1
|
Ma Q, Liu Z, Wang D, Liu C, Liu X, Cai E, Su F. Verification of the mechanism of action of isoliquiritigenin derivatives on LPS-induced FLS cells in rheumatoid arthritis based on network pharmacology. Bioorg Med Chem 2025; 124:118199. [PMID: 40253991 DOI: 10.1016/j.bmc.2025.118199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Isoliquiritigenin (ISL), which has a chalcone parent structure, has a variety of pharmacological effects. In this study, ISL was structurally modified to create 16 bromate derivatives of ISL. The structures of these derivatives were determined using 1H NMR and 13C NMR. An in vitro rheumatoid arthritis inflammation model was established using LPS-induced fibroblast-like synoviocytes (FLS). The survival, NO content and viability of derivatives bound to LPS were determined by Elisa assay of the expression of the relevant inflammatory factors TNF-α, IL-1 and IL-1β. Network pharmacology predicted the relevant targets and pathways of action of ISL in rheumatoid arthritis, which were experimentally validated by RT-PCR method and Western Blot method. The results showed that ISL-6 exerted anti-rheumatoid arthritis effects by reducing the expression of inflammatory factors TNF-α, IL-1 and IL-1β, activating the PI3K/AKT pathway, promoting AKT phosphorylation, and then affecting the expression of the downstream signaling molecule FOXO1, which is associated with inflammation.
Collapse
Affiliation(s)
- Qing Ma
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, PR China.
| | - Zhiwei Liu
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, PR China.
| | - Dan Wang
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, PR China.
| | - Chi Liu
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, PR China.
| | - Xinyue Liu
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, PR China.
| | - Enbo Cai
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, PR China.
| | - Fengyan Su
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
2
|
Zeng H, Wang X, Tang J, Liu P, Zhang S, Chu H, Chen B, Ma M. Proteomic and metabolomic analyses reveal the antibacterial mechanism of Cannabidiol against gram-positive bacteria. J Proteomics 2025; 315:105411. [PMID: 39978755 DOI: 10.1016/j.jprot.2025.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/12/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Cannabidiol (CBD), the primary non-psychoactive cannabinoid isolated from cannabis, exhibits promising antibacterial effects. However, the antibacterial mechanism of CBD remains poorly understood. In this study, the mechanism was investigated using bacterial inhibition assays, label-free proteomics, and untargeted metabolomics, with Bacillus licheniformis (B. licheniformis), Staphylococcus aureus (S. aureus), and Enterococcus faecium (E. faecium) selected as representative Gram-positive bacteria. The results revealed that CBD caused significant damage to bacterial cell walls and membranes, leading to notable changes in proteomic and metabolic profiles. Specifically, 437, 120, and 195 proteins, as well as 52, 153, and 94 metabolites, were differentially expressed in B. licheniformis, S. aureus, and E. faecium, respectively. The antimicrobial mechanism of CBD shares similarities with previously known antibacterial agents, such as penicillin and cephalosporins, particularly in affecting the bacterial cell wall, but differs in its detailed mode of action. CBD disrupted the biosynthesis of primary and secondary metabolites and altered bacterial metabolism, contributing to its antibacterial activity. This study provides valuable insights into the antibacterial mechanism of CBD, supporting its potential development as an antibiotic alternative and its application in food safety. SIGNIFICANCE: It is crucial to find alternatives to antibiotics to mitigate the impact of pathogenic bacteria on food safety and reduce the use of antibiotics. CBD is the primary non-psychoactive cannabinoid derived from cannabis, and it has shown promising antibacterial effects. However, the antimicrobial mechanisms of CBD have not been well elucidated. This study provides a deep understanding of the antibacterial mechanism from the cellular to molecular level, which will contribute to the development of CBD as a novel antibacterial agent.
Collapse
Affiliation(s)
- Huimei Zeng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xingyao Wang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jiyu Tang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Peina Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Shen Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha 410000, China
| | - Hongwei Chu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Bo Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ming Ma
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
3
|
Belcher S, Flores-Iga G, Natarajan P, Crummett G, Talavera-Caro A, Gracia-Rodriguez C, Lopez-Ortiz C, Das A, Adjeroh DA, Nimmakayala P, Balagurusamy N, Reddy UK. Dietary Curcumin Intake and Its Effects on the Transcriptome and Metabolome of Drosophila melanogaster. Int J Mol Sci 2024; 25:6559. [PMID: 38928266 PMCID: PMC11203963 DOI: 10.3390/ijms25126559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin, a polyphenol derived from Curcuma longa, used as a dietary spice, has garnered attention for its therapeutic potential, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its known benefits, the precise mechanisms underlying curcumin's effects on consumers remain unclear. To address this gap, we employed the genetic model Drosophila melanogaster and leveraged two omics tools-transcriptomics and metabolomics. Our investigation revealed alterations in 1043 genes and 73 metabolites upon supplementing curcumin into the diet. Notably, we observed genetic modulation in pathways related to antioxidants, carbohydrates, and lipids, as well as genes associated with gustatory perception and reproductive processes. Metabolites implicated in carbohydrate metabolism, amino acid biosynthesis, and biomarkers linked to the prevention of neurodegenerative diseases such as schizophrenia, Alzheimer's, and aging were also identified. The study highlighted a strong correlation between the curcumin diet, antioxidant mechanisms, and amino acid metabolism. Conversely, a lower correlation was observed between carbohydrate metabolism and cholesterol biosynthesis. This research highlights the impact of curcumin on the diet, influencing perception, fertility, and molecular wellness. Furthermore, it directs future studies toward a more focused exploration of the specific effects of curcumin consumption.
Collapse
Affiliation(s)
- Samantha Belcher
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Gerardo Flores-Iga
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Garrett Crummett
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Alicia Talavera-Caro
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Amartya Das
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Donald A. Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| |
Collapse
|
4
|
Swebocki T, Barras A, Abderrahmani A, Haddadi K, Boukherroub R. Deep Eutectic Solvents Comprising Organic Acids and Their Application in (Bio)Medicine. Int J Mol Sci 2023; 24:ijms24108492. [PMID: 37239842 DOI: 10.3390/ijms24108492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Over the last years, we observed a significant increase in the number of published studies that focus on the synthesis and characterization of deep eutectic solvents (DESs). These materials are of particular interest mainly due to their physical and chemical stability, low vapor pressure, ease of synthesis, and the possibility of tailoring their properties through dilution or change of the ratio of parent substances (PS). DESs, considered as one of the greenest families of solvents, are used in many fields, such as organic synthesis, (bio)catalysis, electrochemistry, and (bio)medicine. DESs applications have already been reported in various review articles. However, these reports mainly described these components' basics and general properties without focusing on the particular, PS-wise, group of DESs. Many DESs investigated for potential (bio)medical applications comprise organic acids. However, due to the different aims of the reported studies, many of these substances have not yet been investigated thoroughly, which makes it challenging for the field to move forward. Herein, we propose distinguishing DESs comprising organic acids (OA-DESs) as a specific group derived from natural deep eutectic solvents (NADESs). This review aims to highlight and compare the applications of OA-DESs as antimicrobial agents and drug delivery enhancers-two essential fields in (bio)medical studies where DESs have already been implemented and proven their potential. From the survey of the literature data, it is evident that OA-DESs represent an excellent type of DESs for specific biomedical applications, owing to their negligible cytotoxicity, fulfilling the rules of green chemistry and being generally effective as drug delivery enhancers and antimicrobial agents. The main focus is on the most intriguing examples and (where possible) application-based comparison of particular groups of OA-DESs. This should highlight the importance of OA-DESs and give valuable clues on the direction the field can take.
Collapse
Affiliation(s)
- Tomasz Swebocki
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| | - Kamel Haddadi
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| |
Collapse
|
5
|
Tan HY, Liang FM, Zhang WJ, Zhang Y, Cui JH, Dai YY, Qiu XM, Wang WH, Zhou Y, Chen DP, Li CP. Novel 2-Amino-1,4-Naphthoquinone Derivatives Induce A549 Cell Death through Autophagy. Molecules 2023; 28:molecules28083289. [PMID: 37110525 PMCID: PMC10143525 DOI: 10.3390/molecules28083289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
A series of 1,4-naphthoquinone derivatives containing were synthesized as anti-cancer agents and the crystal structure of compound 5a was confirmed by X-ray diffraction. In addition, the inhibitory activities against four cancer cell lines (HepG2, A549, K562, and PC-3) were tested, respectively, and compound 5i showed significant cytotoxicity on the A549 cell line with the IC50 of 6.15 μM. Surprisingly, in the following preliminary biological experiments, we found that compound 5i induced autophagy by promoting the recycling of EGFR and signal transduction in the A549 cell, resulting in the activation of the EGFR signal pathway. The potential binding pattern between compound 5i and EGFR tyrosine kinase (PDB ID: 1M17) was also identified by molecular docking. Our research paves the way for further studies and the development of novel and powerful anti-cancer drugs.
Collapse
Affiliation(s)
- Hua-Yuan Tan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Feng-Ming Liang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Wen-Jing Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yi Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Jun-Hao Cui
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yu-Yu Dai
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Xue-Mei Qiu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Wen-Hang Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yue Zhou
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Dan-Ping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Cheng-Peng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Application of the Luminescent luxCDABE Gene for the Rapid Screening of Antibacterial Substances Targeting Pseudomonas aeruginosa. Foods 2023; 12:foods12020392. [PMID: 36673482 PMCID: PMC9857705 DOI: 10.3390/foods12020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a typical Gram-negative bacterium that can cause the spoilage of catered food products. Using a luminescent reporter gene (luxCDABE), this study sought to construct a cell-based biosensor (PAO1-CE) to rapidly screen antibacterial substances against P. aeruginosa. A total of six antibiotics belonging to five categories were used as the model test substances. The results of the bioluminescence detection method were verified using traditional antibacterial research assessments. The correlation coefficient of the regression equation fitting the data generated using this method was greater than 0.98, supporting the credibility of this approach. Additionally, the EC50 of each of the antibiotics assessed in this study was lower than the 1/2 MIC determined by conventional means. All six of the antibiotics caused varying degrees of damage to the cell membrane and cell wall of P. aeruginosa. Importantly, this novel method helped shorten the time necessary for active-compound detection and could be used for high-throughput detection, which would also help improve the detection efficiency. The application of this method towards the discovery of novel antibacterial compounds targeting P. aeruginosa holds substantial promise for greatly improving the efficiency of compound discovery.
Collapse
|
7
|
Altay A, Yeniceri E, Taslimi P, Taskin-Tok T, Yilmaz MA, Koksal E. A Biochemical Approach for Hedysarum candidissimum from Turkey: Screening Phytochemicals, Evaluation of Biological Activites, and Molecular Docking Study. Chem Biodivers 2022; 19:e202200348. [PMID: 36045318 DOI: 10.1002/cbdv.202200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/16/2022] [Indexed: 11/05/2022]
Abstract
This study was designed to screen the phytochemical composition and investigate the biological activities of Hedysarum candidissimum extracts and also support the results with molecular docking studies. LC/MS/MS analysis revealed the presence of 22 phytochemical constituents (mainly phenolic acids, flavonoids, and flavonoid glycosides) in the plant structure. The methanol extract exhibited the strongest antioxidant activity among all the extracts with its strong DPPH radical scavenging and iron reducing capacity, as well as high phenolic and flavonoid contents. Additionally, it was found to be the most promising acetylcholinesterase (AChE: IC50 : 93.26 μg/mL) and α-glycosidase (AG: IC50 : 28.57 μg/mL) inhibitory activities, supported by the major phenolics of the species through in silico studies. Ethyl acetate extract had the strongest cytotoxic effect on HT-29 (IC50 : 63.03 μg/mL) and MDA-MB-453 (IC50 : 95.36 μg/mL) cancer cell lines. Both extracts exhibited considerable apoptotic and anti-migrative effects on HT-29 cells. The investigations provide phyto-analytical and bio-pharmacological results which can be extended by in vivo studies in the future.
Collapse
Affiliation(s)
- Ahmet Altay
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Esma Yeniceri
- Department of Chemistry, Institute of Science and Technology, Erzincan Binali Yıldırım University, 24030, Erzincan, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartın, Turkey
| | - Tugba Taskin-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310, Gaziantep, Turkey
| | | | - Ekrem Koksal
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| |
Collapse
|
8
|
Altay A, Yeniçeri EKK, Taslimi P, Taskin‐Tok T, Yılmaz MA, Köksal E. Phytochemical Analysis and Biological Evaluation of
Hypericum linarioides
Bosse: in Vitro and in Silico Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ahmet Altay
- Chemistry Faculty of Arts and Sciences Erzincan Binali Yildirim University 24100 Erzincan Turkey
| | | | - Parham Taslimi
- Biotechnology Faculty of Science Bartin University 74100 Bartın Turkey
| | - Tugba Taskin‐Tok
- Chemistry Faculty of Arts and Sciences Gaziantep University, 27310 Gaziantep Turkey
| | | | - Ekrem Köksal
- Chemistry Faculty of Arts and Sciences Erzincan Binali Yildirim University Erzincan Turkey
| |
Collapse
|
9
|
Wang X, Duan W, Lin G, Li B, Zhang W, Lei F. Synthesis, Antifungal Activity, Three-Dimensional Quantitative Structure-Activity Relationship and Molecular Docking Study of 4-Acyl-3-amino-1,2,4-triazole-thioether Derivatives Containing Natural Pinene Structure. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Microbial synthesis of 4-hydroxybenzoic acid from renewable feedstocks. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 3:100059. [PMID: 35415641 PMCID: PMC8991815 DOI: 10.1016/j.fochms.2021.100059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/15/2021] [Accepted: 11/27/2021] [Indexed: 01/10/2023]
Abstract
4-Hydroxybenzoic acid (4HBA) and its esterified forms can be used as preservatives in the pharmaceutical and food industries. Here, we reported the establishment of a coenzyme-A (CoA) free multi-enzyme cascade in Escherichia coli to utilize biobased L-tyrosine for efficient synthesis of 4HBA. The multi-enzyme cascade contains L-amino acid deaminase from Proteus mirabilis, hydroxymandelate synthase from Amycolatopsis orientalis, (S)-mandelate dehydrogenase and benzoylformate decarboxylase from Pseudomonas putida, and aldehyde dehydrogenase from Saccharomyces cerevisiae. The whole-cell biocatalysis afforded the synthesis of 128 ± 1 mM of 4HBA (17.7 ± 0.1 g/L) from 150 mM L-tyrosine with > 85% conversion within 96 h. In addition, the artificial enzymatic cascade also allowed the synthesis of benzoic acid from 100 mM L-phenylalanine with a conversion ∼ 90%. In summary, our research offers a sustainable alternative for synthesizing 4HBA and benzoic acid from renewable feedstocks.
Collapse
|
11
|
Sun R, Vermeulen A, Wieme AD, Vandamme P, Devlieghere F. Identification and characterization of acid-tolerant spore-forming spoilage bacteria from acidified and low-acid pasteurized sauces. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Diale MO, Kayitesi E, Serepa-Dlamini MH. Genome In Silico and In Vitro Analysis of the Probiotic Properties of a Bacterial Endophyte, Bacillus Paranthracis Strain MHSD3. Front Genet 2021; 12:672149. [PMID: 34858466 PMCID: PMC8631869 DOI: 10.3389/fgene.2021.672149] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/11/2021] [Indexed: 01/25/2023] Open
Abstract
Spore-forming Bacillus species are gaining interest in human health recently, due to their ability to withstand the harsh environment of the gastrointestinal tract. The present study explores probiotic features of Bacillus paranthracis strain MHSD3 through genomic analysis and in vitro probiotic assays. The draft genome of strain MHSD3 contained genes associated with tolerance to gastrointestinal stress and adhesion. Cluster genes responsible for the synthesis of antimicrobial non-ribosomal peptide synthetases, bacteriocins, and linear azole-containing peptides were identified. Additionally, strain MHSD3 was able to survive in an acidic environment, had the tolerance to bile salt, and exhibited the capability to tolerate gastric juices. Moreover, the isolate was found to possess strong cell surface traits such as high auto-aggregation and hydrophobicity indices of 79 and 54%, respectively. Gas chromatography-mass spectrometry analysis showed that the strain produced secondary metabolites such as amino acids, phenolic compounds, and organic acid, known to exert health-promoting properties, including the improvement of gastrointestinal tract health.
Collapse
Affiliation(s)
- Mamonokane Olga Diale
- Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg, South Africa
| | - Eugenie Kayitesi
- Department of Consumer and Food Science, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
13
|
Yuan K, Ye X, Liu W, Liu K, Wu D, Zhao W, Qian Z, Li S, Huang C, Yu Z, Chen Z. Preparation, characterization and antibacterial activity of a novel Zn(II) coordination polymer derived from carboxylic acid. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Synowiec A, Żyła K, Gniewosz M, Kieliszek M. An effect of positional isomerism of benzoic acid derivatives on antibacterial activity against Escherichia coli. Open Life Sci 2021; 16:594-601. [PMID: 34183991 PMCID: PMC8218552 DOI: 10.1515/biol-2021-0060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/15/2022] Open
Abstract
This study demonstrated the effect of positional isomerism of benzoic acid derivatives against E. coli ATCC 700728 with the serotype O157. The addition of hydroxyl and methoxyl substituents weakened the effect of acids against E. coli with respect to benzoic acid (except 2-hydroxybenzoic). The connection of the hydroxyl group at the second carbon atom in the benzoic ring reduced the time needed to kill bacterial cells. Phenolic acids with methoxyl substitutes limited the biofilm formation by E. coli to a greater extent than hydroxyl derivatives. The most significant influence on the antibacterial activity of phenolic acids has the type of substituent attached to the benzoic ring, their number, and finally the number of carbon atoms at which the functional group is located.
Collapse
Affiliation(s)
- Alicja Synowiec
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Kinga Żyła
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Małgorzata Gniewosz
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| |
Collapse
|
15
|
Qiao Y, Duan L. Curcumin-loaded polyvinyl butyral film with antibacterial activity. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AbstractAntibacterial materials have found widespread interest in different fields nowadays. In this study, curcumin (Cur) was incorporated into the polyvinyl butyral (PVB) matrix by dissolving in ethanol for improving the functional properties of a pure PVB film. We found that Cur was uniformly dispersed in the PVB matrix, which showed good compatibility. Moreover, the incorporation of Cur could also improve thermal stability, hydrophilicity, and mechanical property. The UV-vis spectra of the PVB–Cur film demonstrated that the film could block ultraviolet radiation. Subsequently, the antibacterial activity of the PVB–Cur film was measured by the colony-counting method against S. aureus and E. coli. The results showed that the PVB–Cur film exhibited good antibacterial activity. Therefore, the PVB–Cur film was considered as a promising material for food and medical packaging applications.
Collapse
Affiliation(s)
- Yanchao Qiao
- School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic China
| | - Lijie Duan
- School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic China
| |
Collapse
|
16
|
Lu H, Zhou X, Wang L, Jin L. Synthesis and Antibacterial Evaluation of N-phenylacetamide Derivatives Containing 4-arylthiazole Moieties. Molecules 2020; 25:molecules25081772. [PMID: 32290634 PMCID: PMC7221908 DOI: 10.3390/molecules25081772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
A series of new N-phenylacetamide derivatives containing 4-arylthiazole moieties was designed and synthesized by introducing the thiazole moiety into the amide scaffold. The structures of the target compounds were confirmed by 1H-NMR, 13C-NMR and HRMS. Their in vitro antibacterial activities were evaluated against three kinds of bacteria-Xanthomonas oryzae pv. Oryzae (Xoo), Xanthomonas axonopodis pv. Citri (Xac) and X.oryzae pv. oryzicola (Xoc)-showing promising results. The minimum 50% effective concentration (EC50) value of N-(4-((4-(4-fluoro-phenyl)thiazol-2-yl)amino)phenyl)acetamide (A1) is 156.7 µM, which is superior to bismerthiazol (230.5 µM) and thiodiazole copper (545.2 µM). A scanning electron microscopy (SEM) investigation has confirmed that compound A1 could cause cell membrane rupture of Xoo. In addition, the nematicidal activity of the compounds against Meloidogyne incognita (M. incognita) was also tested, and compound A23 displayed excellent nematicidal activity, with mortality of 100% and 53.2% at 500 μg/mL and 100 μg/mL after 24 h of treatment, respectively. The preliminary structure-activity relationship (SAR) studies of these compounds are also briefly described. These results demonstrated that phenylacetamide derivatives may be considered as potential leads in the design of antibacterial agents.
Collapse
Affiliation(s)
| | - Xia Zhou
- Correspondence: (X.Z.); (L.J.); Tel.: +86-851-3620-521 (X.Z. & L.J.); Fax: +86-851-3622-211 (X.Z. & L.J.)
| | | | - Linhong Jin
- Correspondence: (X.Z.); (L.J.); Tel.: +86-851-3620-521 (X.Z. & L.J.); Fax: +86-851-3622-211 (X.Z. & L.J.)
| |
Collapse
|
17
|
Zhang Z, Gu Y, Wang Z, Wang H, Zhao Y, Chu X, Zhang C, Yan M. Synthesis and biological evaluation of novel indoleamide derivatives as antioxidative and antitumor agents. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhen Zhang
- School of PharmacyJining Medical University Shandong China
| | - Ying‐Lin Gu
- School of PharmacyJining Medical University Shandong China
| | | | - Huan‐Nan Wang
- School of PharmacyJining Medical University Shandong China
| | - Yan Zhao
- Oncology Department, Rizhao Central Hospital Shandong China
| | - Xue‐Mei Chu
- School of PharmacyJining Medical University Shandong China
| | - Chun‐Yan Zhang
- School of PharmacyJining Medical University Shandong China
| | - Mao‐Cai Yan
- School of PharmacyJining Medical University Shandong China
| |
Collapse
|
18
|
|
19
|
Chen Y, Zhang M, Li Z, Luo D, Li L, Yu T, Long Y. Synthesis and Antitumor Activities of 1, 3, 4-Thiadiazole Triazene Amide Derivatives. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201905035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|