1
|
Quizhpe J, Ayuso P, Rosell MDLÁ, Peñalver R, Nieto G. Brassica oleracea var italica and Their By-Products as Source of Bioactive Compounds and Food Applications in Bakery Products. Foods 2024; 13:3513. [PMID: 39517297 PMCID: PMC11544821 DOI: 10.3390/foods13213513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Broccoli (Brassica oleracea var. italica) is one of the most consumed cruciferous crops in the world, with China and Spain acting as the main producers from outside and within the EU, respectively. Broccoli florets are edible, while the leaves and stalks, discarded in the field and during processing, are by-products. Therefore, the objective of this study was to conduct a comprehensive review of the nutrient and phytochemical composition of broccoli and its by-products, as well as its beneficial effects. In addition, the study highlights the revalorization of broccoli by-products through innovative green technologies and explores their potential use in bakery products for the development of functional foods. The studies suggested that broccoli is characterized by a high content of nutrients and bioactive compounds, including vitamins, fiber, glucosinolates, and phenolic compounds, and their content varied with various parts. This high content of value-added compounds gives broccoli and its various parts beneficial properties, including anti-cancer, anti-inflammatory, antioxidant, antimicrobial, metabolic disorder regulatory, and neuroprotective effects. Furthermore, broccoli and its by-products can play a key role in food applications by improving the nutritional profile of products due to their rich content of bioactive compounds. As a result, it is essential to harness the potential of the broccoli and its by-products that are generated during its processing through an appropriate agro-industrial revalorization, using environmentally friendly techniques.
Collapse
Affiliation(s)
| | | | | | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (J.Q.); (P.A.); (M.d.l.Á.R.); (R.P.)
| |
Collapse
|
2
|
Saha R, Majie A, Baidya R, Sarkar B. Verbascoside: comprehensive review of a phenylethanoid macromolecule and its journey from nature to bench. Inflammopharmacology 2024:10.1007/s10787-024-01555-3. [PMID: 39162902 DOI: 10.1007/s10787-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Polyphenolic compounds are among the most widely researched compounds for various therapeutic applications. However, naturally occurring phenylethanoid glycosides are least explored under this class of compounds. One such phenylethanoid glycoside, verbascoside (Vb), abundantly found among 200 species of 23 families, has gained recent attention due to its wide-spectrum therapeutic properties such as antioxidant, antimicrobial, anti-inflammatory, neuroprotective, cardioprotective, skin-protective, and anti-cancer. Despite having multiple therapeutic benefits, due to its large size, the compound has poor bioavailability for oral and topical applications. To meet these limitations, current research on Vb focuses on delivering it through nanoformulations. Presently, most developed formulations are liposome based for various applications, such as corneal epithelial wound healing, anti-neuropathic, anti-wrinkle, anti-hyperalgesia, atopic dermatitis, alopecia, and cutaneous wound healing. Multiple studies have confirmed the least acute and sub-acute toxicity for Vb. Few clinical studies have been performed for the therapeutic application of Vb to manage COVID-19, nephropathy, platelet aggregation, chronic primary glomerulonephritis, and acute hepatitis. Recent studies have shown the immense therapeutic potential of Vb in wound healing, dermatitis, neuroprotection, and anti-cancer activities, which creates a need for developing novel formulations for their respective uses. Long-term toxicity studies and techniques for scaling up Vb production by biotechnological approaches should be emphasized.
Collapse
Affiliation(s)
- Rajdeep Saha
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ankit Majie
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ritika Baidya
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Biswatrish Sarkar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
3
|
Layla A, Syed QA, Zahoor T, Shahid M. Investigating the role of Lactiplantibacillus plantarum vs. spontaneous fermentation in improving nutritional and consumer safety of the fermented white cabbage sprouts. Int Microbiol 2024; 27:753-764. [PMID: 37700156 DOI: 10.1007/s10123-023-00426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023]
Abstract
Brassicaceae sprouts are promising candidates for functional food because of their unique phytochemistry and high nutrient density compared to their seeds and matured vegetables. Despite being admired for their health-promoting properties, white cabbage sprouts have been least explored for their nutritional significance and behavior to lactic acid fermentation. This study aimed to investigate the role of lactic acid fermentation, i.e., inoculum vs. spontaneous, in reducing intrinsic toxicants load and improving nutrients delivering potential of the white cabbage sprouts. White cabbage sprouts with a 5-7 cm average size were processed as raw, blanched, Lactiplantibacillus plantarum-inoculated fermentation, and spontaneous fermentation. Plant material was dehydrated at 40 °C and evaluated for microbiological quality, macronutrients, minerals, and anti-nutrient contents. The results indicate L. plantarum inoculum fermentation of blanched cabbage sprouts (IF-BCS) to increase lactic acid bacteria count of the sprouts from 0.97 to 8.47 log CFU/g. Compared with the raw cabbage sprouts (RCS), inoculum fermented-raw cabbage sprouts (IF-RCS), and spontaneous fermented-raw cabbage sprouts (SF-RCS), the highest content of Ca (447 mg/100 g d.w.), Mg (204 mg/100 g d.w.), Fe (9.3 mg/100 g d.w.), Zn (5 mg/100 g d.w.), and Cu (0.5 mg/100 g d.w.) were recorded in IF-BCS. L. plantarum-led fermentation of BCS demonstrated a reduction in phytates, tannins, and oxalates contents at a rate of 42%, 66%, and 53%, respectively, while standalone lactic acid fermentation of the raw sprouts reduced the burden of anti-nutrients in a range between 32 and 56%. The results suggest L. plantarum-led lactic acid fermentation coupled with sprout blanching is the most promising way to improve the nutritional quality and safety of the white cabbage sprouts.
Collapse
Affiliation(s)
- Anam Layla
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | - Qamar Abbas Syed
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan.
| | - Tahir Zahoor
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
4
|
Maqbool Z, Khalid W, Mahum, Khan A, Azmat M, Sehrish A, Zia S, Koraqi H, AL‐Farga A, Aqlan F, Khan KA. Cereal sprout-based food products: Industrial application, novel extraction, consumer acceptance, antioxidant potential, sensory evaluation, and health perspective. Food Sci Nutr 2024; 12:707-721. [PMID: 38370091 PMCID: PMC10867502 DOI: 10.1002/fsn3.3830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Cereal grains are a good source of macronutrients and micronutrients that are required for metabolic activity in the human body. Sprouts have been studied to enhance the nutrient profile. Moreover, secondary metabolites are examined as green food engineering technology that is used in the pharmaceutical, functional ingredients, nutraceutical, and cosmetic industries. The sprout-based food is commonly used to enhance the quality of products by softening the structure of the whole grain and increasing the phytochemicals (nutritional value and bioactive compounds). These sprouting grains can be added to a variety of products including snacks, bakery, beverage, and meat. Consuming whole grains has been shown to reduce the incidence and mortality of a variety of chronic and noncommunicable diseases. Sprouting grains have a diversity of biological functions, including antidiabetic, antioxidant, and anticancer properties. Cereal sprout-based products are more beneficial in reducing the risk of cardiovascular diseases and gastrointestinal tract diseases. The novel extraction techniques (microwave-existed extraction, pulse electric field, and enzyme-associated) are applied to maintain and ensure the efficiency, safety, and nutritional profile of sprout. Nutrient-dense sprouts have a low environmental impact and are widely accepted by consumers. This review explores for the first time and sheds light on the antioxidant potential, sensory evaluation, industrial applications, and health perspective of cereal sprout-based food products.
Collapse
Affiliation(s)
- Zahra Maqbool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Waseem Khalid
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Mahum
- Food Science and TechnologyMuhammad Nawaz Sharif University of AgricultureMultanPakistan
| | - Anosha Khan
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Maliha Azmat
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Aqeela Sehrish
- Department of Plant and Soil ScienceTexas Tech UniversityLubbockTexasUSA
| | - Sania Zia
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Hyrije Koraqi
- Faculty of Food Science and BiotechnologyUBT‐Higher Education InstitutionPristinaKosovo
| | - Ammar AL‐Farga
- Department of Biochemistry, College of SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbbYemen
| | - Khalid Ali Khan
- Center of Bee Research and its Products/ Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
- Applied CollegeKing Khalid UniversityAbhaSaudi Arabia
| |
Collapse
|
5
|
Chávez García SN, Rodríguez-Herrera R, Nery Flores S, Silva-Belmares SY, Esparza-González SC, Ascacio-Valdés JA, Flores-Gallegos AC. Sprouts as probiotic carriers: A new trend to improve consumer nutrition. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 7:100185. [PMID: 38155686 PMCID: PMC10753383 DOI: 10.1016/j.fochms.2023.100185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 12/30/2023]
Abstract
Over the past few decades, efforts to eradicate hunger in the world have led to the generation of sustainable development goals to reduce poverty and inequality. It is estimated that the current coronavirus pandemic could add between 83 and 132 million to the total number of undernourished people in the world by 2021. Food insecurity is a contributing factor to the increase in malnutrition, overweight and obesity due to the quality of diets to which people have access. It is therefore necessary to develop functional foods that meet the needs of the population, such as the incorporation of sprouts in their formulation to enhance nutritional quality. Germination of grains and seeds can be used as a low-cost bioprocessing technique that provides higher nutritional value and better bioavailability of nutrients. Consequently, the manuscript describes relevant information about the germination process in different seeds, the changes caused in their nutritional value and the use of techniques within the imbibition phase to modify the metabolic profiles within the sprouts such as inoculation with lactic acid bacteria and yeasts, to generate a functional symbiotic food.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Cecilia Esparza-González
- School of Odontology, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas S/N, Republica Oriente, C.P. 25280 Saltillo, Coahuila, Mexico
| | | | | |
Collapse
|
6
|
Wang M, Li Y, Yang Y, Tao H, Mustafa G, Meng F, Sun B, Wang J, Zhao Y, Zhang F, Cheng K, Wang Q. Biofortification of health-promoting glucosinolates in cruciferous sprouts along the whole agro-food chain. Trends Food Sci Technol 2023; 140:104164. [DOI: 10.1016/j.tifs.2023.104164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
|
7
|
Waliat S, Arshad MS, Hanif H, Ejaz A, Khalid W, Kauser S, Al-Farga A. A review on bioactive compounds in sprouts: extraction techniques, food application and health functionality. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023; 26:647-665. [DOI: 10.1080/10942912.2023.2176001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Affiliation(s)
- Sadaf Waliat
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Hadia Hanif
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Afaf Ejaz
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Safura Kauser
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ammar Al-Farga
- Department of Food Science, Faculty of Agriculture, Ibb University, Ibb, Yemen
| |
Collapse
|
8
|
Lučić D, Pavlović I, Brkljačić L, Bogdanović S, Farkaš V, Cedilak A, Nanić L, Rubelj I, Salopek-Sondi B. Antioxidant and Antiproliferative Activities of Kale ( Brassica oleracea L. Var. acephala DC.) and Wild Cabbage ( Brassica incana Ten.) Polyphenolic Extracts. Molecules 2023; 28:molecules28041840. [PMID: 36838827 PMCID: PMC9958672 DOI: 10.3390/molecules28041840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Brassicaceae are rich in healthy phytochemicals that have a positive impact on human health. The aim of this study was to analyze the phenolic compounds and antioxidant and anticancer potential of traditional Croatian kale (Brassica oleracea L. var. acephala DC.) and wild cabbage (Brassica incana Ten.) extracts. The phenolic groups and antioxidant activity were determined by spectrophotometry, selected phenolic compounds (ferulic acid, sinapic acid, salicylic acid, kaempferol, and quercetin) were analyzed by LC-MS/MS, and anticancer potential was evaluated in vitro using HeLa cells. The extracts of both plant species are rich in phenolic compounds and showed significant antioxidant activity at similar levels. LC-MS/MS detected sinapic acid as the most abundant phenolic acid, followed by ferulic acid, while salicylic acid was present at lower concentrations. A comparative analysis showed that wild cabbage contained significantly more sinapic acid, while kale contained more kaempferol and quercetin. Both Brassica extracts at a concentration of 50 µg mL-1 showed an antiproliferative effect on HeLa cells, while they did not affect the proliferation of normal human skin fibroblasts. Wild cabbage extract also showed an antiproliferative effect on HeLa cells at a lower applied concentration of 10 µg mL-1 of extracts. The clonogenic analysis also revealed the inhibitory effect of the extracts on HeLa colony growth.
Collapse
Affiliation(s)
- Dario Lučić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Iva Pavlović
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Brkljačić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Sandro Bogdanović
- Department of Agricultural Botany, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, 10000 Zagreb, Croatia
| | - Vladimir Farkaš
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Andrea Cedilak
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lucia Nanić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ivica Rubelj
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Branka Salopek-Sondi
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4561143
| |
Collapse
|
9
|
Polyphenols: a route from bioavailability to bioactivity addressing potential health benefits to tackle human chronic diseases. Arch Toxicol 2023; 97:3-38. [PMID: 36260104 DOI: 10.1007/s00204-022-03391-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/26/2022] [Indexed: 02/07/2023]
Abstract
Chronic pathologies or non-communicable diseases (NCDs) include cardiovascular diseases, metabolic syndrome, neurological diseases, respiratory disorders and cancer. They are the leading global cause of human mortality and morbidity. Given their chronic nature, NCDs represent a growing social and economic burden, hence urging the need for ameliorating the existing preventive strategies, and for finding novel tackling therapies. NCDs are highly correlated with unhealthy lifestyle habits (such as high-fat and high-glucose diet, or sedentary life). In general, lifestyle approaches that might improve these habits, including dietary consumption of fresh vegetables, fruits and fibers, may contrast NCD symptoms and prolong life expectancy of affected people. Polyphenols (PPLs) are plant-derived molecules with demonstrated biological activities in humans, which include: radical scavenging and anti-oxidant activities, capability to modulate inflammation, as well as human enzymes, and even to bind nuclear receptors. For these reasons, PPLs are currently tested, both preclinically and clinically, as dietary adjuvants for the prevention and treatment of NCDs. In this review, we describe the human metabolism and bioactivity of PPLs. Also, we report what is currently known about PPLs interaction with gastro-intestinal enzymes and gut microbiota, which allows their biotransformation in many different metabolites with several biological functions. The systemic bioactivity of PPLs and the newly available PPL-delivery nanosystems are also described in detail. Finally, the up-to-date clinical studies assessing both safety and efficacy of dietary PPLs in individuals with different NCDs are hereby reported. Overall, the clinical results support the notion that PPLs from fruits, vegetables, but also from leaves or seeds extracts, are safe and show significant positive results in ameliorating symptoms and improving the whole quality of life of people with NCDs.
Collapse
|
10
|
Morphological, physicochemical, techno-functional, phytochemical, and antioxidant evaluation of polyembryonic and non-polyembryonic maize sprouts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2022.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Liu HY, Liu Y, Li MY, Ge YY, Geng F, He XQ, Xia Y, Guo BL, Gan RY. Antioxidant capacity, phytochemical profiles, and phenolic metabolomics of selected edible seeds and their sprouts. Front Nutr 2022; 9:1067597. [PMID: 36590202 PMCID: PMC9798843 DOI: 10.3389/fnut.2022.1067597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Sprouts are recognized as nutritional and functional vegetables. In this study, 17 selected seeds were germinated simultaneously. The antioxidant capacity and total phenolic content (TPC) were determined for seeds and sprouts of all species. Both seed and sprout of white radish, with the highest antioxidant capacity, and TPC among all the 17 species, were further determined for phenolic metabolomics. Four phenolic classes with 316 phenolic metabolites were identified. 198 significantly different metabolites with 146 up-regulated and 52 down-regulated were confirmed, and high amounts of phenolic acids and flavonoids were found to be accumulated in the sprout. Several metabolism and biosynthesis, including phenylpropanoid, favone and flavonol, phenylalanine, and various secondary metabolites, were significantly activated. Significant correlations were found among FRAP, DPPH, ABTS, TPC, and phenolic profiles. Therefore, white radish sprout could be served as antioxidant and could be a good source of dietary polyphenols.
Collapse
Affiliation(s)
- Hong-Yan Liu
- Chengdu National Agricultural Science and Technology Center, Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Yi Liu
- Chengdu National Agricultural Science and Technology Center, Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ming-Yue Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ying-Ying Ge
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiao-Qin He
- Chengdu National Agricultural Science and Technology Center, Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Yu Xia
- Chengdu National Agricultural Science and Technology Center, Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Bo-Li Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China,Bo-Li Guo,
| | - Ren-You Gan
- Chengdu National Agricultural Science and Technology Center, Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China,*Correspondence: Ren-You Gan, ,
| |
Collapse
|
12
|
Changes in the content of glucosinolates, polyphenols and carotenoids during lactic-acid fermentation of cruciferous vegetables: a mini review. Food Chem X 2022; 16:100457. [PMID: 36339323 PMCID: PMC9626883 DOI: 10.1016/j.fochx.2022.100457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022] Open
Abstract
Cruciferous vegetables as fermented products has been used since ancient times. During fermentation of cruciferous vegetables complete fermentation of glucosinolates occur. Fermentation decrease the content of complex polyphenols, while increase the content of polyphenols in free form. Carotenoid content decrease during fermentation of cruciferous vegetables.
Cruciferous vegetables are considered functional foods because of their content of health-related compounds. They are grown and consumed in various cultures around the world. Fermentation as a preservation method for cruciferous vegetables has been used since ancient times. This process results in fermented products that have a unique flavour and odour, high bioactivity, and a distinctly different phytochemical profile than raw vegetables. In this mini review, we summarize data on changes in phytochemical content during lactic-acid fermentation of various cruciferous vegetables. The main focus was on the changes in the group of glucosinolates, polyphenols and carotenoids.
Collapse
|
13
|
Rodrigues JPB, Liberal Â, Petropoulos SA, Ferreira ICFR, Oliveira MBPP, Fernandes Â, Barros L. Agri-Food Surplus, Waste and Loss as Sustainable Biobased Ingredients: A Review. Molecules 2022; 27:molecules27165200. [PMID: 36014439 PMCID: PMC9412510 DOI: 10.3390/molecules27165200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Ensuring a sustainable supply of food for the world’s fast growing population is a major challenge in today’s economy, as modern lifestyle and increasing consumer concern with maintaining a balanced and nutritious diet is an important challenge for the agricultural sector worldwide. This market niche for healthier products, especially fruits and vegetables, has increased their production, consequently resulting in increased amounts of agri-food surplus, waste, and loss (SWL) generated during crop production, transportation, storage, and processing. Although many of these materials are not utilized, negatively affecting the environmental, economic, and social segments, they are a rich source of valuable compounds that could be used for different purposes, thus preventing the losses of natural resources and boosting a circular economy. This review aimed to give insights on the efficient management of agri-food SWL, considering conventional and emerging recovery and reuse techniques. Particularly, we explored and summarized the chemical composition of three worldwide cultivated and consumed vegetables (carrots, broccoli and lettuce) and evaluate the potential of their residues as a sustainable alternative for extracting value-added ingredients for the development of new biodynamic products.
Collapse
Affiliation(s)
- Joana P. B. Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ângela Liberal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Spyridon A. Petropoulos
- Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 384 46 Volos, Greece
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| |
Collapse
|
14
|
Wu X, Cai W, Zhu P, Peng Z, Zheng T, Li D, Li J, Zhou G, Du G, Zhang J. Profiling the role of microorganisms in quality improvement of the aged flue-cured tobacco. BMC Microbiol 2022; 22:197. [PMID: 35965316 PMCID: PMC9377114 DOI: 10.1186/s12866-022-02597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background The aging process in the tobacco production, as in other food industries, is an important process for improving the quality of raw materials. In the spontaneous aging, the complex components in flue-cured tobacco (FT) improve flavor or reduce harmful compounds through chemical reactions, microbial metabolism, and enzymatic catalysis. Some believed that tobacco-microbe played a significant part in this process. However, little information is available on how microbes mediate chemical composition to improve the quality of FT, which will lay the foundation for the time-consuming spontaneous aging to seek ways to shorten the aging cycle. Results Comparing aged and unaged FT, volatile and non-volatile differential compounds (DCs) were multi-dimensionally analyzed with the non-targeted metabolomes based on UPLC-QTOP-MS (the ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry), GC–MS (gas chromatography-mass spectrometer) assisted derivatization and HP-SPME-GC/MS (headspace solid-phase micro-extraction assisted GC–MS). Products associated with the degradation pathways of terpenoids or higher fatty acids were one of the most important factors in improving FT quality. With the microbiome, the diversity and functions of microbial flora were analyzed. The high relative abundance function categories were in coincidence with DCs-related metabolic pathways. According to the correlation analysis, Acinetobacter, Sphingomonas and Aspergillus were presumed to be the important contributor, in which Aspergillus was associated with the highest number of degradation products of terpenoids and higher fatty acids. At last, the screened Aspergillus nidulans strain F4 could promote the degradation of terpenoids and higher fatty acids to enhance tobacco flavor by secreting highly active lipoxygenase and peroxidase, which verified the effect of tobacco-microbes on FT quality. Conclusions By integrating the microbiome and metabolome, tobacco-microbe can mediate flavor-related substances to improve the quality of FT after aging, which provided a basis for identifying functional microorganisms for reforming the traditional spontaneous aging. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02597-9.
Collapse
Affiliation(s)
- Xinying Wu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Wen Cai
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., 56 Chenglong Road, 610000, Chengdu, China
| | - Pengcheng Zhu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., 56 Chenglong Road, 610000, Chengdu, China
| | - Zheng Peng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Tianfei Zheng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Dongliang Li
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., 56 Chenglong Road, 610000, Chengdu, China
| | - Jianghua Li
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Guanyu Zhou
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China. .,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Juan Zhang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China. .,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
15
|
Kinetic Study and Modeling of Wild-Type and Recombinant Broccoli Myrosinase Produced in E. coli and S. cerevisiae as a Function of Substrate Concentration, Temperature, and pH. Catalysts 2022. [DOI: 10.3390/catal12070683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The myrosinase enzyme hydrolyzes glucosinolates, among which is glucoraphanin, the precursor of the anticancer isothiocyanate sulforaphane (SFN). The main source of glucoraphanin is Brassicaceae; however, its natural concentration is relatively low, limiting the availability of SFN. An option to obtain SFN is its exogenous production, through enzymatic processes and under controlled conditions, allowing complete conversion of glucoraphanin to SFN. We characterized the kinetics of wild-type (BMYR) and recombinant broccoli myrosinases produced in E. coli (EMYR) and S. cerevisiae (SMYR) in terms of the reaction conditions. Kinetics was adjusted using empirical and mechanistic models that describe reaction rate as a function of substrate concentration, temperature, and pH, resulting in R2 values higher than 90%. EMYR kinetics differed significantly from those of BMYR and SMYR probably due to the absence of glycosylations in the enzyme produced in E. coli. BMYR and SMYR were subjected to substrate inhibition but followed different kinetic mechanisms attributed to different glycosylation patterns. EMYR (inactivation Ea = 76.1 kJ/mol) was more thermolabile than BMYR and SMYR. BMYR showed the highest thermostability (inactivation Ea = 52.8 kJ/mol). BMYR and EMYR showed similar behavior regarding pH, with similar pK1 (3.4 and 3.1, respectively) and pK2 (5.4 and 5.0, respectively), but differed considerably from SMYR.
Collapse
|
16
|
Paśko P, Galanty A, Zagrodzki P, Żmudzki P, Bieniek U, Prochownik E, Domínguez-Álvarez E, Bierła K, Łobiński R, Szpunar J, Handzlik J, Marcinkowska M, Gorinstein S. Varied effect of fortification of kale sprouts with novel organic selenium compounds on the synthesis of sulphur and phenolic compounds in relation to cytotoxic, antioxidant and anti-inflammatory activity. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Low Temperatures Affect the Physiological Status and Phytochemical Content of Flat Leaf Kale (Brassica oleracea var. acephala) Sprouts. Foods 2022; 11:foods11030264. [PMID: 35159416 PMCID: PMC8834612 DOI: 10.3390/foods11030264] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Consumption of plants in the juvenile stage becomes popular because sprouts are easy to grow, and they can be a tasty source of micro- and macro-nutrients and various phytochemicals. However, some environmental factors during sprout growth can affect their characteristics. In this article, we investigated how low temperatures during cultivation (8 °C) and additional exposure to freezing temperatures (−8 °C) affect the physiological status and phytochemical content of kale (Brassica oleracea var. acephala) sprouts compared to the control grown at 21 °C. We conducted five independent laboratory experiments and found that low temperature significantly increased proline content and decreased sprouts yield. In addition, low temperature caused a significant decrease in carotenoid and flavonoid content, while phenolic acid content and total glucosinolates content increased, but individual glucosinolates were differentially affected. Our results indicate that low temperatures affect the physiological status of kale sprouts and affect the content of phytochemicals.
Collapse
|
18
|
Nutritional values, beneficial effects, and food applications of broccoli (Brassica oleracea var. italica Plenck). Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
UV-B Radiation as Abiotic Elicitor to Enhance Phytochemicals and Development of Red Cabbage Sprouts. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: The main objective of this study was to evaluate the effect of periodical UV-B illumination during red cabbage germination on morphological development and the phenolics and carotenoid accumulation. Methods: During a sprouting period of 10 days at 20 °C in darkness, seedlings received 5, 10, or 15 kJ m−2 UV-B (T5, T10, and T15) applied in four steps (25% on days 3, 5, 7, and 10). UV untreated sprouts were used as control (CTRL). After 10 days of germination, the sprouts were harvested and stored 10 days at 4 °C as a minimally processed product. Phenolic and carotenoid compounds were analysed 1 h after each UV-B application and on days 0, 4, 7, and 10 during cold storage. Results: The longest hypocotyl length was observed in T10-treated sprouts. The total phenolic content (TPC), total flavonoid content (TFC), and total antioxidant capacity (TAC) increased during germination following a sigmoidal kinetic, especially in the UV-B-treated samples, which reported a dose-dependent behaviour. In this way, T10-treated sprouts increased the TPC by 40% after 10 days at 4 °C compared to CTRL, while TAC and TFC increased by 35 and 30%, respectively. Carotenoids were enhanced with higher UV-B doses (T15). Conclusions: We found that UV-B stimulated the biosynthesis of bioactive compounds, and a dose of 10 kJ m−2 UV-B, proportionally applied on days 3, 5, 7, and 10 days, is recommended.
Collapse
|
20
|
Das G, Heredia JB, de Lourdes Pereira M, Coy-Barrera E, Rodrigues Oliveira SM, Gutiérrez-Grijalva EP, Cabanillas-Bojórquez LA, Shin HS, Patra JK. Korean traditional foods as antiviral and respiratory disease prevention and treatments: A detailed review. Trends Food Sci Technol 2021; 116:415-433. [PMID: 34345117 PMCID: PMC8321624 DOI: 10.1016/j.tifs.2021.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Korean traditional food (KTF), originated from ancestral agriculture and the nomadic traditions of the Korean peninsula and southern Manchuria, is based on healthy food that balances disease prevention and treatment. Fermented foods that include grains, herbs, fruits, and mushrooms are also an important practice in KTF, providing high levels of Lactobacilli, which confer relevant health benefits, including antiviral properties. Some of these probiotics may also protect against the Influenza virus through the modulation of innate immunity. SCOPE AND APPROACH The emerging of the COVID-19 pandemic, in addition to other diseases of viral origin, and the problems associated with other respiratory disorders, highlight how essential is a healthy eating pattern to strengthen our immune system.Key Findings and Conclusions: The present review covers the information available on edible plants, herbs, mushrooms, and preparations used in KTF to outline their multiple medicinal effects (e.g., antidiabetic, chemopreventive, antioxidative, anti-inflammatory, antibacterial), emphasizing their role and effects on the immune system with an emphasis on modulating properties of the gut microbiota that further support strong respiratory immunity. Potential functional foods commonly used in Korean cuisine such as Kimchi (a mixture of fermented vegetables), Meju, Doenjang, Jeotgal, and Mekgeolli and fermented sauces, among others, are highlighted for their great potential to improve gut-lung immunity. The traditional Korean diet and dietary mechanisms that may target viruses ACE-2 receptors or affect any step of a virus infection pathway that can determine a patient's prognosis are also highlighted. The regular oral intake of bioactive ingredients used in Korean foods can offer protection for some viral diseases, through protective and immunomodulatory effects, as evidenced in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110, Culiacán, Sinaloa, Mexico
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, 250247, Cajicá, Colombia
| | - Sonia Marlene Rodrigues Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- HMRI and Hunter Cancer Research Alliance Centres, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erick Paul Gutiérrez-Grijalva
- Catedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110 Culiacán, Sinaloa, Mexico
| | - Luis Angel Cabanillas-Bojórquez
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110, Culiacán, Sinaloa, Mexico
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, South Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| |
Collapse
|
21
|
Castillejo N, Martínez-Zamora L, Gómez PA, Pennisi G, Crepaldi A, Fernández JA, Orsini F, Artés-Hernández F. Postharvest yellow LED lighting affects phenolics and glucosinolates biosynthesis in broccoli sprouts. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Effects of Short-Term Exposure to Low Temperatures on Proline, Pigments, and Phytochemicals Level in Kale (Brassica oleracea var. acephala). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Kale (Brassica oleracea var. acephala) is known as a vegetable with good tolerance of environmental stress and numerous beneficial properties for human health, which are attributed to different phytochemicals. In the present study, investigation of how low temperatures affect proline, pigments and specialized metabolites content was performed using 8-weeks old kale plants subjected to chilling (at 8 °C, for 24 h) followed by short freezing (at −8 °C, for 1 h after previous acclimation at 8 °C, for 23 h). Plants growing at 21 °C served as a control. In both groups of plants (exposed to low temperatures and exposed to short freezing) a significant increase in proline content (14% and 49%, respectively) was recorded. Low temperatures (8 °C) induced an increase of pigments (total chlorophylls 7%) and phytochemicals (phenolic acids 3%; flavonoids 5%; carotenoids 15%; glucosinolates 21%) content, while exposure to freezing showed a different trend dependent upon observed parameter. After freezing, the content of chlorophylls, carotenoids, and total phenolic acids retained similar levels as in control plants and amounted to 14.65 ± 0.36 mg dw g−1, 2.58 ± 0.05 mg dw g−1 and 13.75 ± 0.07 mg dw CEA g−1, respectively. At the freezing temperature, total polyphenol content increased 13% and total flavonoids and glucosinolates content decreased 21% and 54%, respectively. Our results suggest that acclimatization (23 h at 8 °C) of kale plants can be beneficial for the accumulation of pigments and phytochemicals, while freezing temperatures affect differently specialized metabolite synthesis. The study suggests that growing temperature during kale cultivation must be considered as an important parameter for producers that are orientated towards production of crops with an increasing content of health-related compounds.
Collapse
|
23
|
Bajkacz S, Ligor M, Baranowska I, Buszewski B. Separation and Determination of Chemopreventive Phytochemicals of Flavonoids from Brassicaceae Plants. Molecules 2021; 26:4734. [PMID: 34443322 PMCID: PMC8399753 DOI: 10.3390/molecules26164734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
The main aim of this study was to develop a method for the isolation and determination of polyphenols-in particular, flavonoids present in various morphological parts of plants belonging to the cabbage family (Brassicaceae). Therefore, a procedure consisting of maceration, acid hydrolysis and measurement of the total antioxidant capacity of plant extracts (using DPPH assay) was conducted. Qualitative analysis was performed employing thin-layer chromatography (TLC), which was presented to be a suitable methodology for the separation and determination of chemopreventive phytochemicals from plants belonging to the cabbage family. The study involved the analysis of 25 vegetal samples, including radish, broccoli, Brussels sprouts, kale, canola, kohlrabi, cabbage, Chinese cabbage, red cabbage, pak choi and cauliflower. In addition, selected flavonoids content in free form and bonded to glycosides was determined by using an RP-UHPLC-ESI-MS/MS method.
Collapse
Affiliation(s)
- Sylwia Bajkacz
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 6 Krzywoustego Str., 44-100 Gliwice, Poland; (S.B.); (I.B.)
| | - Magdalena Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland
| | - Irena Baranowska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 6 Krzywoustego Str., 44-100 Gliwice, Poland; (S.B.); (I.B.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Torun, Poland
| |
Collapse
|
24
|
Castillejo N, Martínez-Zamora L, Artés-Hernández F. Periodical UV-B radiation hormesis in biosynthesis of kale sprouts nutraceuticals. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:274-285. [PMID: 34090151 DOI: 10.1016/j.plaphy.2021.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 05/11/2023]
Abstract
The objective of the present study was to evaluate the periodical UV-B radiation hormesis during kale seeds germination in their main content of secondary metabolite compounds (phenols; glucosinolates; total antioxidant capacity -TAC-) and their changes during a refrigerated shelf-life. The total UV-B doses received were 0, 5, 10, and 15 kJ m-2 (CTRL, UVB5, UVB10, and UVB15) in where the 25% was applied on the 3rd, 5th, 7th, and 10th sprouting day. UV radiation did not affect the morphological development of the sprouts. UVB10 and UVB15 treatments increased their phenolic content (>30%). Likewise, TAC was increased by UV-B lighting ~10% (DPPH) and ~20% (FRAP). The hydroxycinnamic acid content in UVB15-treated sprouts increased by 52%, while UVB5 reported an increase of 34% in the kaempferol-3,7-di-O-glucoside concentration, compared to CTRL. After 10 d at 4 °C of shelf-life, content of gallic acid hexoside I and gallic acid increased by 55 and 78% compared to UV-untreated kale sprouts, respectively. Glucoraphanin was the main glucosinolate found in kale sprouts and seeds, followed by 4-hydroxy-glucobrassicin, whose biosynthesis was enhanced by UVB10 (~24 and ~27%) and UVB15 (~36 and ~30%), respectively, compared to CTRL. In conclusion, periodical low UV-B illumination represents a useful tool to stimulate phytochemicals biosynthesis in kale sprouts as an important source of bioactive compounds with potential health benefits.
Collapse
Affiliation(s)
- Noelia Castillejo
- Department of Agronomical Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, 30203, Spain
| | - Lorena Martínez-Zamora
- Department of Agronomical Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, 30203, Spain
| | - Francisco Artés-Hernández
- Department of Agronomical Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, 30203, Spain.
| |
Collapse
|
25
|
Mir SA, Farooq S, Shah MA, Sofi SA, Dar B, Hamdani AM, Mousavi Khaneghah A. An overview of sprouts nutritional properties, pathogens and decontamination technologies. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Ali V, Khajuria M, Bhat R, Rashid A, Faiz S, Vyas D. Comparative phytochemical analysis of Lepidium latifolium L. sprouts from Ladakh Himalayas suggest a novel combination of 2-propenyl and benzyl glucosinolate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
The Effect of Different Extraction Protocols on Brassica oleracea var. acephala Antioxidant Activity, Bioactive Compounds, and Sugar Profile. PLANTS 2020; 9:plants9121792. [PMID: 33348742 PMCID: PMC7766149 DOI: 10.3390/plants9121792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
The extraction of glucosinolates in boiling aqueous methanol from freeze dried leaf tissues is the most common method for myrosinase inactivation but can be hazardous because of methanol toxicity. Although freeze drying is the best dehydration method in terms of nutritional quality preservation, the main drawbacks are a limited sample quantity that can be processed simultaneously, a long processing time, and high energy consumption. Therefore, the aim of this study is to evaluate the effects of applying high temperature for myrosinase inactivation via hot air drying prior to the extraction step, as well as the effects of cold aqueous methanol extraction on total antioxidant activity, total glucosinolates, total phenolic content, and sugar profile in 36 landraces of kale. The results from our study indicate that cold aqueous methanol can be used instead of boiling aqueous methanol with no adverse effects on total glucosinolate content. Our results also show that hot air drying, compared to freeze drying, followed by cold extraction has an adverse effect on antioxidant activity measured by DPPH radical scavenging, total glucosinolate content, as well as on the content of all investigated sugars.
Collapse
|
28
|
Drozdowska M, Leszczyńska T, Koronowicz A, Piasna-Słupecka E, Dziadek K. Comparative study of young shoots and the mature red headed cabbage as antioxidant food resources with antiproliferative effect on prostate cancer cells. RSC Adv 2020; 10:43021-43034. [PMID: 35514921 PMCID: PMC9058263 DOI: 10.1039/d0ra07861a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The increasing knowledge on health benefit properties of plant origin food ingredients supports recommendations for the use of edible plants in the prevention of diet related diseases, including cancer. The beneficial effects of young shoots of red cabbage can be attributed to their mixture of phytochemicals possessing antioxidant and potential anticancer activity. The objective of this study was to compare the content of bioactive compounds, including HPLC analysis of polyphenols and antioxidant activity of young shoots of red cabbage and the vegetable at full maturity. The content of vitamin C and polyphenols in juices obtained from young shoots and the mature vegetable were also determined. The other aim of this study was to confirm the hypothesis that juice of young shoots more effectively, compared to juice of the mature vegetable, reduces the proliferation of prostate cancer cell lines DU145 and LNCaP in vitro. A significantly higher content of vitamin C and carotenoids, as well as a higher antioxidant activity were found in edible young shoots in comparison to the mature vegetable. In addition, studies have shown higher amount of vitamin C in the juice of young shoots than in the juice of the mature vegetable and similar content of polyphenolic compounds. The level of total polyphenol content in the studied plant samples did not differ significantly. Flavonoids were the main polyphenols in young shoots and juice obtained from them, while phenolic acids were dominant in the mature vegetable and in juice obtained from it. The juice of young shoots has shown stronger in vitro anti-proliferation effect against prostate cancer cells than juice of the mature vegetable. Young shoots of red cabbage could be a good source of phytochemicals with potential anticancer activity.![]()
Collapse
Affiliation(s)
- Mariola Drozdowska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| | - Teresa Leszczyńska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| | - Ewelina Piasna-Słupecka
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| | - Kinga Dziadek
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| |
Collapse
|
29
|
Mešić A, Šamec D, Jadan M, Bahun V, Tkalčec Z. Integrated morphological with molecular identification and bioactive compounds of 23 Croatian wild mushrooms samples. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Marcinkowska M, Jeleń HH. Determination of the odor threshold concentrations and partition coefficients of isothiocyanates from Brassica vegetables in aqueous solution. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Šola I, Vujčić Bok V, Dujmović M, Rusak G. Developmentally-related changes in phenolic and L-ascorbic acid content and antioxidant capacity of Chinese cabbage sprouts. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:702-712. [PMID: 32116379 DOI: 10.1007/s13197-019-04103-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/12/2019] [Accepted: 09/09/2019] [Indexed: 01/18/2023]
Abstract
The phytochemical and antioxidant properties of mature (head stage) Chinese cabbage (Brassica rapa ssp. pekinensis) are known; however, data on the phenolic profile, vitamin C (L-ascorbic acid) content and antioxidant capacity of its fresh sprouts are lacking. Since the human consumption of fresh cruciferous sprouts has significantly increased in recent years, their nutritional characterization has become a somewhat urgent matter. Therefore, in this study the contents of total phenolics, flavonols and hydroxycinnamic acids were measured spectrophotometrically, whereas individual flavonoids, phenolic acids and vitamin C were identified and quantified using a newly-developed high performance liquid chromatography method. Also, the antioxidant capacity of five Chinese cabbage sprout growth stages was determined. These stages contained either cotyledons only (seedlings), cotyledons and two leaves, four leaves, six leaves, or ten leaves. Principal component analysis (PCA) and hierarchical clustering (HC) were implemented in order to visualize the classification trend between the stages. Seedlings contained more sinapic acid and vitamin C than older plants. Plants containing six or ten leaves had more ferulic acid and isorhamnetin than younger ones. Total phenolics, flavonols, hydroxycinnamic acids, quercetin and antioxidant capacity did not statistically differ between seedlings and stages with six or ten leaves and their concentrations were significantly higher than in stages with two or four leaves. PCA and HC confirmed the higher phytochemical similarity between seedlings and plants with six or ten leaves than plants with two or four leaves. Therefore, Chinese cabbage seedlings and plants with six or ten leaves should be preferred over plants with two or four leaves, which were ultimately shown to be of lesser nutritional quality.
Collapse
Affiliation(s)
- Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Valerija Vujčić Bok
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Mia Dujmović
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Gordana Rusak
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
32
|
Drying Kinetics, Grinding Characteristics, and Physicochemical Properties of Broccoli Sprouts. Processes (Basel) 2020. [DOI: 10.3390/pr8010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In this study, we studied the drying process, grinding characteristics and physicochemical characteristics of broccoli sprouts (BS). The seeds of broccoli were germinated at 20 °C for 3 and 6 days. Then, the seeds were air- and freeze-dried, and the Page model was used for prediction of drying kinetics of broccoli sprouts. It was observed that the drying time of BS decreased about twofold as the air-drying temperature increased from 40 to 80 °C. An increasing the air-drying temperature from 40 to 80 °C decreased the drying time by approximately twofold. Freeze-drying of sprouts took the longest drying time. Germination of seeds significantly decreased the value of grinding energy requirements, and the ground sprouts exhibited a different grinding pattern in comparison to ground non-germinated seeds. In terms of color parameters, the highest lightness and yellowness were found for freeze-dried sprouts. Redness and yellowness of sprouts increased with an increase in the air-drying temperature. The lowest total color difference was obtained for the freeze-dried sprouts. Higher drying temperature resulted in lower total phenolics content (TPC) and decreased antioxidant activity (AA). The highest TPC and AA were observed in air-dried sprouts (40 °C) and freeze-dried sprouts after 6 days of germination.
Collapse
|
33
|
Response of nutritional and functional composition, anti-nutritional factors and antioxidant activity in germinated soybean under UV-B radiation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108709] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Li D, Kaw HY, Jin X. Extraction of Plant Materials. LIQUID-PHASE EXTRACTION 2020:667-682. [DOI: 10.1016/b978-0-12-816911-7.00022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
35
|
Influence of drought stress on bioactive compounds, antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa). Food Chem 2019; 308:125657. [PMID: 31669950 DOI: 10.1016/j.foodchem.2019.125657] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/09/2019] [Accepted: 10/05/2019] [Indexed: 01/09/2023]
Abstract
This study investigated the effects of drought stress on Chinese cabbage (Chcab) by measuring plant growth responses, total antioxidant enzyme activities, the contents of bioactive compounds including glucosinolates (GLS, aliphatic and indolic), and binding with human serum albumin (HSA). Forty-day-old Chinese cabbage (Brassica rapa L. ssp. pekinensis) seedlings were transplanted into pots and maintained for three weeks at 10% (drought-treated, D-T) and 30% (control, C) soil water. The total leaf number, leaf area, and fresh and dry weights were significantly lower in D-T Chcab than in controls. Total GLSs and catalase activities were found to be significantly higher in D-T Chcab than in controls. Indolic GLSs were significantly higher than aliphatic GLSs in D-T Chcab. These results show that D-T Chcab reduced growth parameters and binding properties with HSA and influenced total contents of GLSs, polyphenols, flavonoids, total antioxidant enzyme activities, catalase and peroxidase.
Collapse
|
36
|
Linić I, Šamec D, Grúz J, Vujčić Bok V, Strnad M, Salopek-Sondi B. Involvement of Phenolic Acids in Short-Term Adaptation to Salinity Stress is Species-Specific among Brassicaceae. PLANTS (BASEL, SWITZERLAND) 2019; 8:E155. [PMID: 31174414 PMCID: PMC6631191 DOI: 10.3390/plants8060155] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 01/12/2023]
Abstract
Salinity is a major abiotic stress negatively affecting plant growth and consequently crop production. The effects of short-term salt stress were evaluated on seedlings of three globally important Brassica crops-Chinese cabbage (Brassica rapa ssp. pekinensis), white cabbage (Brassica oleracea var. capitata), and kale (Brassica oleracea var. acephala)-with particular focus on phenolic acids. The physiological and biochemical stress parameters in the seedlings and the levels of three main groups of metabolites (total glucosinolates, carotenoids, and phenolics) and individual phenolic acids were determined. The salt treatments caused a dose-dependent reduction in root growth and biomass and an increase in stress parameters (Na+/K+ ratio, reactive oxygen species (ROS) and glutathione (GSH)) in all seedlings but most prominently in Chinese cabbage. Based on PCA, specific metabolites grouped close to the more tolerant species, white cabbage and kale. The highest levels of phenolic acids, particularly hydroxycinnamic acids, were determined in the more tolerant kale and white cabbage. A reduction in caffeic, salicylic, and 4-coumaric acid was found in Chinese cabbage and kale, and an increase in ferulic acid levels was found in kale upon salinity treatments. Phenolic acids are species-specific among Brassicaceae, and some may participate in stress tolerance. Salt-tolerant varieties have higher levels of some phenolic acids and suffer less from metabolic stress disorders under salinity stress.
Collapse
Affiliation(s)
- Ida Linić
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Dunja Šamec
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Jiří Grúz
- Laboratory of Growth Regulators, Institute of Experimental Botany AS CR & Faculty of Science of the Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
| | - Valerija Vujčić Bok
- Department of Botany, Faculty of Science, Rooseveltov trg 6, 10000 Zagreb, Croatia.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany AS CR & Faculty of Science of the Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
| | - Branka Salopek-Sondi
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia.
| |
Collapse
|
37
|
Prieto MA, López CJ, Simal-Gandara J. Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:305-350. [PMID: 31445598 DOI: 10.1016/bs.afnr.2019.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Glucosinolates are a large group of plant secondary metabolites with nutritional effects and biologically active compounds. Glucosinolates are mainly found in cruciferous plants such as Brassicaceae family, including common edible plants such as broccoli (Brassica oleracea var. italica), cabbage (B. oleracea var. capitata f. alba), cauliflower (B. oleracea var. botrytis), rapeseed (Brassica napus), mustard (Brassica nigra), and horseradish (Armoracia rusticana). If cruciferous plants are consumed without processing, myrosinase enzyme will hydrolyze the glucosinolates to various metabolites, such as isothiocyanates, nitriles, oxazolidine-2-thiones, and indole-3-carbinols. On the other hand, when cruciferous are cooked before consumption, myrosinase is inactivated and glucosinolates could be partially absorbed in their intact form through the gastrointestinal mucosa. This review paper summarizes the glucosinolate molecular breakdown, their genetic aspects from biosynthesis to precursors, their bioavailability (assimilation, absorption, and elimination of these molecules), their sensory properties, identified healthy and adverse effects, as well as the impact of processing on their bioavailability.
Collapse
Affiliation(s)
- M A Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain; Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo-Vigo Campus, Vigo, Spain
| | - Cecilia Jiménez López
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain; Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo-Vigo Campus, Vigo, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain.
| |
Collapse
|
38
|
Pasławska M, Nawirska-Olszańska A, Stępień B, Klim A. The Influence of Vacuum Impregnation on Nutritional Properties of Fluidized Bed Dried Kale ( Brassica oleracea L. Var. Acephala) Leaves. Molecules 2018; 23:molecules23112764. [PMID: 30366390 PMCID: PMC6278522 DOI: 10.3390/molecules23112764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/03/2022] Open
Abstract
The aim of the work was to assess the possibility of obtaining high bioactivity dried kale using a vacuum impregnation as the preliminary processing before the drying. Kale leaves underwent vacuum impregnation in freshly squeezed onion juice and in sodium chloride solution utilising the following impregnation process parameters: At the vacuum stage, 6 kPa reduced pressure for 1 min, dosing the impregnating solution and keeping the sample under vacuum for 2 min, and then 6 min in impregnating solution at atmospheric pressure. Fluidized bed drying of kale was conducted using inert polypropylene balls, utilising a drying air temperature in a range from 70 to 130 °C. The drying kinetics were described, and the dehydrated product’s quality was assessed, on the basis of these selected characteristics: The content of chlorophylls, polyphenols and carotenoids, and antioxidant activity measured with ABTS+, dry matter, water activity and colour. It was determined that protective influence of vacuum impregnation before fluidized bed drying was seen only in the case of using temperatures of 90 and 110 °C. The highest content of bioactive components in dried kale was obtained in the case of using onion juice impregnation and drying at 110 °C.
Collapse
Affiliation(s)
- Marta Pasławska
- Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland.
| | - Agnieszka Nawirska-Olszańska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Street 37, 51-630 Wrocław, Poland.
| | - Bogdan Stępień
- Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland.
| | - Angelika Klim
- Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland.
| |
Collapse
|