
| |
Collapse
|
3
|
Rivero-Ramos P, Railton J, Rodrigo D, Benlloch-Tinoco M. High hydrostatic pressure modulates the digestive properties of rice starch-gallic acid composites by boosting non-inclusion complexation. Int J Biol Macromol 2025; 293:139257. [PMID: 39743103 DOI: 10.1016/j.ijbiomac.2024.139257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025]
Abstract
Influencing the starch postprandial glycemia via interventions that are sourced from natural plant materials has gained attention recently. Amylose present in starch is reported to form complexes with small ligands such as gallic acid (GA) through a conformational change that are digested slowly and contribute to the formation of resistant starch. In this study, the molecular interactions, multi-scale structure and in vitro digestion properties of normal neat rice starch and rice starch-GA composites (2, 5 % w/v) obtained either by high hydrostatic pressure (HHP) or thermal (T) treatment were compared. The multi-scale structure changes experienced by the rice starch gels (neat and composite) during simulated oro-gastrointestinal (OGIT) digestion were also characterised. Overall, formation of the V7 type inclusion complex was demonstrated in the composite gels processed by HHP and T, although the main molecular interactions found in the composites were non-inclusion complexes. Sample A-GA-5-HHP formed gels with a unique microstructure, whilst also displaying a significant increase of the resistant starch fraction (∼13 %) and a large decrease of the rapidly digestible starch fraction than A-GA-5-T (p < 0.05). The lower digestibility in A-GA-5-HHP was attributed to increased molecular interactions between amylose and GA, as suggested by the greater intensity peak at 3520 cm-1 in the FTIR, and the downfield chemical shifts (0.12 ppm) in the 13C NMR spectra. Our findings indicate that HHP gelatinisation of starch-GA composites represents a promising approach for the design of novel starch-based systems with distinct microstructure and digestion characteristics.
Collapse
Affiliation(s)
- Pedro Rivero-Ramos
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| | - James Railton
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| | - Dolores Rodrigo
- Department of Food Science, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avd./Agustín Escardino, n°7, 46980 Paterna, Valencia, Spain.
| | - María Benlloch-Tinoco
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| |
Collapse
|
4
|
Abid F, Kim S, Savaliya B, Cesari L, Amirmostofian M, Abdella S, Trott DJ, Page SW, Garg S. Targeting Acne: Development of Monensin-Loaded Nanostructured Lipid Carriers. Int J Nanomedicine 2025; 20:2181-2204. [PMID: 39990290 PMCID: PMC11847435 DOI: 10.2147/ijn.s497108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose The emergence of antimicrobial resistance (AMR) has made treating acne vulgaris increasingly challenging, thus underscoring the urgent need for new antibacterial therapies. This research aimed to discover, for the first time, the efficacy of monensin (MON) against acne pathogens by encapsulating MON in nanostructured lipid carriers (NLCs) to achieve targeted topical delivery. Methods MON-loaded NLCs were formulated and optimized using the Design of Experiments (DoE) approach and incorporated in a gel formulation. The potential of MON, MON-NLCs, and its gel formulation was investigated against resistant human isolates of C. acnes, Staphylococcus aureus (S. aureus), and Staphylococcus epidermidis (S. epidermidis) using the agar dilution method. Using the porcine ear skin, the ex vivo deposition of MON was evaluated in different skin layers. The cytotoxicity assay was also performed at antibacterial concentrations using the keratinocyte cell line. Results MON-loaded NLCs were developed using stearic acid, oleic acid, and Tween® 80 and optimized with particle size, polydispersity index, and zeta potential of 96.65 ± 0.94 nm, 0.13 ± 0.01, and -36.50 ± 0.30 mV, respectively. The ex vivo deposition experiments showed that MON did not penetrate any skin layer using its water dispersion. However, a significant amount of MON was deposited into the epidermal layer using MON-NLC (4219.86 ± 388.32 ng/cm²) and gel formulation (8180.73 ± 482.37 ng/cm²), whereas no MON permeated to the dermis layer using gel formulation. The antibacterial study revealed the potential of MON, MON-NLC, and gel formulation against C. acnes isolates (MIC range 0.125-4 µg/mL, 0.25-4 µg/mL, and 0.125-1 µg/mL respectively). The cell viability results suggested MON-NLC formulation as a safe topical treatment effective at antibacterial concentrations. Conclusion This research highlights the novel ability of MON against resistant acne-causing pathogens and the potential of MON-NLCs to deliver MON to the targeted epidermal skin layer effectively.
Collapse
Affiliation(s)
- Fatima Abid
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sangseo Kim
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Bhumika Savaliya
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Laura Cesari
- Faculty of Pharmacy, Aix-Marseille Université, Marseille, 13007, France
| | - Marzieh Amirmostofian
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | | | - Sanjay Garg
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
5
|
Sun X, Jin R, Ma F, Ma W, Pan Y, Liu J, Liu X, Zhu J, Zhang J. Effects of different fatty acids on the structure, physicochemical properties, and in vitro digestibility of Chinese yam resistant starch-lipid complexes. Food Chem 2025; 465:142159. [PMID: 39579402 DOI: 10.1016/j.foodchem.2024.142159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Nine CYRS-FA complexes were prepared by resistant starch in Chinese yam (CYRS) and nine fatty acids (FAs) with different chain lengths and degrees of unsaturation. CYRS-myristic acid and CYRS-palmitic acid showed higher complexing index (CI) and relative crystallinity (RC); CYRS-myristic acid and CYRS-oleic acid exhibited lower estimated glycemic index (eGI). Chain lengths of FAs showed significantly positive correlations with CI and contact angle (CA), and yet, unsaturation degree of FAs was negative correlated with both CI and CA. The eGI exhibited positive relations with solubility, and negative correlations with CI and RC. Therefore, the results indicated that chain lengths and unsaturation degrees of FAs were key factors for complexation of the CYRS-FA complexes, which influenced the structural, physicochemical and digestive properties. The findings were expected to provide a theoretical foundation for the interactions between starch and lipids in food processing, and elevate the high-tech values of Chinese yam.
Collapse
Affiliation(s)
- Xinru Sun
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Rumeng Jin
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Fanyi Ma
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China; State Key Laboratory of Antiviral Drugs, Henan University, Zhengzhou 450046, China.
| | - Wenjing Ma
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Yangyang Pan
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Jiahao Liu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Xiuhua Liu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Jinhua Zhu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Jie Zhang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China; State Key Laboratory of Antiviral Drugs, Henan University, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Shao M, Ling J, Qiu C, Junejo SA, Zhang B, Huang Q. Helical structures modulate the complexation mode and release characteristics of starch-capsaicin complex. Int J Biol Macromol 2025; 286:138325. [PMID: 39643196 DOI: 10.1016/j.ijbiomac.2024.138325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Capsaicin (CA) is a bioactive compound, known for its physiological effects, though its high pungency limits its practical applications. This study investigated the effects of starches with amorphous structures (AS), single helical and amorphous structures (SAS), and a combination of double helical, single helical, and amorphous structures (DSAS) on the complexation mode and release characteristics of CA. The SAS-CA complex exhibited the highest CA content (60.1 mg/g) and improved stability. Structural analyses using nuclear magnetic resonance spectroscopy and X-ray diffraction verified that both SAS and DSAS formed V6I-type complexes with CA stabilized by hydrogen bonding and hydrophobic interactions. In contrast, AS and CA exhibited only physical entrapment determined by differential scanning calorimetry, Fourier transform infrared, and Raman spectroscopy. The DSAS-CA complex demonstrated the slowest CA release during simulated oral digestion, attributed to its double helical structure, which resisted water erosion (17.1 %) and enzyme hydrolysis (3.6 %). Pearson correlation analysis revealed a strong positive relationship of CA release with amorphous structure, hydrolysis rate, and erosion rate, but exhibited a negative correlation with single helical and double helical structures. These findings support the development of starch-based delivery systems tailored to control the release of highly pungent bioactives like capsaicin, broadening their potential uses in food and pharmaceutical formulations.
Collapse
Affiliation(s)
- Miao Shao
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jianbin Ling
- Zhuhai Wuwei Health Food Company Ltd., Zhuhai 519110, China
| | - Chunhong Qiu
- Zhaoqing Huanfa Biotechnology Co. Ltd., Zhaoqing 526238, China
| | - Shahid Ahmed Junejo
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
7
|
Oliveira LDC, Gouseti O, Macnaughtan B, Clerici MTPS, Sampaio U, Bakalis S, Muttakin S, Cristianini M. Application of thermally assisted high hydrostatic pressure to modify sorghum starch: multi-scale structure, techno-functional properties and digestibility. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:109-121. [PMID: 39867612 PMCID: PMC11754551 DOI: 10.1007/s13197-024-06014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/03/2024] [Accepted: 06/05/2024] [Indexed: 01/28/2025]
Abstract
The effects of high hydrostatic pressure (HHP) (400-650 MPa) and holding temperature (25-50 °C) in thermally assisted HHP processing on multi-scale structure of starch (granule, crystalline and molecular), techno-functional properties, and digestibility of sorghum starch (SS) were evaluated. Response surface methodology has verified that the process impact on the modification of SS was dependent primarily on the pressure level. As HHP increased, processed SS progressively lost their granular structure and Maltese cross, indicating gradual structural disorder within the granules. These findings were associated with larger particles, resulting from increased swelling of the granules. The enthalpy changes of crystallite melting decreased from 22.7 (SS) to 0.1-26.9 J/g as a result of increases in pressure and temperature. Measurements of long- and short-range order of SS showed granules have not been completely gelatinized during processing. Water absorption index (1.7-5.4 g/g) and cold viscosity (52.7-94.3 cP) increased as pressure increased, against lowered gel strength (0.80-1.44 N), peak (1394-2735 cP), final (1499-3103 cP) and setback viscosities (233-1288 cP). Increased RS (27.3-35.8%) in processed SS was attributed to the amylose-lipid complex. The process did not affect RDS compared to native SS, but it decreased SDS. Combinations of HHP and temperature demonstrated the potential to produce different versions of physically modified SS suitable for a wide range of applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06014-z.
Collapse
Affiliation(s)
- Ludmilla de Carvalho Oliveira
- Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato 80, 6121, Campinas, SP 3083-862 Brazil
| | - Ourania Gouseti
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
- Present Address: Department of Food Science, University of Copenhagen, Copenhangen, Denmark
| | - Bill Macnaughtan
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato 80, 6121, Campinas, SP 3083-862 Brazil
| | - Ulliana Sampaio
- Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato 80, 6121, Campinas, SP 3083-862 Brazil
| | - Serafim Bakalis
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
- Present Address: Department of Food Science, University of Copenhagen, Copenhangen, Denmark
| | - Syahrizal Muttakin
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT UK
- Present Address: Indonesian Agency for Agricultural Research and Development, Jl. Ragunan 29 Pasar Minggu, Jakarta Selatan, 12540 Indonesia
| | - Marcelo Cristianini
- Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato 80, 6121, Campinas, SP 3083-862 Brazil
| |
Collapse
|
8
|
Zhao X, Mei T, Cui B. Lipids-modified starch: Advances in structural characteristic, physicochemical property, and application. Food Res Int 2024; 197:115146. [PMID: 39593359 DOI: 10.1016/j.foodres.2024.115146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 09/25/2024] [Indexed: 11/28/2024]
Abstract
Starch and lipids, as two important biomacromolecules in nature, can interact with each other to form a unique complex system during processing, leading to the change of the structural and functional characteristics of starch. The complex formed though the biomacromolecules interaction is a new kind of modified starch named as "lipid-modified starch". At present, the lipids-modified starch has attracted much researchers' attention and become a hotspot topic in food field. This review systematically discusses the different prepared methods (solvent and thermomechanical method) of lipids-modified starch, influence factors of starch-lipids complexation, action mechanism of lipids on starch, as well as the structure, physicochemical properties, digestibility, and applications of lipid-modified starch in recent development. The key findings are summarized as follows: (i) Starch complexed with fatty acids to form V-type inclusion complex, while other lipids (oils and triacylglycerol) are not due to the large spatial structure; (ii) The formation of V-type inclusion complex changed the molecular and crystalline structure, and increased melting temperature and enthalpy of starch, which could be characterized by different analytical technique, such as X-ray diffraction and differential scanning calorimetry; (iii) The properties of starch and lipids, and experimental conditions are key factors in determining the formation of starch-lipid complexes; (iv) Starch-lipids starch can be used as quality improver, fat substitute, resistant starch, carriers of bioactive ingredients in food processing. Finally, the existing problems about the research on lipids-modified starch are discussed to provide new perspectives for the development of this innovative modified starch.
Collapse
Affiliation(s)
- Xiaoyun Zhao
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450016, China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, China
| | - Ting Mei
- Shenzhen Quanzhen Yi'an Biotechnology Co., Ltd., Shenzhen 518017, China
| | - Bing Cui
- Cooperative Innovation Center of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
9
|
Tian M, Wang Y, Sun H, Cai J, Ma Y. Effect of electron beam irradiation pretreatment on the structural, physicochemical properties of potato starch-fatty acid complexes and the proliferation of Bifidobacterium adolescentis. Int J Biol Macromol 2024; 282:137258. [PMID: 39505173 DOI: 10.1016/j.ijbiomac.2024.137258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
The effects of different electron beam irradiation doses (5 KGy, 10 KGy, 20 KGy) on the complexation of potato starch with four saturated fatty acids with different chain lengths, i.e., lauric acid (LA), myristic acid (MA), palmitic acid (PA), and stearic acid (SA), were investigated, including structural properties, physicochemical properties, digestive properties, and the effect of Bifidobacteria proliferation. The complexing index increased significantly with increasing irradiation dose and showed the following order: 20 KGy > 10 KGy > 5 KGy > native starch. At irradiation dose of 20 KGy, PA (88.75 %) showed the highest complexing index, followed by MA (87.40 %), SA (82.95 %) and LA (72.33 %). The results of microstructure, relative crystallinity, gelatinization enthalpy, contact angle, and resistant starch content in starch-fatty acid complexes were consistent with the complexing index. In vitro digestion indicated that at irradiation dose of 20 KGy, the addition of PA yielded the highest content of resistant starch (50.35 %), followed by MA (49.25 %), SA (47.05 %) and LA (44.72 %). The four complexes were eventually assessed for their effects on Bifidobacteria's proliferation, with PA exerting the strongest proliferative effects, followed by MA, SA and LA. Overall, electron beam irradiation exhibited good application prospects in the field of starchy food processing and functional foods development.
Collapse
Affiliation(s)
- Miaomiao Tian
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Hongjia Sun
- Medical Laboratory Center, The First Hospital of Lanzhou University (The first school of clinical medicine), Lanzhou 730000, China
| | - Jing Cai
- Lanzhou Pulmonary Hospital, Lanzhou 730030, China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
10
|
Park J, Choi HW, Park JD, Choi HD, Hong JS. Impact of annealing and incorporation of vegetable oils on physicochemical and rheological properties of wheat starch. Int J Biol Macromol 2024; 282:137227. [PMID: 39491706 DOI: 10.1016/j.ijbiomac.2024.137227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
This study investigated the impact of annealing treatment and lipids (vegetable oils, such as palm, olive, and grapeseed oils) on the physicochemical and rheological properties of wheat starch. Annealing of wheat starch (WSANN45, WSANN55) under different temperatures (45 °C and 55 °C) and with added vegetable oil (WS-OilANN45, WS-OilANN55) were compared with untreated wheat starch (WS). Annealing at 45 °C resulted in slight changes in the physicochemical properties of starch. However, annealing at 55 °C significantly decreased the relative crystallinity, pasting viscosity, and swelling power. WS-OilANN45 showed a higher ΔH (dissociation peak) than WSANN45, indicating successful lipid incorporation, whereas WS-OilANN55 showed no significant difference from WSANN55, suggesting that lipid integration was not achieved. Rheological tests showed that WS-OilANN45 slightly reduced the shear-thinning behavior and viscoelastic properties of starch. The introduction of oils affected the swelling and pasting properties, weakened the gel network, and significantly reduced the gel hardness. This approach offers a potential method that uses food-grade oils and annealing to modify starch and alter its rheological and physical properties while retaining its native granular characteristics.
Collapse
Affiliation(s)
- Jiwoon Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hyun-Wook Choi
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Jong-Dae Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hee-Don Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jung Sun Hong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
11
|
Wang Y, Ma CM, Yang Y, Wang B, Liu XF, Wang Y, Bian X, Zhang G, Zhang N. Effect of high hydrostatic pressure treatment on food composition and applications in food industry: A review. Food Res Int 2024; 195:114991. [PMID: 39277253 DOI: 10.1016/j.foodres.2024.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Nowadays, with the diversification of nutritious and healthy foods, consumers are increasingly seeking clean-labeled products. High hydrostatic pressure (HHP) as a cold sterilization technology can effectively sterilize and inactivate enzymes, which is conducive to the production of high-quality and safe food products with extended shelf life. This technology reduces the addition of food additives and contributes to environmental protection. Moreover, HHP enhances the content and bioavailability of nutrients, reduces the anti-nutritional factors and the risk of food allergen concerns. Therefore, HHP is widely used in the processing of fruit and vegetable juice drinks, alcoholic, meat products and aquatic products, etc. A better understanding of the influence of HHP on food composition and applications can guide the development of food industry and contribute to the development of non-thermally processed and environmentally friendly foods.
Collapse
Affiliation(s)
- Yuan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Fei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
12
|
Zhang M, Hou Y, Chen X, Zhao P, Wang Z, Huang J, Hui C, Li C. Amylose molecular weight affects the complexing state and digestibility of the resulting starch-lipid complexes. Carbohydr Polym 2024; 342:122400. [PMID: 39048199 DOI: 10.1016/j.carbpol.2024.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Previous RS5 (type 5 resistant starch) research has significantly broadened starch use and benefited society, yet the effects of the molecular weight of amylose on RS5 remain underexplored. In this study, amyloses with different molecular weights were complexed with caproic acid (C6), lauric acid (C12), and stearic acid (C18) to observe the effects of the molecular weight of amylose on the structure and in vitro digestive properties of RS5. Gel permeation chromatography revealed that the peak average molecular weight (Mp) values of high-amylose cornstarch NF-CGK (CGK), high-amylose cornstarch obtained via cornstarch via autoclave (high temperature and high pressure)-cooling combined pullulanase enzymatic hydrolysis (CTE), and high-amylose cornstarch NF-G370 (HCK) were 21,282, 171,537, and 188,084 before fatty acid complexation, respectively. Additionally, their weight average molecular weight (Mw) values of 32,429, 327,344, and 410,610 and hydrolysis rates of 58.12 %, 86.77 %, and 64.58 %, respectively. The hydrolysis rate of low-Mw amylose (GCK) complexes with fatty acids was lower than that of HCK and CTE starch-lipid complexes. However, HCK and CTE having similar molecular weights, there was no significant difference in the hydrolysis rate of starch-lipid complexes. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and complexing index analyses confirmed the formation of these complexes. This study proposed the mechanism of RS5 formation and provided guidance for its future development.
Collapse
Affiliation(s)
- Mingyi Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| | - Xinyang Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Penghui Zhao
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Zhen Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement College of Agriculture, Henan University Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jihong Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; State Key Laboratory of Crop Stress Adaptation and Improvement College of Agriculture, Henan University Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| | - Chuanyin Hui
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Chenyu Li
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| |
Collapse
|
13
|
Selling GW, Hay WT, Peterson SC, Hojilla-Evangelista MP, Kenar JA, Utt KD. Structure and functionality of surface-active amylose-fatty amine salt inclusion complexes. Carbohydr Polym 2024; 338:122186. [PMID: 38763722 DOI: 10.1016/j.carbpol.2024.122186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Novel value-added starch-based materials can be produced by forming amylose inclusion complexes (AIC) with hydrophobic compounds. There is currently little research on AIC use as polymeric emulsifiers, particularly for AIC with fatty amine salt ligands. This work evaluated AIC emulsifiers by studying the structure and functionality of AIC composed of high amylose corn starch and fatty amine salts (10-18 carbons, including a mixture simulating vegetable oil composition) produced via steam jet cooking. X-ray scattering verified successful AIC formation, with peaks located near 7.0°, 12.8° and 19.9° 2θ. AIC were easily dispersed in water (80-85 °C) and remained in suspension at room temperature for weeks, unlike the uncomplexed ligands or starch. AIC were highly effective emulsifying agents, with emulsifying activity indexes of 213-229 m2g-1 at pH 5, and zeta potentials, a measure of electrostatic repulsion, as high as 43.4 mV. AIC dispersions had surface tension ranging from 24 to 41 mN/m and displayed surface-active properties superior to amylose complexes formed from fatty acid salts and competitive with common starch-based emulsifiers. These findings demonstrate that fatty amine salt AIC are effective emulsifiers that can be made from low-cost sources of fatty amine salts, such as vegetable oil derivatives.
Collapse
Affiliation(s)
- Gordon W Selling
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Plant Polymer Research Unit, 1815 N University, Peoria, IL 61604, United States of America
| | - William T Hay
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University, Peoria, IL 61604, United States of America.
| | - Steven C Peterson
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Plant Polymer Research Unit, 1815 N University, Peoria, IL 61604, United States of America
| | - Milagros P Hojilla-Evangelista
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Plant Polymer Research Unit, 1815 N University, Peoria, IL 61604, United States of America
| | - James A Kenar
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Foods Research Unit, 1815 N University, Peoria, IL 61604, United States of America
| | - Kelly D Utt
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Plant Polymer Research Unit, 1815 N University, Peoria, IL 61604, United States of America
| |
Collapse
|
14
|
Nie M, Li J, Lin R, Gong X, Dang B, Zhang W, Yang X, Wang L, Wang F, Tong LT. The role of C18 fatty acids in improving the digestion and retrogradation properties of highland barley starch. Food Res Int 2024; 186:114355. [PMID: 38729701 DOI: 10.1016/j.foodres.2024.114355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
In this study, five C18 fatty acids (FA) with different numbers of double bonds and configurations including stearic acid (SA), oleic acid (OA), elaidic acid (EA), linoleic acid (LA), and α-linolenic acid (ALA), were selected to prepare highland barely starch (HBS)-FA complexes to modulate digestibility and elaborate the underlying mechanism. The results showed that HBS-SA had the highest complex index (34.18 %), relative crystallinity (17.62 %) and single helix content (25.78 %). Furthermore, the HBS-C18 FA complexes were formed by EA (C18 FA with monounsaturated bonds) that had the highest R1047/1022 (1.0509) and lowest full width at half-maximum (FWHM, 20.85), suggesting good short-range ordered structure. Moreover, all C18 FAs could form two kinds of V-type complexes with HBS, which can be confirmed by the results of CLSM and DSC measurements, and all of them showed significantly lower digestibility. HBS-EA possessed the highest resistant starch content (20.17 %), while HBS-SA had the highest slowly digestible starch content (26.61 %). In addition, the inhibition of HBS retrogradation by fatty acid addition was further proven, where HBS-SA gel firmness (37.80 g) and aging enthalpy value were the lowest, indicating the most effective. Overall, compounding with fatty acids, especially SA, could be used as a novel way to make functional foods based on HBS.
Collapse
Affiliation(s)
- Mengzi Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Jiaxin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Ran Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xue Gong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Bin Dang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Wengang Zhang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Xijuan Yang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
15
|
Di Marco AE, Tomás MC, Ixtaina VY. Improved accelerated stability of starch-chia oil fatty acid inclusion complexes formed under mild reaction conditions. Carbohydr Polym 2024; 331:121887. [PMID: 38388041 DOI: 10.1016/j.carbpol.2024.121887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/26/2023] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
The starch inclusion complexation of sensitive compounds requires the use of conditions that minimize their degradation. This research work is aimed at investigating the effect of an alkaline complexation method employing mild reaction conditions on the physicochemical properties and accelerated stability of inclusion complexes of high amylose corn starch with omega-3 and omega-6 fatty acids. Hydrolyzed chia seed oil, rich in α-linolenic and linoleic fatty acids, was used as guest material and was incorporated at two ratios (10 and 20 % w/w hydrolysate/starch). Under the reaction conditions assessed, it were successfully formed V-type inclusion complexes with a high content of omega-3 and omega-6 (3.9-6 %). The initial hydrolysate concentration did not have a significant effect on the structural (crystallinity, short-range order) and thermal (dissociation temperature, melting enthalpy) properties. The method studied allowed the formation of complexes with an enhanced accelerated oxidative stability, compared to those formed using thermal treatment. The complexes formed using mild conditions with 20 % hydrolysate content had the highest oxidative stability, showing an omega-3 and omega-6 retention >90 % after 6 h of storage at 90 °C, an enhanced stability under thermogravimetric analysis, and flattened Rancimat curves, suggesting an appropriate preliminary behavior as potential carriers of bioactive fatty acids.
Collapse
Affiliation(s)
- Andrea E Di Marco
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata (CONICET), Facultad de Ciencias Exactas (FCE-UNLP), CICPBA, calle 47 y 116, 1900 La Plata, Argentina
| | - Mabel C Tomás
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata (CONICET), Facultad de Ciencias Exactas (FCE-UNLP), CICPBA, calle 47 y 116, 1900 La Plata, Argentina
| | - Vanesa Y Ixtaina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata (CONICET), Facultad de Ciencias Exactas (FCE-UNLP), CICPBA, calle 47 y 116, 1900 La Plata, Argentina; Facultad de Ciencias Agrarias y Forestales (FCAyF-UNLP), calle 60 y 119, 1900 La Plata, Argentina.
| |
Collapse
|
16
|
Chen L, Yang F, Jiang Q, Gao P, Xia W, Yu D. Effect of different starch on masking fishy odor compounds. Int J Biol Macromol 2024; 268:131911. [PMID: 38679263 DOI: 10.1016/j.ijbiomac.2024.131911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Starch is a common ingredient to improve gel property of freshwater fish surimi, but the function of natural starch to mask fishy odor compounds in surimi products has not been investigated systematacially. Therefore, this study aimed to determine which natural starch could effectively mask fishy odor compounds and clarify their interaction by GC-MS, FT-IR spectroscopy, raman spectroscopy, X-ray diffraction, scanning electron microscopy and 13C nuclear magnetic resonance. The results showed that when the concentration, crystal type, amylose content, and dispersion degree of starch was 1 %, type C, 48 % (w/v), and 200 mesh with 0.88 span, the starch had the strongest masking effect on typical fishy odor compounds, namely hexanal, 1-Octen-3-ol, (E,E)-2,4-Heptadienal and (E)-2-Octenal. It indicated that complexation and hydrogen bonding both occurred between the fishy odor compounds and starch.
Collapse
Affiliation(s)
- Lihua Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dongxing Yu
- SoHao Fd-Tech Co., QingDao, ShanDong 266700, China
| |
Collapse
|
17
|
Sun S, Hong Y, Gu Z, Cheng L, Ban X, Li Z, Li C. Impacts of fatty acid type on binding state, fine structure, and in vitro digestion of debranched starch-fatty acid complexes with different debranching degrees. Carbohydr Polym 2023; 318:121107. [PMID: 37479452 DOI: 10.1016/j.carbpol.2023.121107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/23/2023]
Abstract
This study aimed to investigate the effects of fatty acid (FA) type on the binding state, fine structure, and digestibility of debranched maize starch (DMS)-FA complexes with different enzymatic debranching degrees. Maize starch was hydrolyzed by pullulanase for 1 h (DMS1h) and 6 h (DMS6h) and then complexed with seven types of FAs with varying chain lengths and unsaturation degrees, respectively. All the DMS-FA complexes showed V6III-type and B-type crystals. Complex formation greatly increased the relative crystallinity of DMS, but significantly decreased its order degree of short-range structure (p < 0.05). Compared with unsaturated FAs, saturated FAs possessed stronger intermolecular interactions with DMS. DMS6h-FA complexes exhibited a markedly higher complexing degree (p < 0.05) than the corresponding DMS1h-FA complexes. The FA molecules in DMS1h-FA complexes were primarily physically trapped outside the amylose helices, whereas those in DMS6h-FA complexes were mainly weakly bound to the cavity of amylose helices. The resistant starch (RS) content and relative crystallinity of DMS-FA complexes considerably increased with increasing FA chain length. Furthermore, the highest RS content (38.90 %) and relative crystallinity (24.23 %) were observed in DMS6h-FA complexes. The FA unsaturation degree induced little effect on the RS content and long-range structural order of the complexes.
Collapse
Affiliation(s)
- Shenglin Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China.
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China.
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Xiaofeng Ban
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| |
Collapse
|
18
|
Wang C, Zhu Z, Mei L, Xia Y, Chen X, Mustafa S, Du X. The structural properties and resistant digestibility of maize starch-glyceride monostearate complexes. Int J Biol Macromol 2023; 249:126141. [PMID: 37544562 DOI: 10.1016/j.ijbiomac.2023.126141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
This study investigated the effects of pullulanase debranching on the structural properties and digestibility of maize starch (MS)-glyceryl monostearate (GMS) complexes. According to our results, the apparent amylose content of MS increased from 36.34 % to 95.55 % and complex index reached 93.09 % after 16 h of pullulanase debranching. The crystallinity of prepared MS-GMS complexes increased to 33.24 % with a blend of B-type and V-type crystals. The surface of prepared MS-GMS complexes granules emerged more small lamellar crystals tightly adhering to the surface of granules. The Fourier transforms infrared spectroscopy analysis showed that debranching pretreatment MS-GMS complexes exhibited higher levels of short-range orders structure. These results indicated that maize starch was favorable to form more ordered starch-lipid complexes structure after debranching pretreatment, which resulted in the restriction of starch hydrolysis. In vitro digestion data implied that resistant starch (RS) content increased with the extension of the debranching time, and the highest RS content (69.58 %) appeared with 16 h pullulanase debranching. This work suggests that debranching pretreatment could be an efficient way to produce ordered starch-lipid complexes with controllable structure and anti-digestibility.
Collapse
Affiliation(s)
- Caihong Wang
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhijie Zhu
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Liping Mei
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yaoyao Xia
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xu Chen
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Saddam Mustafa
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xianfeng Du
- Anhui Engineering Laboratory for Agro-Products Processing, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
19
|
Sun S, Hong Y, Gu Z, Cheng L, Ban X, Li Z, Li C. Different starch varieties influence the complexing state and digestibility of the resulting starch-lipid complexes. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
20
|
Sherpa K, Priyadarshini MB, Mehta NK, Waikhom G, Surasani VKR, Tenali DR, Vaishnav A, Sharma S, Debbarma S. Blue agave inulin-soluble dietary fiber: effect on technological quality properties of pangasius mince emulsion-type sausage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37005347 DOI: 10.1002/jsfa.12594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The aim of the work was to investigate the influence of supplementing pangasius mince-based emulsion sausages with blue agave-derived inulin at 1% (T1), 2% (T2), 3% (T3), 4% (T4), and 5% (T5) on its technological quality attributes and acceptability. RESULTS The cooking yield of T-2, T-3, and T-4 sausages (96-97%) exhibited no significant difference (P > 0.05), which was higher than the other lots. The T-2 batter exhibited a significant difference with all other treatments, showing the lowest total expressible fluid (12.20%) value, indicating the highest emulsion stability of the batter. There was a significant effect on the diameter reduction of the cooked sausages as the level of inulin increased. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed the proteolysis of raw mince without inulin and new bands in cooked sausage samples were observed. Increasing inulin content increased the hardness of the sausages from 2510.81 ± 114.31 g to 3415.54 ± 75.88. The differential scanning calorimetry melting temperatures of peak 2 of the T-1, T-2, T-3, and T-4 increased as the inulin content increased from 1 to 4%. The scanning electron microscope images exhibited a smooth appearance on the surface as the inulin level increased. CONCLUSION The sausages incorporated with the 2% and 3% blue agave plant-derived inulin (T-2 and T-3) showed better sensory overall acceptability scores than the control. The results suggested that the blue agave plant-derived inulin could be efficiently utilized at the 2% and 3% levels to enhance the quality of emulsion-type pangasius sausage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kusang Sherpa
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | | | - Naresh Kumar Mehta
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | | | | | | | - Anand Vaishnav
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | - Sanjeev Sharma
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | - Sourabh Debbarma
- Department of Aquatic Health & Environment, College of Fisheries, West Tripura, India
| |
Collapse
|
21
|
Di Marco AE, Ixtaina VY, Tomás MC. Effect of ligand concentration and ultrasonic treatment on inclusion complexes of high amylose corn starch with chia seed oil fatty acids. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Sun S, Hua S, Hong Y, Gu Z, Cheng L, Ban X, Li Z, Li C, Zhou J. Influence of different kinds of fatty acids on the behavior, structure and digestibility of high amylose maize starch-fatty acid complexes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5837-5848. [PMID: 35426124 DOI: 10.1002/jsfa.11933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The formation of starch-lipid complexes is of interest to food processing and human nutrition. Fatty acid (FA) structure is important for the formation and structure of starch-FA complexes. However, there is limited research regarding the complexing behavior between amylose and different kinds of FAs, as well as the relationship between fine structures and digestibility of the formed complexes. This study aimed to investigate the behavior, fine structure, and digestibility of complexes formed between high amylose maize starch (HMS) and FA having various chain lengths and unsaturation degrees. RESULTS Complexes containing different FA structures showed V6III -type crystals. Complexes containing 18-carbon unsaturated FAs displayed significantly higher complexing index (P < 0.05) than other complexes. Complexes containing 12-carbon FAs and 18-carbon FAs with one unsaturation degree showed a higher degree of structural order and resistant starch (RS) content than other complexes. The 12-carbon FAs exhibited a higher binding degree with helical cavity of amylose than other FAs. Additionally, 10-carbon and 18-carbon saturated FAs tended to combine with HMS outside amylose helices more than other FAs. Laser confocal micro-Raman imaging revealed that the physically embedded 10-carbon and 18-carbon saturated FAs showed heterogeneous distribution in complexes, and that the complexed 18-carbon FAs with one unsaturation degree exhibited homogeneous distribution. CONCLUSION The behavior, structural order and digestibility of complexes could be regulated by FA structure. The 12-carbon FAs and 18-carbon FAs with one unsaturation degree were more suitable for the production of HMS-FA complexes with higher structural order and RS content than other FAs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shenglin Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Shuxian Hua
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Xiaofeng Ban
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P. R. China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
23
|
Zhang X, Mi T, Gao W, Wu Z, Yuan C, Cui B, Dai Y, Liu P. Ultrasonication effects on physicochemical properties of starch-lipid complex. Food Chem 2022; 388:133054. [PMID: 35483292 DOI: 10.1016/j.foodchem.2022.133054] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022]
Abstract
The starch-lipid complex between the pea starch (PSt) and glycerol monolaurate (GM) was prepared using ultrasound with different amplitudes, durations and application sequences. Fourier-transform infrared and nuclear magnetic resonance spectra showed the formation of amylose-lipid complex between PSt and GM in the ultrasonic field. Stronger diffraction intensities were observed in samples treated by ultrasonication, whereas the thermogravimetric analysis indicated that the thermal stability of starch was improved by the formation of the V-type inclusion complexes. An ultrasound pre-treatment prior to the addition of a guest molecule (UC) was more favorable to induce the formation of an amylose-lipid complexes than ultrasound treatment after PSt was incorporated with GM (CU). The UC-treated samples showed stronger diffraction intensities, higher melting enthalpy values and enzyme-resistant than that of CU-treated PSt-GM complexes.
Collapse
Affiliation(s)
- Xiaolei Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Tongtong Mi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; Faculty of Agricultural and Veterinary Sciences, Liaocheng Vocational and Technical College, Liaocheng, Shandong 252000, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Yangyong Dai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
24
|
Chumsri P, Panpipat W, Cheong LZ, Chaijan M. Formation of Intermediate Amylose Rice Starch-Lipid Complex Assisted by Ultrasonication. Foods 2022; 11:foods11162430. [PMID: 36010430 PMCID: PMC9407459 DOI: 10.3390/foods11162430] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Due to the potential reduction in starch availability, as well as the production of the distinct physico-chemical characteristics of starch in order to improve health benefits, the formation of starch–lipid complexes has attracted significant attention for improving the quantity of resistant starch (RS) content in starchy-based foods. The purpose of this research was to apply ultrasonication to produce intermediate amylose rice (Oryza sativa L.) cv. Noui Khuea (NK) starch–fatty acid (FA) complexes. The effects of ultrasonically synthesized conditions (ultrasonic time, ultrasonic amplitude, FA chain length) on the complexing index (CI) and in vitro digestibility of the starch–FA complex were highlighted. The optimum conditions were 7.5% butyric acid with 20% amplitude for 30 min, as indicated by a high CI and RS contents. The ultrasonically treated starch–butyric complex had the highest RS content of 80.78% with a V-type XRD pattern and an additional FTIR peak at 1709 cm−1. The increase in the water/oil absorption capacity and swelling index were observed in the starch–lipid complex. The pasting viscosity and pasting/melting temperatures were lower than those of native starch, despite the fact that it had a distinct morphological structure with a high proportion of flaky and grooved forms. The complexes were capable of binding bile acid, scavenging the DPPH radical, and stimulating the bifidobacterial proliferation better than native starch, which differed depending on the FA inclusion. Therefore, developing a rice starch–lipid complex can be achieved via ultrasonication.
Collapse
Affiliation(s)
- Paramee Chumsri
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
- Correspondence: ; Tel.: +66-7567-2319; Fax: +66-7567-2302
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
25
|
Dhull SB, Chandak A, Collins MN, Bangar SP, Chawla P, Singh A. Lotus Seed Starch: A Novel Functional Ingredient with Promising Properties and Applications in Food—A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa Haryana 125055 India
| | - Ankita Chandak
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa Haryana 125055 India
| | - Maurice N. Collins
- Bernal Institute School of Engineering University of Limerick Limerick V94 T9PX Ireland
- Health Research Institute University of Limerick Limerick V94 T9PX Ireland
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson SC 29631 USA
| | - Prince Chawla
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab 144411 India
| | - Ajay Singh
- Department of Food Technology Mata Gujri College Fatehgarh Sahib Punjab 140406 India
| |
Collapse
|
26
|
Ma R, Zhan J, Lu H, Chang R, Tian Y. Interactions between recrystallized rice starch and flavor molecules. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
27
|
Di Marco AE, Ixtaina VY, Tomás MC. Analytical and technological aspects of amylose inclusion complexes for potential applications in functional foods. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Ding Y, Ban Q, Wu Y, Sun Y, Zhou Z, Wang Q, Cheng J, Xiao H. Effect of high hydrostatic pressure on the edible quality, health and safety attributes of plant-based foods represented by cereals and legumes: a review. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34839776 DOI: 10.1080/10408398.2021.2005531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Consumers today are increasingly willing to reduce their meat consumption and adopt plant-based alternatives in their diet. As a main source of plant-based foods, cereals and legumes (CLs) together could make up for all the essential nutrients that humans consume daily. However, the consumption of CLs and their derivatives is facing many challenges, such as the poor palatability of coarse grains and vegetarian meat, the presence of anti-nutritional factors, and allergenic proteins in CLs, and the vulnerability of plant-based foods to microbial contamination. Recently, high hydrostatic pressure (HHP) technology has been used to tailor the techno-functionality of plant proteins and induce cold gelatinization of starch in CLs to improve the edible quality of plant-based products. The nutritional value (e.g., the bioavailability of vitamins and minerals, reduction of anti-nutritional factors of legume proteins) and bio-functional properties (e.g., production of bioactive peptides, increasing the content of γ-aminobutyric acid) of CLs were significantly improved as affected by HHP. Moreover, the food safety of plant-based products could be significantly improved as well. HHP lowered the risk of microbial contamination through the inactivation of numerous microorganisms, spores, and enzymes in CLs and alleviated the allergy symptoms from consumption of plant-based foods.
Collapse
Affiliation(s)
- Yangyue Ding
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yue Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhihao Zhou
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
29
|
Mi H, Su Q, Chen J, Yi S, Li X, Li J. Starch-fatty acid complexes improve the gel properties and enhance the fatty acid content of Nemipterus virgatus surimi under high-temperature treatment. Food Chem 2021; 362:130253. [PMID: 34116429 DOI: 10.1016/j.foodchem.2021.130253] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022]
Abstract
The effect of high amylose corn starch (HAS)-fatty acid complexes on the gel properties, protein secondary structure, microstructure, fatty acid content, and sensory properties of surimi under high-temperature treatment were investigated. The formation of HAS-fatty acid complexes increased melting temperature and decreased average particle size of HAS. The addition of HAS-fatty acid complexes significantly improved the breaking force, deformation and whiteness of surimi gels. The water in surimi gels containing HAS or HAS-fatty acid complexes became increasingly immobilized. HAS or HAS-fatty acid complexes promoted protein conformational transition from α-helix structure to other three secondary structure. Surimi gels added with HAS-fatty acid complexes had more compact network structure and higher fatty acid content. Moreover, the better sensory properties were obtained in surimi gels containing HAS-fatty acid complexes. Therefore, starch-fatty acid complexes not only could improve the gel properties of surimi, but also enhance its fatty acid content.
Collapse
Affiliation(s)
- Hongbo Mi
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Qing Su
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jingxin Chen
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Shumin Yi
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| |
Collapse
|
30
|
Zhao W, Yan T, Yin W. Structural characterization, storage stability, and antioxidant activity of a novel amylose–lycopene inclusion complex. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenhong Zhao
- School of Food Science and Technology Henan University of Technology Zhengzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety Guangzhou China
| | - Tingting Yan
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Wenting Yin
- School of Food Science and Technology Henan University of Technology Zhengzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety Guangzhou China
| |
Collapse
|
31
|
Geng S, Liu X, Ma H, Liu B, Liang G. Multi-scale stabilization mechanism of pickering emulsion gels based on dihydromyricetin/high-amylose corn starch composite particles. Food Chem 2021; 355:129660. [PMID: 33799246 DOI: 10.1016/j.foodchem.2021.129660] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 01/20/2023]
Abstract
For Pickering emulsifying effect, starch must be subjected to the pretreatments of acid hydrolysis, esterification, which are complicated and eco-unfriendly. In this study, a practical and green strategyto fabricate Pickering emulsion gels with dihydromyricetin (DMY)/high-amylose corn starch (HCS) composite particles was introduced for the first time. The DMY content in composite particles and the amount of addition of composite particles had obvious synergistic effect on the formation and properties of emulsion gels. The obtained emulsion gels were not sensitive to ionic strength, which could be attributed to emulsifying capacity and viscosity effect of composite particles. The spectral analysis confirmed the presence of DMY/amylose host-guest supramolecules. The molecular simulation of the supramolecular complexes in the oil-water system indicated that these complexes could spontaneously aggregate and anchor to the oil-water interface, reducing the interfacial tension. Based on experimental and theoretical results, the multi-scale relationship of "molecular interaction-particle characteristics-gel properties" was established.
Collapse
Affiliation(s)
- Sheng Geng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xiaoling Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
32
|
Li S, Zhang R, Lei D, Huang Y, Cheng S, Zhu Z, Wu Z, Cravotto G. Impact of ultrasound, microwaves and high-pressure processing on food components and their interactions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Cesbron-Lavau G, Goux A, Atkinson F, Meynier A, Vinoy S. Deep Dive Into the Effects of Food Processing on Limiting Starch Digestibility and Lowering the Glycemic Response. Nutrients 2021; 13:nu13020381. [PMID: 33530525 PMCID: PMC7912248 DOI: 10.3390/nu13020381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
During processing of cereal-based food products, starch undergoes dramatic changes. The objective of this work was to evaluate the impact of food processing on the starch digestibility profile of cereal-based foods using advanced imaging techniques, and to determine the effect of preserving starch in its native, slowly digestible form on its in vivo metabolic fate. Four different food products using different processing technologies were evaluated: extruded products, rusks, soft-baked cakes, and rotary-molded biscuits. Imaging techniques (X-ray diffraction, micro-X-ray microtomography, and electronic microscopy) were used to investigate changes in slowly digestible starch (SDS) structure that occurred during these different food processing technologies. For in vivo evaluation, International Standards for glycemic index (GI) methodology were applied on 12 healthy subjects. Rotary molding preserved starch in its intact form and resulted in the highest SDS content (28 g/100 g) and a significantly lower glycemic and insulinemic response, while the three other technologies resulted in SDS contents below 3 g/100 g. These low SDS values were due to greater disruption of the starch structure, which translated to a shift from a crystalline structure to an amorphous one. Modulation of postprandial glycemia, through starch digestibility modulation, is a meaningful target for the prevention of metabolic diseases.
Collapse
Affiliation(s)
- Gautier Cesbron-Lavau
- Nutrition Research, Mondelēz International R&D, 91400 Saclay, France; (G.C.-L.); (A.G.); (A.M.)
| | - Aurélie Goux
- Nutrition Research, Mondelēz International R&D, 91400 Saclay, France; (G.C.-L.); (A.G.); (A.M.)
| | - Fiona Atkinson
- School of Life and Environmental Sciences and the Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia;
| | - Alexandra Meynier
- Nutrition Research, Mondelēz International R&D, 91400 Saclay, France; (G.C.-L.); (A.G.); (A.M.)
| | - Sophie Vinoy
- Nutrition Research, Mondelēz International R&D, 91400 Saclay, France; (G.C.-L.); (A.G.); (A.M.)
- Correspondence: ; Tel.: +33-1-8311-4578
| |
Collapse
|
34
|
Insights into the effect of structural alternations on the digestibility of rice starch-fatty acid complexes prepared by high-pressure homogenization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110294] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Sun S, Jin Y, Hong Y, Gu Z, Cheng L, Li Z, Li C. Effects of fatty acids with various chain lengths and degrees of unsaturation on the structure, physicochemical properties and digestibility of maize starch-fatty acid complexes. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Effect of cooling rate on long-term recrystallized crystal of rice starch in the presence of flavor compounds. Food Chem 2020; 345:128763. [PMID: 33302102 DOI: 10.1016/j.foodchem.2020.128763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/05/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
This study evaluated the effect of cooling rate on starch recrystallization in the presence of 2,3-butanedione and 2-acetyl-1-pyrroline, which could form B-type and V-type complexes with starch, respectively. Rapid cooling resulted in poor perfection and high heterogeneity of both B-type and V-type recrystallized crystal. For B-type crystal, rapid cooling changed nucleation mode from instantaneous (Avrami index n < 1) to continuous mechanism (1 ≤ n ≤ 2), and decreased recrystallization rate from 0.0502 to 0.0160 d-n, indicating the increased retention of starch on 2,3-butanedione. V-type crystal was formed at initial stages of recrystallization, and inhibited the growth of B-type crystal. The loose crystalline obtained by rapid cooling is conducive to the retention of flavor compounds for B-type complexes (especially ≤14 days) and V-type complexes (especially ≤1 day). These results could provide guidance for maintaining fragrance of instant rice during long-term storage.
Collapse
|
37
|
Zheng Y, Guo Z, Zheng B, Zeng S, Zeng H. Insight into the formation mechanism of lotus seed starch-lecithin complexes by dynamic high-pressure homogenization. Food Chem 2020; 315:126245. [DOI: 10.1016/j.foodchem.2020.126245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022]
|
38
|
Insight into the characterization and digestion of lotus seed starch-tea polyphenol complexes prepared under high hydrostatic pressure. Food Chem 2019; 297:124992. [DOI: 10.1016/j.foodchem.2019.124992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
|
39
|
Sun S, Hong Y, Gu Z, Cheng L, Li Z, Li C. Effects of acid hydrolysis on the structure, physicochemical properties and digestibility of starch-myristic acid complexes. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Sun S, Hong Y, Gu Z, Cheng L, Li Z, Li C. An investigation into the structure and digestibility of starch-oleic acid complexes prepared under various complexing temperatures. Int J Biol Macromol 2019; 138:966-974. [DOI: 10.1016/j.ijbiomac.2019.07.166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/14/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
|
41
|
Guo Z, Jia X, Lin X, Chen B, Sun S, Zheng B. Insight into the formation, structure and digestibility of lotus seed amylose-fatty acid complexes prepared by high hydrostatic pressure. Food Chem Toxicol 2019; 128:81-88. [DOI: 10.1016/j.fct.2019.03.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 10/27/2022]
|
42
|
Zhao B, Sun S, Lin H, Chen L, Qin S, Wu W, Zheng B, Guo Z. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction. ULTRASONICS SONOCHEMISTRY 2019; 52:50-61. [PMID: 30528211 DOI: 10.1016/j.ultsonch.2018.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/11/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Complex starch is gaining research attention due to its unique physicochemical and functional properties. Lotus seed starch (LS) suspensions (6.7%, w/v) with added green tea polyphenols (GTPs) (10%, w/w) were subjected to ultrasound (200-1000 W)-microwave (150-225 W) (UM) treatment for 15 min. The effects of UM treatment on the physicochemical properties of the LS-GTP system were investigated and exceeded that of microwave or ultrasound alone. The properties (morphology, X-ray diffraction pattern and so on) were affected by GTPs to various extents, depending on ultrasonic power. These influences may be explained by the non-covalent interactions between GTPs and LS. V-type LS-GTP inclusion complex and non-inclusive complex formation were observed. Their morphology and the distribution of GTPs molecules within them were estimated using scanning electron microscopy and confocal laser scanning microscopy. Furthermore, the digestion of LS-GTP complex was investigated by a dynamic in vitro rat stomach-duodenum (DIVRSD) model, lower digestion efficiency of LS has been achieved and the residues showed gradual improvement in morphology. These all experimental results do provide new insight into the complex starch production.
Collapse
Affiliation(s)
- Beibei Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siwei Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liding Chen
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Weiguo Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
43
|
Guo Z, Zhao B, Chen L, Zheng B. Physicochemical Properties and Digestion of Lotus Seed Starch under High-Pressure Homogenization. Nutrients 2019; 11:nu11020371. [PMID: 30754686 PMCID: PMC6412774 DOI: 10.3390/nu11020371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 01/23/2023] Open
Abstract
Lotus seed starch (LS), dispersed (3%, w/v) in deionized water was homogenized (0–180 MPa) with high-pressure homogenization (HPH) for 15 min. The effects of HPH treatment on the physicochemical properties of the starch system were investigated. The properties were affected by HPH to various extents, depending on the pressure. These influences can be explained by the destruction of the crystalline and amorphous regions of pressurized LS. The short-range order of LS was reduced by HPH and starch structure C-type was transformed into B-type, exhibiting lower transition temperatures and enthalpy. The LS absorbed a great deal of water under HPH and rapidly swelled, resulting in increased swelling power, solubility and size distribution. It then showed “broken porcelain-like” morphology with reduced pasting properties. Digestion of pressurized LS complex investigated by a dynamic in vitro rat stomach–duodenum model showed higher digestion efficiency and the residues exhibited gradual damage in morphology.
Collapse
Affiliation(s)
- Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Beibei Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Liding Chen
- College of life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
44
|
Almeida EDP, Dipieri LV, Rossetti FC, Marchetti JM, Bentley MVLB, Nunes RDS, Sarmento VHV, Valerio MEG, Rodrigues Júnior JJ, Montalvão MM, Correa CB, Lira AAM. Skin permeation, biocompatibility and antitumor effect of chloroaluminum phthalocyanine associated to oleic acid in lipid nanoparticles. Photodiagnosis Photodyn Ther 2018; 24:262-273. [PMID: 30290231 DOI: 10.1016/j.pdpdt.2018.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/29/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022]
Abstract
The objective of this study was to develop and characterize lipid nanoparticles (LNs) containing chloroaluminum phthalocyanine (ClAlPc) to reduce the aggregation of the drug and improve its skin penetration and its antitumor effect. LNs were prepared and characterized by using stearic acid (SA) as solid lipid and oleic acid (OA) as liquid lipid in different proportions. in vitro and in vivo skin penetration was evaluated using modified Franz diffusion cells and fluorescence microscopy, respectively. in vitro biocompatibility and Photodynamic Therapy (PDT) were performed using L929-fibroblasts cell line and A549 cancer cell line and melanoma BF16-F10, respectively. OA promoted the increase in the encapsulation efficiency and drug loading, reaching values of 95.8% and 4%, respectively. The formulation with 40% OA (NLC 40) showed a significantly higher (p < 0.01) amount of drug retained in the skin compared to other formulations. All formulations developed were considered biocompatible. PDT evidenced the antitumor efficacy of NLC 40 with reduced cell viability for approximately 10% of cancer cells, demonstrating that the presence of OA in the NLC seems to potentialize this antitumor effect. PDT in BF16-F10 melanoma using NLC 40 resulted in a reduction in mean cell viability of approximately 99%. According to the results obtained, the systems developed may be promising for the incorporation of ClAlPc in the treatment of skin cancer by photodynamic therapy.
Collapse
Affiliation(s)
- Ellen Denise P Almeida
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil
| | - Lívia V Dipieri
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Fábia C Rossetti
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Juliana M Marchetti
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Maria Vitória L B Bentley
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Rogéria de S Nunes
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil
| | - Víctor Hugo V Sarmento
- Departament of Chemistry, Federal University of Sergipe, Itabaiana, Sergipe, 49500-000, Brazil
| | - Mário Ernesto G Valerio
- Departament of Physics, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil
| | | | - Monalisa M Montalvão
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Cristiane B Correa
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Ana Amélia M Lira
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil.
| |
Collapse
|