1
|
Liossi LL, Heckler C, Sant'Ana AS. High-pressure carbon dioxide (HPCD): Impact on the quality of fruit juices and inactivation of spores and enzymes. Food Res Int 2024; 198:115316. [PMID: 39643359 DOI: 10.1016/j.foodres.2024.115316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 12/09/2024]
Abstract
Ensuring microbiological safety in fruit juices while maintaining their nutritional and sensory qualities remains a significant challenge in food processing. Traditional thermal methods, although effective against vegetative pathogens, can degrade important nutrients and are less effective at inactivating bacterial spores. High-pressure carbon dioxide (HPCD) technology has emerged as a promising non-thermal alternative, using CO2 under high pressure to inactivate spores and enzymes. More importantly, HPCD has shown great potential in preserving the quality of fruit juices. This review assesses recent studies on the use of HPCD in fruit juices, focusing on its effectiveness in reducing spore counts and inactivating enzymes like polyphenol oxidase (PPO) and pectin methylesterase (PME). The impact of HPCD on the physicochemical, nutritional, and sensory attributes of fruit juices, such as vitamin retention, color, and cloudiness, is also examined. Despite HPCD's advantages, challenges remain in optimizing process parameters for consistent microbial inactivation, with variations depending on juice composition and microbial strain. Additionally, while initial costs are high, the long-term economic viability of HPCD is favorable due to lower energy consumption and CO2 recyclability. Future research should focus on optimizing equipment design and scaling HPCD technology for industrial applications.
Collapse
Affiliation(s)
- Luciana L Liossi
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Caroline Heckler
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Guan P, Ding C, Lu J, Bai W, Liu J, Lian J, Song Z, Chen H, Jia Y. Influence of electrohydrodynamics on the drying characteristics, microstructure and volatile composition of apricot abalone mushroom ( Pleurotus eryngii). Curr Res Food Sci 2024; 9:100856. [PMID: 39319108 PMCID: PMC11421372 DOI: 10.1016/j.crfs.2024.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024] Open
Abstract
The study explored the use of current fluid dynamics drying technology for apricot abalone mushroom, examining how different output voltages (15, 25, and 35 kV) affected drying characteristics, microstructure, and volatile components. Comparisons were made with samples dried using hot air drying (HAD) and natural air drying (AD). Results revealed that HAD had the fastest drying rate at 0.29664(g·h-1). However, apricot abalone mushroom treated with electrohydrodynamic drying (EHD) maintained a color closer to fresh samples, exhibited a 21% increase in the ordered structure of protein secondary structure, a 12.5-fold increase in bound water content, and the most stable cell structure compared to HAD and AD treatments. A total of 83 volatile organic compounds were identified in the apricot abalone mushroom, with alcohols and aldehydes being the most prominent in terms of threshold and relative content, peaking in the 35 kV treatment group. These findings provide both experimental and theoretical insights into applying current fluid dynamics for drying apricot abalone mushroom.
Collapse
Affiliation(s)
- Peng Guan
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Changjiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
- College of Electric Power, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Jingli Lu
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Wurile Bai
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Jiaqi Liu
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Junjun Lian
- College of Electric Power, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Zhiqing Song
- College of Electric Power, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Hao Chen
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Yun Jia
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
3
|
Veiga GCD, Mafaldo ÍM, Barão CE, Baú TR, Magnani M, Pimentel TC. Supercritical carbon dioxide technology in food processing: Insightful comprehension of the mechanisms of microbial inactivation and impacts on quality and safety aspects. Compr Rev Food Sci Food Saf 2024; 23:e13345. [PMID: 38638070 DOI: 10.1111/1541-4337.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Supercritical carbon dioxide (SC-CO2) has emerged as a nonthermal technology to guarantee food safety. This review addresses the potential of SC-CO2 technology in food preservation, discussing the microbial inactivation mechanisms and the impact on food products' quality parameters and bioactive compounds. Furthermore, the main advantages and gaps are denoted. SC-CO2 technology application causes adequate microbial reductions (>5 log cfu/mL) of spoilage and pathogenic microorganisms, enzyme inactivation, and improvements in the storage stability in fruit and vegetable products (mainly fruit juices), meat products, and dairy derivatives. SC-CO2-treated products maintain the physicochemical, technological, and sensory properties, bioactive compound concentrations, and biological activity (antioxidant and angiotensin-converting enzyme-inhibitory activities) similar to the untreated products. The optimization of processing parameters (temperature, pressure, CO2 volume, and processing times) is mandatory for achieving the desired results. Further studies should consider the expansion to different food matrices, shelf-life evaluation, bioaccessibility of bioactive compounds, and in vitro and in vivo studies to prove the benefits of using SC-CO2 technology. Moreover, the impact on sensory characteristics and, mainly, the consumer perception of SC-CO2-treated foods need to be elucidated. We highlight the opportunity for studies in postbiotic production. In conclusion, SC-CO2 technology may be used for microbial inactivation to ensure food safety without losing the quality parameters.
Collapse
Affiliation(s)
- Géssica Cristina da Veiga
- Department of Food Science and Technology, Post-Graduation Program in Food Science, State University of Londrina, Londrina, Brazil
| | - Ísis Meireles Mafaldo
- Department of Food Engineering, Laboratory of Microbial Process in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Tahis Regina Baú
- Food Technology Coordination, Federal Institute of Santa Catarina, São Miguel do Oeste, Santa Catarina, Brazil
| | - Marciane Magnani
- Department of Food Engineering, Laboratory of Microbial Process in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatiana Colombo Pimentel
- Department of Food Science and Technology, Post-Graduation Program in Food Science, State University of Londrina, Londrina, Brazil
- Federal Institute of Paraná (IFPR), Campus Paranavaí, Paranavaí, Paraná, Brazil
| |
Collapse
|
4
|
Liu Y, Deng J, Zhao T, Yang X, Zhang J, Yang H. Bioavailability and mechanisms of dietary polyphenols affected by non-thermal processing technology in fruits and vegetables. Curr Res Food Sci 2024; 8:100715. [PMID: 38511155 PMCID: PMC10951518 DOI: 10.1016/j.crfs.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Plant polyphenols play an essential role in human health. The bioactivity of polyphenols depends not only on their content but also on their bioavailability in food. The processing techniques, especially non-thermal processing, improve the retention and bioavailability of polyphenolic substances. However, there are limited studies summarizing the relationship between non-thermal processing, the bioavailability of polyphenols, and potential mechanisms. This review aims to summarize the effects of non-thermal processing techniques on the content and bioavailability of polyphenols in fruits and vegetables. Importantly, the disruption of cell walls and membranes, the inhibition of enzyme activities, free radical reactions, plant stress responses, and interactions of polyphenols with the food matrix caused by non-thermal processing are described. This study aims to enhance understanding of the significance of non-thermal processing technology in preserving the nutritional properties of dietary polyphenols in plant-based foods. It also offers theoretical support for the contribution of non-thermal processing technology in improving food nutrition.
Collapse
Affiliation(s)
- Yichen Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaojie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Juntao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
5
|
Zhang J, Cheng J, Li Z, Weng M, Zhang X, Tang X, Pan Y. Effects of ultra-high pressure, thermal pasteurization, and ultra-high temperature sterilization on color and nutritional components of freshly-squeezed lettuce juice. Food Chem 2024; 435:137524. [PMID: 37832336 DOI: 10.1016/j.foodchem.2023.137524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023]
Abstract
The aim of this study was to evaluate the effects of ultra-high pressure (UHP, 600 MPa/2 min), thermal pasteurization (TP, 95 °C/1 min) and ultra-high temperature (UHT, 115 °C/5 s) sterilization on the color, sensory evaluation, microorganisms, physicochemical characteristics and nutritional components of freshly-squeezed lettuce juice (FLJ). Results showed that three sterilization methods demonstrated desirable inactivation effects on total aerobic bacteria, yeast and mold, and there were no significant changes in the main nutritional components, including ash, protein, carbohydrate and total dietary fiber. However, UHT and TP significantly affected the color of FLJ from bright green to light brown and made chlorophyll, β-carotene and vitamins (VE, VC, VK1, VB6, VB12, and folic acid) contents markedly decreased. By contrast, UHP maintained the original color, fresh-like sensory qualities, vitamins, and carotene of FLJ to the greatest extent. Our results provide a promising application of UHP in the large-scale processing of FLJ.
Collapse
Affiliation(s)
- Jiadi Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinxiao Cheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhixuan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengting Weng
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Xudong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuanming Tang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanfang Pan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Pimenta FC, Moraes TCK, Dacanal GC, Oliveira ALD, Petrus RR. The potential use of supercritical carbon dioxide in sugarcane juice processing. NPJ Sci Food 2024; 8:6. [PMID: 38218984 PMCID: PMC10787823 DOI: 10.1038/s41538-023-00242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/08/2023] [Indexed: 01/15/2024] Open
Abstract
Sugarcane juice is a nutritious and energetic drink. For its processing, the use of supercritical carbon dioxide (SC-CO2) technology as an intervention potentially capable of rendering a high quality product can be considered. This study evaluated the combined effect of SC-CO2 and mild temperatures, primarily aiming for the reduction of endogenous microorganisms and enzymes in sugarcane juice (pH~5.5). Pressures (P) ranging from 74 to 351 bar, temperatures (T) between 33 and 67 °C, and holding times (t) between 20 and 70 min were tested in a central composite rotational design. Seventeen trials were performed, comprising three replicates at the central points. Counts of aerobic mesophiles, molds and yeasts, lactic acid bacteria and coliforms at 45 °C, determination of polyphenol oxidase (PPO) and peroxidase (POD) activities, and measurement of color parameters in freshly extracted and processed juice's samples were carried out. The pH of fresh and processed juice varied between 4.6 and 6.0, and between 4.6 and 6.3, respectively. The number of decimal reductions achieved in mesophiles, molds and yeasts, lactic acid bacteria and coliforms varied between 0.1 and 3.9, 2.1 and 4.1, 0.0 and 2.1, and 0.3 to 2.5, respectively. The percentages of PPO reduction ranged from 3.51% to 64.18%. Regarding the POD, reductions between 0.27% and 41.42% were obtained. Color variations between fresh and processed samples varied between 2.0 and 12.3. As for mesophiles, molds and yeasts reduction, and soluble solids variation, none of the variables or their interactions were significant. In terms of polyphenol oxidase (PPO) reduction, only t was significant; however, T, t, and the interaction between them significantly affected the peroxidase (POD) reduction. In regards to pH variation, P, and the interaction between T and t were significant. P, T, t, and the interaction between T and t played a significant effect on color. The combination of mild temperatures and SC-CO2 can be potentially used for cane juice preservation.
Collapse
Affiliation(s)
- Fernanda Cristina Pimenta
- Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga/SP, São Paulo, Brasil
| | | | - Gustavo Cesar Dacanal
- Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga/SP, São Paulo, Brasil
| | | | - Rodrigo Rodrigues Petrus
- Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga/SP, São Paulo, Brasil.
| |
Collapse
|
7
|
Guan Y, Lu S, Sun Y, Zheng X, Wang R, Lu X, Pang L, Cheng J, Wang L. Tea Polyphenols Inhibit the Occurrence of Enzymatic Browning in Fresh-Cut Potatoes by Regulating Phenylpropanoid and ROS Metabolism. PLANTS (BASEL, SWITZERLAND) 2024; 13:125. [PMID: 38202433 PMCID: PMC10781026 DOI: 10.3390/plants13010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
During fresh-cut processing, potatoes lose their inherent protective cellular structure, leading to enzymatic browning that compromises sensory and edible quality. Tea polyphenols (TPs), natural preservatives with potent reducing properties, are hypothesized to impact this browning process. However, their influence and regulatory mechanism on the enzymatic browning of fresh-cut potatoes remain poorly understood. This study used the "Holland Seven" potato as the research material to explore the effects of a treatment with different TP concentrations (0.1 g L-1, 0.2 g L-1, and 0.3 g L-1) on the browning phenomenon and quality of fresh-cut potatoes during storage. The results showed that appropriate concentrations of TP treatment had a good preservation effect on the appearance and edible quality of fresh-cut potatoes. Furthermore, exogenous TP treatment reduced the content of enzymatic browning substrates (caffeic acid, p-coumaric acid, and ferulic acid) by regulating phenylpropanoid metabolism. Meanwhile, TP treatment augmented the activities of antioxidative enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase), maintained higher levels of ascorbic acid (Vc), and reduced glutathione (GSH). Consequently, the TP treatment could inhibit enzymatic browning by regulating reactive oxygen species (ROS) metabolism and the Vc-GSH cycle in fresh-cut potatoes.
Collapse
Affiliation(s)
- Yuge Guan
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Sainan Lu
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Yan Sun
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Xinrui Zheng
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Run Wang
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Xinghua Lu
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Linjiang Pang
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Jiyu Cheng
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Lei Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
8
|
Cejudo C, Díaz AB, Casas L, Martínez de la Ossa E, Mantell C. Supercritical CO 2 Processing of White Grape Must as a Strategy to Reduce the Addition of SO 2. Foods 2023; 12:3085. [PMID: 37628085 PMCID: PMC10453421 DOI: 10.3390/foods12163085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
In winemaking, sulfur dioxide addition is the most common procedure to prevent enzymatic and microbial alterations. However, the enological industry looks for safer alternatives to preserve enological products, and high-pressure treatments with supercritical CO2 are a suitable alternative. This study evaluates the effectiveness of this process in the stabilization and preservation of white grape must, studying the influence of time, pressure, and CO2 percentage on must characteristics. In spite of the percentage of CO2 turned out to be the variable that affects the most the process, no remarkable differences were observed in pH, acidity, and color intensity between untreated and treated musts. Moreover, this technique has proven to be very efficient in the reduction of aerobic mesophilic microorganisms as well as in the reduction of residual polyphenol oxidase activities, being lower than those obtained with SO2 addition (60 and 160 mg/L). Based on the results, the most convenient conditions were 100 bar and 10% CO2, for 10 min treatment.
Collapse
Affiliation(s)
| | - Ana Belén Díaz
- Chemical Engineering and Food Technology Department, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Puerto Real, 11519 Cadiz, Spain; (C.C.); (L.C.); (E.M.d.l.O.); (C.M.)
| | | | | | | |
Collapse
|
9
|
Pandiselvam R, Mitharwal S, Rani P, Shanker MA, Kumar A, Aslam R, Barut YT, Kothakota A, Rustagi S, Bhati D, Siddiqui SA, Siddiqui MW, Ramniwas S, Aliyeva A, Mousavi Khaneghah A. The influence of non-thermal technologies on color pigments of food materials: An updated review. Curr Res Food Sci 2023; 6:100529. [PMID: 37377494 PMCID: PMC10290997 DOI: 10.1016/j.crfs.2023.100529] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The color of any food is influenced by several factors, such as food attributes (presence of pigments, maturity, and variety), processing methods, packaging, and storage conditions. Thus, measuring the color profile of food can be used to control the quality of food and examine the changes in chemical composition. With the advent of non-thermal processing techniques and their growing significance in the industry, there is a demand to understand the effects of these technologies on various quality attributes, including color. This paper reviews the effects of novel, non-thermal processing technologies on the color attributes of processed food and the implications on consumer acceptability. The recent developments in this context and a discussion on color systems and various color measurement techniques are also included. The novel non-thermal techniques, including high-pressure processing, pulsed electric field, ultrasonication, and irradiation which employ low processing temperatures for a short period, have been found effective. Since food products are processed at ambient temperature by subjecting them to non-thermal treatment for a very short time, there is no possibility of damage to heat-sensitive nutrient components in the food, any deterioration in the texture of the food, and any toxic compounds in the food due to heat. These techniques not only yield higher nutritional quality but are also observed to maintain better color attributes. However, suppose foods are exposed to prolonged exposure or processed at a higher intensity. In that case, these non-thermal technologies can cause undesirable changes in food, such as oxidation of lipids and loss of color and flavor. Developing equipment for batch food processing using non-thermal technology, understanding the appropriate mechanisms, developing processing standards using non-thermal processes, and clarifying consumer myths and misconceptions about these technologies will help promote non-thermal technologies in the food industry.
Collapse
Affiliation(s)
- R. Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, 671 124, Kerala, India
| | - Swati Mitharwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, India
| | - Poonam Rani
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - M. Anjaly Shanker
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Amit Kumar
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Yeliz Tekgül Barut
- Food Processing Department, Köşk Vocational School, Aydın Adnan Menderes University, Aydın, 09100, Turkey
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Dolly Bhati
- Department of Food Bioscienes, Teagasc, Agriculture and Food Development Authority, D15 DY05, Dublin, Ireland
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D-Quakenbrück, Germany
| | - Mohammed Wasim Siddiqui
- Department Food Science and Postharvest Technology, Bihar Agricultural University, Sabour, 813210, Bhagalpur, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. WacławDąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100 Thailand
| |
Collapse
|
10
|
Najman K, Adrian S, Sadowska A, Świąder K, Hallmann E, Buczak K, Waszkiewicz-Robak B, Szterk A. Changes in Physicochemical and Bioactive Properties of Quince ( Cydonia oblonga Mill.) and Its Products. Molecules 2023; 28:3066. [PMID: 37049829 PMCID: PMC10096434 DOI: 10.3390/molecules28073066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Quince (Cydonia oblonga Miller) is a plant that is commonly cultivated around the world, known for centuries for its valuable nutritional and healing properties. Although quince fruit are extremely aromatic, due to their high hardness and sour, astringent, and bitter taste, they are not suitable for direct consumption in an unprocessed form. However, they are an important raw material in fruit processing, e.g., in the production of jams, jellies, and juices. Quince fruits fall under the category of temperate fruits, so their shelf life can be predicted. Considering that technological processing affects not only the organoleptic properties and shelf life but also the functional properties of fruits, the aim of this research was to determine the impact of various types of technological treatments on the physicochemical and bioactive properties of quince fruit. In fresh, boiled, and fried fruits and in freshly squeezed quince fruit juice, basic parameters, such as the content of dry matter, moisture, soluble solids (°Brix), pH, total acidity, water activity, and color parameters (L*a*b*) were determined. The content of key bioactive ingredients, i.e., tannins, carotenoids, flavonoids, phenolic acids, and total polyphenols, was also determined, as well as the antioxidant activity of raw and technologically processed (cooked, fried, and squeezed) quince fruits. The conducted research showed that fresh quince fruit and processed quince products can be a very good source of bioactive ingredients in the diet, such as tannins (3.64 ± 0.06 mg/100 g in fresh fruit; from 2.22 ± 0.02 mg/100 g to 5.59 ± 0.15 g/100 g in products), carotenoids (44.98 ± 0.18 mg/100 g in fresh fruit; from 141.88 ± 0.62 mg/100 g to 166.12 ± 0.62 mg/100 g in products), and polyphenolic compounds (246.98 ± 6.76 mg GAE/100 g in fresh fruit; from 364.53 ± 3.76 mg/100 g to 674.21 ± 4.49 mg/100 g in products). Quince fruit and quince products are also characterized by high antioxidant properties (452.41 ± 6.50 µM TEAC/100 g in fresh fruit; 520.78 ± 8.56 µM TEAC/100 g to 916.16 ± 6.55 µM TEAC/100 g in products). The choice of appropriate technological processing for the quince fruit may allow producers to obtain high-quality fruit preserves and act a starting point for the development of functional products with the addition of quince fruit in its various forms, with high health-promoting values and a wide range of applications in both the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Katarzyna Najman
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Sylwia Adrian
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Anna Sadowska
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Świąder
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Ewelina Hallmann
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Bioeconomy Research Institute, Agriculture Academy, Vytautas Magnus University, Donelaicio 58, 44248 Kaunas, Lithuania
| | - Krzysztof Buczak
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, Pl. Grunwadzki 51, 50-366 Wroclaw, Poland
| | - Bożena Waszkiewicz-Robak
- School of Health & Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland
| | - Arkadiusz Szterk
- Center for Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| |
Collapse
|
11
|
Guan Y, Ji Y, Yang X, Pang L, Cheng J, Lu X, Zheng J, Yin L, Hu W. Antioxidant activity and microbial safety of fresh-cut red cabbage stored in different packaging films. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Chen Z, Spilimbergo S, Mousavi Khaneghah A, Zhu Z, Marszałek K. The effect of supercritical carbon dioxide on the physiochemistry, endogenous enzymes, and nutritional composition of fruit and vegetables and its prospects for industrial application: a overview. Crit Rev Food Sci Nutr 2022; 64:5685-5699. [PMID: 36576196 DOI: 10.1080/10408398.2022.2157370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Consumers have an increasing demand for fruit and vegetables with high nutritional value worldwide. However, most fruit and vegetables are vulnerable to quality loss and spoilage during processing, transportation, and storage. Among the recently introduced emerging technologies, supercritical carbon dioxide (SCCO2) has been extensively utilized to treat and maintain fruit and vegetables mainly due to its nontoxicity, safety, and environmentally friendly. SCCO2 technology generates low processing costs and mild processing conditions (temperature and pressure) that allow for the application of CO2 at a supercritical state. This review aimed to summarize the current knowledge on the influence of SCCO2 technology on the quality attributes of fruit and vegetable products, such as physicochemical properties (pH, color, cloud, particle size distribution, texture), sensory quality, and nutritional composition (ascorbic acid, phenolic compounds, anthocyanins, carotenoids, and betalains). In addition, the effects and mechanisms of the SCCO2 technique on endogenous enzyme inactivation (polyphenol oxidase, peroxidase, and pectin methylesterase) were also elucidated. Finally, the prospects of the SCCO2 technique for industrial application was discussed from the economic and regulatory aspect.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Sara Spilimbergo
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Zhenzhou Zhu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
13
|
Distribution and Stability of Polyphenols in Juices Made from Traditional Apple Cultivars Grown in Bosnia and Herzegovina. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010230. [PMID: 36615424 PMCID: PMC9821871 DOI: 10.3390/molecules28010230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The present research was undertaken to investigate polyphenolic profiles of peel, pulp and juices made from two standard commercial and five traditional apple cultivars from Bosnia and Herzegovina. The main goal of the study was to monitor the distribution and changes of polyphenolic profiles through different phases of apples' processing into cloudy and clear juices, with regard to L-ascorbic acid pretreatment. Quantitative determination of phenolic compounds was carried out by using high-performance liquid chromatography with diode-array detection. The obtained results showed that traditional cultivars, namely 'Paradija' and 'Prijedorska zelenika', displayed significantly higher content of these compounds compared to commercial ones. Flavan 3-ols and flavonol glycosides were mostly found in peels of all cultivars (21.2-44.1 and 5.40-33.3%, respectively), while phenolic acids along with flavan 3-ols were predominant in the pulp (8.20-30.8 and 5.10-13.9%, respectively). Apples' processing into juices caused decrease (more than 90%) in the content of all polyphenols and the distribution of these compounds from fruits to final products had a negative trend, particularly evident in clear juices. The most drastic loss occurred in the flavonol glycosides and dihydrochalcones content, while chlorogenic acid displayed quite stable distribution from apples to final products due to its good solubility. Apple mash pretreatment with L-ascorbic acid had a positive impact on the preservation and retention of polyphenols.
Collapse
|
14
|
Zambon A, González-Alonso V, Lomolino G, Zulli R, Rajkovic A, Spilimbergo S. Increasing the Safety and Storage of Pre-Packed Fresh-Cut Fruits and Vegetables by Supercritical CO 2 Process. Foods 2022; 12:foods12010021. [PMID: 36613236 PMCID: PMC9818350 DOI: 10.3390/foods12010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
This work presents a feasibility lab-scale study for a new preservation method to inactivate microorganisms and increase the shelf life of pre-packed fresh-cut products. Experiments were conducted on coriander leaves and fresh-cut carrots and coconut. The technology used the combination of hydrostatic pressure (<15 MPa), low temperature (≤45 °C), and CO2 modified atmosphere packaging (MAP). The inactivation was achieved for the naturally present microorganisms (total mesophilic bacteria, yeasts and molds, total coliforms) and inoculated E. coli. Yeasts and molds and coliform were under the detection limit in all the treated samples, while mesophiles were strongly reduced, but below the detection limit only in carrots. Inoculated E. coli strains were completely inactivated (>6.0 log CFU/g) on coconut, while a reduction >4.0 log CFU/g was achieved for carrots and coriander. For all the treated products, the texture was similar to the fresh ones, while a small alteration of color was detected. Microbiological stability was achieved for up to 14 days for both fresh-cut carrots and coconut. Overall, the results are promising for the development of a new mild and innovative food preservation technique for fresh food.
Collapse
Affiliation(s)
- Alessandro Zambon
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
- Correspondence:
| | | | - Giovanna Lomolino
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Italy
| | - Riccardo Zulli
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andreja Rajkovic
- Department of Food Safety and Quality Management, University of Belgrade—Faculty of Agriculture, 11080 Belgrade, Serbia
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Sara Spilimbergo
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| |
Collapse
|
15
|
Muñoz-Pina S, Duch-Calabuig A, Ruiz De Assín David E, Ros-Lis JV, Amorós P, Argüelles Á, Andrés A. Bioactive compounds and enzymatic browning inhibition in cloudy apple juice by a new magnetic UVM-7-SH mesoporous material. Food Res Int 2022; 162:112073. [DOI: 10.1016/j.foodres.2022.112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
|
16
|
Leitgeb M, Knez Ž, Hojnik Podrepšek G. Effect of Green Food Processing Technology on the Enzyme Activity in Spelt Flour. Foods 2022; 11:foods11233832. [PMID: 36496639 PMCID: PMC9737601 DOI: 10.3390/foods11233832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
In this research, a new approach to enzyme inactivation in flour was presented by supercritical technology, considered a sustainable technology with lower energy consumption compared to other technologies that use ultra-high temperature processing. Total protein concentration and the activity of enzymes α-amylase, lipase, peroxidase, polyphenol oxidase, and protease were determined in flour pre-treated with scCO2. During the study, it was observed that the activity of enzymes such as lipase and polyphenol oxidase, was significantly reduced under certain conditions of scCO2 treatment, while the enzymes α-amylase and protease show better stability. In particular, polyphenol oxidase was effectively inactivated below the 60% of preserved activity at 200 bar and 3 h, whereas α-amylase under the same conditions retained its activity. Additionally, the moisture content of the scCO2-treated spelt flour was reduced by 5%, and the fat content was reduced by 58%, while the quality of scCO2-treated flour was maintained. In this regard, the sustainable scCO2 process could be a valuable tool for controlling the enzymatic activity of spelt flour since the use of scCO2 technology has a positive effect on the quality of flour, which was verified by the baking performance of spelt flour with the baked spelt bread as an indicator of quality.
Collapse
Affiliation(s)
- Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-2-2294-462
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| | - Gordana Hojnik Podrepšek
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| |
Collapse
|
17
|
Arnold M, Gramza-Michałowska A. Enzymatic browning in apple products and its inhibition treatments: A comprehensive review. Compr Rev Food Sci Food Saf 2022; 21:5038-5076. [PMID: 36301625 DOI: 10.1111/1541-4337.13059] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/17/2022] [Accepted: 09/18/2022] [Indexed: 01/28/2023]
Abstract
Apple (Malus domestica) is widely consumed by consumers from various regions. It contains a high number of phenolic compounds (majorly hydroxybenzoic acids, hydroxycinnamic acids, flavanols, flavonols, dihydrochalcones, and anthocyanins) and antioxidant activity, which are beneficial for human health. The trends on healthy and fresh food have driven the food industry to produce minimally processed apple, such as fresh-cut, puree, juice, and so on without degrading the quality of products. Enzymatic browning is one of the problems found in minimally processed apple as it causes the undesirable dark color as well as the degradation of phenolics and antioxidant activity, which then reduces the health benefits of apple. Proper inhibition is needed to maintain the quality of minimally processed apple with minimal changes in sensory properties. This review summarizes the inhibition of enzymatic browning of apple products based on recent studies using the conventional and nonconventional processing, as well as using synthetic and natural antibrowning agents. Nonconventional processing and the use of natural antibrowning agents can be used as promising treatments to prevent enzymatic browning in minimally processed apple products. Combination of 2-3 treatments can improve the effective inhibition of enzymatic browning. Further studies, such on as other potential natural antibrowning agents and their mechanisms of action, should be conducted.
Collapse
Affiliation(s)
- Marcellus Arnold
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
18
|
Włodarska K, GliszczyńskaŚwigło A, Sikorska E. differentiation of commercial apple juices based on multivariate analysis of their polyphenolic profiles. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Shen J, Zhang M, Mujumdar AS, Chen J. Effects of High Voltage Electrostatic Field and Gelatin-Gum Arabic Composite Film on Color Protection of Freeze-dried Grapefruit Slices. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02839-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Phytic Acid Treatment Inhibits Browning and Lignification to Promote the Quality of Fresh-Cut Apples during Storage. Foods 2022; 11:foods11101470. [PMID: 35627040 PMCID: PMC9140707 DOI: 10.3390/foods11101470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Browning and lignification often occur in fresh-cut apple processing, leading to quality deterioration and limiting the shelf life of products. In this study, 0.8% (v/v) phytic acid was used to improve the quality and shelf life of fresh-cut apples. From the results, the browning was inhibited by the phytic acid treatment and the browning index (BI) of the control fruit was 1.62 times that of phytic acid treatment at 2 d of storage. The lignin content in phytic acid-treated fruit significantly decreased at 2, 4, and 6 d of storage compared to the control. Phytic acid treatment also reduced H2O2 and malonaldehyde (MDA) contents, which may indicate lighter membrane damage to apples. Compared with the control, the polyphenol oxidase (PPO) and peroxidase (POD) activities decreased while superoxide dismutase (SOD) and catalase (CAT) activities increased in phytic acid-treated fruit. Consistent with the lignin content, the activities of phenylpropane metabolism-related enzymes phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate: CoA ligase (4CL) were inhibited by phytic acid treatment. In conclusion, phytic acid alleviated the browning and lignification of fresh-cut apples by reducing PPO and POD activities, maintaining cell membrane integrity, and inhibiting phenylpropane metabolism.
Collapse
|
21
|
Analysis of Fatty Acids, Amino Acids and Volatile Profile of Apple By-Products by Gas Chromatography-Mass Spectrometry. Molecules 2022; 27:molecules27061987. [PMID: 35335349 PMCID: PMC8955822 DOI: 10.3390/molecules27061987] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/01/2023] Open
Abstract
Apple industrial by-products are a promising source of bioactive compounds with direct implications on human health. The main goal of the present work was to characterize the Jonathan and Golden Delicious by-products from their fatty acid, amino acid, and volatile aroma compounds’ point of view. GC-MS (gas chromatography-mass spectrometry) and ITEX/GC-MS methods were used for the by-products characterization. Linoleic and oleic were the main fatty acids identified in all samples, while palmitic and stearic acid were the representant of saturated ones. With respect to amino acids, from the essential group, isoleucine was the majority compound identified in JS (Jonathan skin) and GS (Golden skin) samples, lysine was the representant of JP (Jonathan pomace), and valine was mainly identified in GP (Golden pomace). A total number of 47 aroma volatile compounds were quantified in all samples, from which the esters groups ranged from 41.55–53.29%, aldehydes 29.75–43.99%, alcohols from 4.15 to 6.37%, ketones 4.14–5.72%, and the terpenes and terpenoids group reached values between 2.27% and 4.61%. Moreover, the by-products were valorized in biscuits manufacturing, highlighting their importance in enhancing the volatile aroma compounds, color, and sensorial analysis of the final baked goods.
Collapse
|
22
|
Trych U, Buniowska M, Skąpska S, Kapusta I, Marszałek K. Bioaccessibility of Antioxidants in Blackcurrant Juice after Treatment Using Supercritical Carbon Dioxide. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031036. [PMID: 35164299 PMCID: PMC8839513 DOI: 10.3390/molecules27031036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022]
Abstract
Blackcurrant juice (Ribes nigrum L.) was subjected to supercritical carbon dioxide (SCCD) at 10, 30, and 60 MPa for 10 min at 45 °C, as well as thermally treated at 45 and 85 °C for 10 min to determine the stability, antioxidant capacity (AC), and bioaccessibility (BAc) of vitamin C, total anthocyanins, and their individual monomers. An in vitro gastrointestinal digestion model completed with dialysis was used to assess BAc. The use of SCCD at each of the pressures applied improved the stability of vitamin C, total anthocyanins, and AC before in vitro digestion. As a result of digestion, the total content of vitamin C, anthocyanins, and AC decreased. The highest BAc of vitamin C was noted in fresh juice (FJ) (40%) and after mild heat treatment at 45 °C (T45) (46%). The highest BAc of total anthocyanins was also noted in the FJ (4.4%). The positive effect of the application of SCCD on the BAc of the delphinidin-3-O-glycosides was observed compared to T45 and thermal pasteurization at 85 °C (T85). Although SCCD did not significantly improve the BAc of vitamin C and total anthocyanins, the higher AC of SCCD samples after intestinal digestion (ABTS+• and DPPH•) and in dialysate (ABTS+•) compared to thermally treated was observed. The protocatechuic acid was detected by UPLC-PDA-MS/MS as the major metabolite formed during the digestion of delphinidin-3-O-rutinoside. This may indicate the influence of SCCD on improvement of the accessibility of antioxidants for digestion, thanks to which more metabolites with high antioxidant activity were released.
Collapse
Affiliation(s)
- Urszula Trych
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland; (S.S.); (K.M.)
- Correspondence:
| | - Magdalena Buniowska
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklinskiej 2D St., 35601 Rzeszow, Poland;
| | - Sylwia Skąpska
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland; (S.S.); (K.M.)
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, University of Rzeszow, 2D Zelwerowicza St., 35601 Rzeszow, Poland;
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland; (S.S.); (K.M.)
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, University of Rzeszow, 2D Zelwerowicza St., 35601 Rzeszow, Poland;
| |
Collapse
|
23
|
Zhang J, Li J, Murtaza A, Iqbal A, Zhu L, Ali SW, Usman M, Yameen R, Pan S, Hu W. Synergistic effect of high‐intensity ultrasound and β‐cyclodextrin treatments on browning control in apple juice. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiao Zhang
- College of Food Science and Technology Huazhong Agricultural University No. 1, Shi Zi Shan Road Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| | - Junjie Li
- College of Food Science and Technology Huazhong Agricultural University No. 1, Shi Zi Shan Road Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| | - Ayesha Murtaza
- College of Food Science and Technology Huazhong Agricultural University No. 1, Shi Zi Shan Road Wuhan 430070 China
- Department of Food Science and Technology, Faculty of Life Sciences University of Central Punjab Lahore 54000 Pakistan
| | - Aamir Iqbal
- College of Food Science and Technology Huazhong Agricultural University No. 1, Shi Zi Shan Road Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| | - Lijuan Zhu
- College of Food Science and Technology Huazhong Agricultural University No. 1, Shi Zi Shan Road Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences University of the Punjab Quaid‐i‐Azam Campus Lahore 54590 Pakistan
| | - Muhammad Usman
- Institute of Agricultural Sciences University of the Punjab Quaid‐i‐Azam Campus Lahore 54590 Pakistan
| | - Roshan Yameen
- Institute of Agricultural Sciences University of the Punjab Quaid‐i‐Azam Campus Lahore 54590 Pakistan
| | - Siyi Pan
- College of Food Science and Technology Huazhong Agricultural University No. 1, Shi Zi Shan Road Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| | - Wanfeng Hu
- College of Food Science and Technology Huazhong Agricultural University No. 1, Shi Zi Shan Road Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan 430070 China
| |
Collapse
|
24
|
ERKMEN O. Bacterial inactivation mechanism of SC-CD and TEO combinations in watermelon and melon juices. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.62520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Zhu R, Jiang S, Li D, Law CL, Han Y, Tao Y, Kiani H, Liu D. Dehydration of apple slices by sequential drying pretreatments and airborne ultrasound-assisted air drying: Study on mass transfer, profiles of phenolics and organic acids and PPO activity. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Mankovecký J, Galovičová L, Kačániová M. The chemical composition of two kinds of grape juice with medicinal plant addition. POTRAVINARSTVO 2021. [DOI: 10.5219/1692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The safety of plant-based food with an herbal origin is a priority for producers and final consumers these days. The interest in the high biological value of the final food products enriched with herbal ingredients is rising. We focused on the study of physico-chemical composition and antioxidant activity of two kinds of grape juice with medicinal plant addition in our study. We used 2 varieties of grapes - Welschriesling and Cabernet Sauvignon, six species of medicinal plants - Calendula officinalis L., Ginkgo biloba, Thymus serpyllum, Matricaria recutita, Salvia officinalis L., and Mentha aquatica var. citrata in our experiment. There were14 samples prepared, two of them were control samples and 12 samples were treated with medicinal plants. We tested each of the selected parameters triplicate with an interval of one week. We evaluated the results statistically in 4 levels of significance p <0,01, p <0,001, p <0,0001 and p <0,00001. The content of fructose, glucose, dry matter, density, malic acid, pH, potential alcohol, total acids, and total sugars in the treated samples was significantly lower compared to the control sample, which was probably due to the degree of dilution of grape juice with extracts gained from medicinal plants. The antioxidant effect was demonstrably higher in the samples enriched with medicinal plants than in the control samples. The highest antioxidant effect was measured in the second test in the samples with the addition of Thymus serpyllum (80.93 % - white grape must, 82.33 % - blue grape must), Calendula officinalis L. (79.29 % - white grape must, 80.49 % - blue grape must) and Ginkgo biloba (79.10 % - white grape must, 83.3 % - blue grape must). Generally, we found out that the selected medicinal plants increase the biological quality of grape juice.
Collapse
|
27
|
Roobab U, Shabbir MA, Khan AW, Arshad RN, Bekhit AED, Zeng XA, Inam-Ur-Raheem M, Aadil RM. High-pressure treatments for better quality clean-label juices and beverages: Overview and advances. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111828] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Bambace MF, Del Rosario Moreira M, Sánchez-Moreno C, De Ancos B. Effects of combined application of high-pressure processing and active coatings on phenolic compounds and microbiological and physicochemical quality of apple cubes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4256-4265. [PMID: 33421116 DOI: 10.1002/jsfa.11065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/22/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In recent years the use of high-pressure processing (HPP) of fruit products has steadily increased due to its antimicrobial effectiveness and the retention of nutritional and quality attributes compared to conventional thermal technologies. Edible coatings are already being used to enhance the quality of minimally processed fruits. Thus, apple cubes (AC) and alginate-vanillin-coated apple cubes (AVAC) were subjected to HPP (400 MPa/5 min/35 °C). The microbiological and physicochemical parameters were evaluated and the bioactive compounds were monitored before and after HPP of apple cubes. Also, an in vitro gastrointestinal digestion (GID) was conducted. RESULTS HPP left L. monocytogenes counts below the detection limit (2 log UFC g-1 ), regardless of the presence of coating. For E. coli, HPP + active coating showed a synergism affording the greatest reduction (>5 log) for AVAC-HPP. Firmness was maintained in AVAC-HPP samples, while AC-HPP samples suffered reductions of 35%. Colour attributes were also better retained in AVAC-HPP samples. In general, HPP led to a decrease in phenolic compounds. Regarding the effects of GID, vanillin-based active coating exerted a protective effect on some phenolics. Thus, p-coumaroylquinic acid concentration was maintained for AVAC and AVAC-HPP during GID. Epigallocatechin, the compound with the highest concentration in apple cubes, increased for AVAC (106%) and AVAC-HPP (57%). Also, phloridzin concentration increased for AVAC-HPP (17%). At the end of GID, procyanidin B1 and epigallocatechin were the main phenolic compounds for all samples, AVAC showing the highest concentration. CONCLUSIONS This work demonstrates that the combined application of HPP and active coatings on apple cubes could be used to obtain a safe and good-quality product. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- María Florencia Bambace
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Facultad Ingeniería, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Del Rosario Moreira
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Facultad Ingeniería, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Concepción Sánchez-Moreno
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Begoña De Ancos
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
29
|
Chacha JS, Zhang L, Ofoedu CE, Suleiman RA, Dotto JM, Roobab U, Agunbiade AO, Duguma HT, Mkojera BT, Hossaini SM, Rasaq WA, Shorstkii I, Okpala COR, Korzeniowska M, Guiné RPF. Revisiting Non-Thermal Food Processing and Preservation Methods-Action Mechanisms, Pros and Cons: A Technological Update (2016-2021). Foods 2021; 10:1430. [PMID: 34203089 PMCID: PMC8234293 DOI: 10.3390/foods10061430] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/05/2022] Open
Abstract
The push for non-thermal food processing methods has emerged due to the challenges associated with thermal food processing methods, for instance, high operational costs and alteration of food nutrient components. Non-thermal food processing involves methods where the food materials receive microbiological inactivation without or with little direct application of heat. Besides being well established in scientific literature, research into non-thermal food processing technologies are constantly on the rise as applied to a wide range of food products. Due to such remarkable progress by scientists and researchers, there is need for continuous synthesis of relevant scientific literature for the benefit of all actors in the agro-food value chain, most importantly the food processors, and to supplement existing information. This review, therefore, aimed to provide a technological update on some selected non-thermal food processing methods specifically focused on their operational mechanisms, their effectiveness in preserving various kinds of foods, as revealed by their pros (merits) and cons (demerits). Specifically, pulsed electric field, pulsed light, ultraviolet radiation, high-pressure processing, non-thermal (cold) plasma, ozone treatment, ionizing radiation, and ultrasound were considered. What defines these techniques, their ability to exhibit limited changes in the sensory attributes of food, retain the food nutrient contents, ensure food safety, extend shelf-life, and being eco-friendly were highlighted. Rationalizing the process mechanisms about these specific non-thermal technologies alongside consumer education can help raise awareness prior to any design considerations, improvement of cost-effectiveness, and scaling-up their capacity for industrial-level applications.
Collapse
Affiliation(s)
- James S. Chacha
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Liyan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri 460114, Nigeria
| | - Rashid A. Suleiman
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Joachim M. Dotto
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447 Arusha, Tanzania;
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Adedoyin O. Agunbiade
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Technology, University of Ibadan, Ibadan 200284, Nigeria
| | - Haile Tesfaye Duguma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Post-Harvest Management, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 378 Jimma, Ethiopia
| | - Beatha T. Mkojera
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Sayed Mahdi Hossaini
- DIL German Institute of Food Technologies, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
| | - Waheed A. Rasaq
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Ivan Shorstkii
- Department of Technological Equipment and Life-Support Systems, Kuban State Technological University, 350072 Krasnodar, Russia;
| | - Charles Odilichukwu R. Okpala
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Malgorzata Korzeniowska
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
30
|
Dense phase carbon dioxide treatment of mango in syrup: Microbial and enzyme inactivation, and associated quality change. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Galanakis CM. Functionality of Food Components and Emerging Technologies. Foods 2021; 10:128. [PMID: 33435589 PMCID: PMC7826514 DOI: 10.3390/foods10010128] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023] Open
Abstract
This review article introduces nutrition and functional food ingredients, explaining the widely cited terms of bioactivity, bioaccessibility, and bioavailability. The factors affecting these critical properties of food components are analyzed together with their interaction and preservation during processing. Ultimately, the effect of emerging (non-thermal) technologies on different food components (proteins, carbohydrates, lipids, minerals, vitamins, polyphenols, glucosinolates, polyphenols, aroma compounds, and enzymes) is discussed in spite of preserving their functional properties. Non-thermal technologies can maintain the bioavailability of food components, improve their functional and technological properties, and increase the recovery yields from agricultural products. However, the optimization of operational parameters is vital to avoid degradation of macromolecules and the oxidation of labile compounds.
Collapse
Affiliation(s)
- Charis M. Galanakis
- Research & Innovation Department, Galanakis Laboratories, P.C. 73131 Chania, Greece;
- Food Waste Recovery Group, ISEKI Food Association, P.C. 1190 Vienna, Austria
| |
Collapse
|
32
|
Eugenol emulsions affect the browning processes, and microbial and chemical qualities of fresh-cut Chinese water chestnut. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
|
34
|
Bertolini FM, Morbiato G, Facco P, Marszałek K, Pérez-Esteve É, Benedito J, Zambon A, Spilimbergo S. Optimization of the supercritical CO2 pasteurization process for the preservation of high nutritional value of pomegranate juice. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Profiles of Sugar and Organic Acid of Fruit Juices: A Comparative Study and Implication for Authentication. J FOOD QUALITY 2020. [DOI: 10.1155/2020/7236534] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A comparison of sugar and organic acid profiles among different fruit juices (including apple, pear, peach, grape, sweet cherry, strawberry, and blueberry with various varieties) was performed to assess the possibility for authentication coupled with chemometrics. It was found that the distribution of each sugar and organic acid in juices showed some specific characteristics related to fruit species, despite the fact that great differences in the content existed among different varieties. Sucrose was the most abundant sugar in peach juice, accounting for 58.26–77.11% of the total sugar content. However, in grape, blueberry, and sweet cherry juice, glucose and fructose were the predominant sugars. Pear juice contained the highest level of sorbitol, which contributed to 15.02–43.07% of the total sugar content. Tartaric acid was detected only in grape juice among the seven species of fruit juice, with a proportion of 57.95–89.68% in the total acid content. Malic acid was the predominant organic acid in apple and sweet cherry juice, accounting for 69.92–88.30% and 97.51–98.73% of the total acid content of each species. Citric acid was the predominant organic acid in strawberry and blueberry juice, which contributed to 62.39–83.73% and 73.36–89.56% of the total acid content of each species. With the aid of principal component analysis and linear discriminant analysis (LDA), the juice samples could be successfully classified according to fruit species by using the sugar and/or organic acid composition as analytical data. Combination of sugar and organic acid composition gave the best differentiation of these seven species of juices, with a 100% correct classification rate for both the original and the cross-validation method in LDA. Adding malic/citric into the dataset of the organic acid content may also improve the differentiation effect. Furthermore, the adulteration of sweet cherry juice, blueberry juice, raspberry juice, and grape juice with apple juice, pear juice, or peach juice could also be distinguished from their corresponding pure juices based on sugar and organic acid composition by LDA.
Collapse
|
36
|
Influence of microwave hot-air flow rolling dry-blanching on microstructure, water migration and quality of pleurotus eryngii during hot-air drying. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107228] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Illera AE, Beltrán S, Sanz MT. Enzyme inactivation and changes in the properties of cloudy apple juice after high‐pressure carbon dioxide and thermosonication treatments and during refrigerated storage. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A. E. Illera
- Department of Biotechnology and Food Science University of Burgos Burgos Spain
| | - S. Beltrán
- Department of Biotechnology and Food Science University of Burgos Burgos Spain
| | - M. T. Sanz
- Department of Biotechnology and Food Science University of Burgos Burgos Spain
| |
Collapse
|
38
|
Zhu D, Shen Y, Wei L, Xu L, Cao X, Liu H, Li J. Effect of particle size on the stability and flavor of cloudy apple juice. Food Chem 2020; 328:126967. [PMID: 32505057 DOI: 10.1016/j.foodchem.2020.126967] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 02/02/2023]
Abstract
Different particle sizes in cloudy apple juice were obtained following filtration with different mesh sizes (100, 200, 300, and 400-mesh). The effects of cloud particle size on the stability, nutrient content, and volatile flavor of cloudy apple juice were evaluated. With increasing mesh number, particle size decreased (p < 0.05) and particle shape changed. Particle size had an effect on volatile flavor compounds, especially nitrogen oxides, alcohols, and aromatic compounds. The content of pectin and total phenol decreased with decreasing particle size, while the content of soluble protein was not affected. The reduction of cloud particle size increased absolute value of ζ-potential, cloud stability, and apparent viscosity and decreased turbidity and cloud values. Pearson correlation analysis showed that there was a strong correlation between particle size and quality indicators, except for soluble protein.
Collapse
Affiliation(s)
- Danshi Zhu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Yusi Shen
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Liwei Wei
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Lingxia Xu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuehui Cao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
39
|
Guan Y, Hu W, Jiang A, Xu Y, Yu J, Zhao M, Ji Y, Feng K, Sarengaowa, Yang X. Influence of cut type on quality, antioxidant substances and antioxidant activity of fresh‐cut broccoli. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuge Guan
- School of Bioengineering Dalian University of Technology Dalian 116024 China
| | - Wenzhong Hu
- College of Life Science Dalian Minzu University Dalian 116600 China
- Key Laboratory of Biotechnology and Bioresources Utilization Ministry of Education Dalian116600 China
| | - Aili Jiang
- College of Life Science Dalian Minzu University Dalian 116600 China
- Key Laboratory of Biotechnology and Bioresources Utilization Ministry of Education Dalian116600 China
| | - Yongping Xu
- School of Bioengineering Dalian University of Technology Dalian 116024 China
| | - Jiaoxue Yu
- College of Life Science Dalian Minzu University Dalian 116600 China
| | - Manru Zhao
- College of Life Science Dalian Minzu University Dalian 116600 China
| | - Yaru Ji
- School of Bioengineering Dalian University of Technology Dalian 116024 China
| | - Ke Feng
- College of Life Science Dalian Minzu University Dalian 116600 China
- Key Laboratory of Biotechnology and Bioresources Utilization Ministry of Education Dalian116600 China
| | - Sarengaowa
- School of Bioengineering Dalian University of Technology Dalian 116024 China
| | - Xiaozhe Yang
- School of Bioengineering Dalian University of Technology Dalian 116024 China
| |
Collapse
|
40
|
Iqbal A, Murtaza A, Marszałek K, Iqbal MA, Chughtai MFJ, Hu W, Barba FJ, Bi J, Liu X, Xu X. Inactivation and structural changes of polyphenol oxidase in quince (Cydonia oblonga Miller) juice subjected to ultrasonic treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2065-2073. [PMID: 31875969 DOI: 10.1002/jsfa.10229] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/17/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Polyphenol oxidase (PPO) is considered a problem in the food industry because it starts browning reactions during fruit and vegetable processing. Ultrasonic treatment is a technology used to inactivate the enzyme; however, the mechanism behind PPO inactivation is still unclear. For this reason, the inactivation, aggregation, and structural changes in PPO from quince juice subjected to ultrasonic treatments were investigated. Different intensities and times of ultrasonic treatment were used. Changes in the activity, aggregation, conformation, and structure of PPO were investigated through different structural analyses. RESULTS Compared to untreated juice, the PPO activity in treated juice was reduced to 35% at a high ultrasonic intensity of 400 W for 20 min. The structure of PPO determined from particle size distribution (PSD) analysis showed that ultrasound treatment caused initial dissociation and subsequent aggregation leading to structural modification. The spectra of circular dichroism (CD) analysis of ultrasonic treated PPO protein showed a significant loss of α-helix, and reorganization of secondary structure. Fluorescence analysis showed a significant increase in fluorescence intensity of PPO after ultrasound treatment with evident blue shift, revealing disruption in the tertiary structure. CONCLUSION In summary, ultrasonic treatment triggered protein aggregation, distortion of tertiary structure, and loss of α-helix conformation of secondary structure causing inactivation of the PPO enzyme. Hence, ultrasound processing at high intensity and duration could cause the inactivation of the PPO enzyme by inducing aggregation and structural modifications. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aamir Iqbal
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ayesha Murtaza
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Warsaw, Poland
| | - M Amjed Iqbal
- Institute of Agricultural and Resource Economics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad F J Chughtai
- Department of Food Science & Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Wanfeng Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, València, Spain
| | - Jinfeng Bi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xuan Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
41
|
Szczepańska J, Barba FJ, Skąpska S, Marszałek K. High pressure processing of carrot juice: Effect of static and multi-pulsed pressure on the polyphenolic profile, oxidoreductases activity and colour. Food Chem 2020; 307:125549. [DOI: 10.1016/j.foodchem.2019.125549] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/28/2022]
|
42
|
Supercritical carbon dioxide technology: A promising technique for the non-thermal processing of freshly fruit and vegetable juices. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Enzymatic, Phyto-, and Physicochemical Evaluation of Apple Juice under High-Pressure Carbon Dioxide and Thermal Processing. Foods 2020; 9:foods9020243. [PMID: 32102327 PMCID: PMC7073744 DOI: 10.3390/foods9020243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
In this study, the changes in enzyme activities, total polyphenols, phenolic profile, and physicochemical properties from thermally (25–75 °C) and high-pressure carbon dioxide (HP-CO2) (25–65 °C/20 MPa)-treated apple juice were investigated. The HP-CO2 exhibited complete inactivation of polyphenol oxidase (PPO) at 65 °C, whereas PPO was still active at 75 °C under thermal processing (TP). Similarly, the relative activity of peroxidase (POD) significantly decreased by 71% at 65 °C under HP-CO2 processing, whereas TP was less effective. HP-CO2 and TP treatments at 65 °C reduced the browning degree (BD) value to 0.47 and 0.89, respectively. Thus, HP-CO2 inhibits the browning reactions caused by PPO and POD enzymes at each operating temperature. The concentration of epicatechin and catechin increased significantly with increasing temperature above 45 °C in TP-treated juices. HP-CO2 treatment increased the same phenolic compounds at 35 °C and 9 MPa, whereas high-temperature and -pressure conditions caused insignificant changes in concentration of epicatechin and catechin. Changes in others phenolic compounds were insignificant under TP and HP-CO2 treatment. Overall, HP-CO2 is a promising technology to get high-quality juices with lower enzyme activity.
Collapse
|
44
|
Green Chemistry Extractions of Carotenoids from Daucus carota L.-Supercritical Carbon Dioxide and Enzyme-Assisted Methods. Molecules 2019; 24:molecules24234339. [PMID: 31783600 PMCID: PMC6930531 DOI: 10.3390/molecules24234339] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple reviews have been published on various aspects of carotenoid extraction. Nevertheless, none of them focused on the discussion of recent green chemistry extraction protocols, especially for the carotenoids extraction from Daucus carota L. This group of bioactive compounds has been chosen for this review since most of the scientific papers proved their antioxidant properties relevant for inflammation, stress-related disorders, cancer, or neurological and neurodegenerative diseases, such as stroke and Alzheimer's Disease. Besides, carrots constitute one of the most popular sources of carotenoids. In the presented review emphasis has been placed on the supercritical carbon dioxide and enzyme-assisted extraction techniques for the relevant tetraterpenoids. The detailed descriptions of these methods, as well as practical examples, are provided. In addition, the pros and cons of each method and comparison with the standard solvent extraction have been discussed.
Collapse
|
45
|
Guan Y, Hu W, Jiang A, Xu Y, Sa R, Feng K, Zhao M, Yu J, Ji Y, Hou M, Yang X. Effect of Methyl Jasmonate on Phenolic Accumulation in Wounded Broccoli. Molecules 2019; 24:E3537. [PMID: 31574924 PMCID: PMC6804049 DOI: 10.3390/molecules24193537] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 11/17/2022] Open
Abstract
In order to find an efficient way for broccoli to increase the phenolic content, this study intended primarily to elucidate the effect of methyl jasmonate (MeJA) treatment on the phenolic accumulation in broccoli. The optimum concentration of MeJA was studied first, and 10 μM MeJA was chosen as the most effective concentration to improve the phenolic content in wounded broccoli. Furthermore, in order to elucidate the effect of methyl jasmonate (MeJA) treatment on phenolic biosynthesis in broccoli, the key enzyme activities of phenylpropanoid metabolism, the total phenolic content (TPC), individual phenolic compounds (PC), antioxidant activity (AOX) and antioxidant metabolism-associated enzyme activities were investigated. Results show that MeJA treatment stimulated phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarin coenzyme A ligase (4CL) enzymes activities in phenylpropanoid metabolism, and inhibited the activity of polyphenol oxidase (PPO), and further accelerated the accumulation of the wound-induced rutin, caffeic acid, and cinnamic acid accumulation, which contributed to the result of the total phenolic content increasing by 34.8% and ferric reducing antioxidant power increasing by 154.9% in broccoli. These results demonstrate that MeJA in combination with wounding stress can induce phenylpropanoid metabolism for the wound-induced phenolic accumulation in broccoli.
Collapse
Affiliation(s)
- Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| | - Aili Jiang
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Rengaowa Sa
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| | - Manru Zhao
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Jiaoxue Yu
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Mengyang Hou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
46
|
Iqbal A, Murtaza A, Hu W, Ahmad I, Ahmed A, Xu X. Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.07.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Effect of Chitosan-Ascorbic Acid Coatings on the Refrigerated Storage Stability of Fresh-Cut Apples. COATINGS 2019. [DOI: 10.3390/coatings9080503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Using natural antimicrobial substances in edible films becomes crucial to extend the shelf-life of fresh-cut fruits due to the consumers’ preferences. In this study chitosan and ascorbic acid based film was used to improve the shelf-life of fresh-cut apples. Fresh-cut apple cubes were dipped in water (control), ascorbic acid (1%) or mixtures of chitosan–ascorbic acid in different ratios (1%:1%, 2%:2% or 1%:5%) for 5 min. After draining, fresh-cut apples were packed in sterile polypropylene jars and stored at 5 °C for 14 days. The treatment with chitosan and ascorbic acid suppressed browning, retained flesh firmness and maintained phenolic compounds throughout the storage period. Moreover, the treatment with chitosan–ascorbic acid significantly retarded the microbial growth during storage. Those findings suggested that the best performance was acquired in 1% chitosan and 5% ascorbic acid coating. That coating could be practical and useful to prolonging the chemical and microbial shelf lives of fresh-cut apples during refrigerated storage.
Collapse
|
48
|
Stinco CM, Szczepańska J, Marszałek K, Pinto CA, Inácio RS, Mapelli-Brahm P, Barba FJ, Lorenzo JM, Saraiva JA, Meléndez-Martínez AJ. Effect of high-pressure processing on carotenoids profile, colour, microbial and enzymatic stability of cloudy carrot juice. Food Chem 2019; 299:125112. [PMID: 31299521 DOI: 10.1016/j.foodchem.2019.125112] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022]
Abstract
The objective of this work was to assess the impact of high-pressure processing (HPP) on the carotenoid profile, colour as well as the microbial and enzymatic stability of cloudy carrot juice. The predominant carotenoids in the fresh juices were by far the provitamin A carotenoids β-carotene and α-carotene. Others were ζ-carotene, phytofluene, phytoene and lutein. HPP at 300 MPa in three cycles caused the highest carotenoids degradation (41%) whereas the lowest degradation (26%) was achieved at 600 MPa. The highest inactivation of POD (31%) and PPO (57%) was achieved with 600 MPa and 300 MPa applied in three cycles, respectively what indicates that POD is more responsible for carotenoids degradation. The colour differences (ΔE*ab) between fresh juice and HPP-treated juices ranged from 3.02 to 4.15 CIELAB units. As far as the impact on microorganism was concerned, there was a clear trend between the applied pressure and the microbial reduction achieved.
Collapse
Affiliation(s)
- Carla M Stinco
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, Facultad de Farmacia, 41012 Sevilla, Spain
| | - Justyna Szczepańska
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka St., 02532 Warsaw, Poland
| | - Krystian Marszałek
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka St., 02532 Warsaw, Poland.
| | - Carlos A Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita S Inácio
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Mapelli-Brahm
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, Facultad de Farmacia, 41012 Sevilla, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Jorge A Saraiva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Antonio J Meléndez-Martínez
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, Facultad de Farmacia, 41012 Sevilla, Spain
| |
Collapse
|
49
|
Abedelmaksoud TG, Mohsen SM, Duedahl‐Olesen L, Elnikeety MM, Feyissa AH. Optimization of ohmicsonication for overall quality characteristics of NFC apple juice. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tarek Gamal Abedelmaksoud
- Food Science Department, Faculty of Agriculture Cairo University Giza Egypt
- National Food Institute Technical University of Denmark Lyngby Denmark
| | | | | | | | | |
Collapse
|
50
|
Murtaza A, Iqbal A, Linhu Z, Liu Y, Xu X, Pan S, Hu W. Effect of high-pressure carbon dioxide on the aggregation and conformational changes of polyphenol oxidase from apple (Malus domestica) juice. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|