1
|
Wang Y, Zhang Y, Huang W, Xu ZZ, Zhang M, Zhang X, Wang C, Liu F. Effect of energy level on reactive oxygen species metabolism during shade-drying of Thompson seedless grapes and its relation to browning. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154403. [PMID: 39700901 DOI: 10.1016/j.jplph.2024.154403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/13/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
The browning of Thompson seedless grapes during shade-drying significantly hampers the sustainable and healthy development of the industry. This study investigates the browning phenomenon and reactive oxygen species (ROS) dynamics when Thompson seedless grapes, treated with adenosine triphosphate (ATP), 2,4-dinitrophenol (DNP), and water (QS), are dried in the shade. The effects of these treatments on ROS metabolism were analyzed through physiological, biochemical, and proteomic analyses. The findings showed that ATP treatment markedly delayed the increase in browning and reactive oxygen content, maintained high activity levels of ROS scavenging enzymes (superoxide dismutase and peroxidase), reduced malondialdehyde production-a membrane lipid peroxidation product-and preserved cell membrane integrity compared to QS and DNP treatments. Proteomic analysis identified three biological pathways involved in ROS metabolism in Thompson seedless grapes: glutathione metabolism, ascorbic acid, and glyoxalate metabolism, and peroxisomal pathways. Exogenous ATP treatment upregulated the expression of 17 proteins (SOD, APX, GPX, GST, GR), with significant increases in GST2 (D7SKQ2), POD1 (F6H095), SOD3 (D7TI74), and SOD4 (F6HTX9) by 1.707, 1.589, 1.644, and 2.213-fold, respectively. Therefore, ATP treatment maintains ROS scavenging proteins' expression, reduces the accumulation of ROS, maintains a balance in ROS metabolism, maintains the cell membrane stability and suppresses the oxidation of lipids, thus delaying the browning of Thompson seedless grapes. These findings are significant for regulating browning in the shade-drying process of Thompson seedless grapes.
Collapse
Affiliation(s)
- Yujing Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, China; Laboratory of Quality and Safety Risk Assessment for Agri-Products (Urumqi), Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Quality Standards & Testing Technology for Agri-Products, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Yuchen Zhang
- Laboratory of Quality and Safety Risk Assessment for Agri-Products (Urumqi), Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Quality Standards & Testing Technology for Agri-Products, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Wei Huang
- Microbial Application Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhen Zhen Xu
- Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Miaomiao Zhang
- Laboratory of Quality and Safety Risk Assessment for Agri-Products (Urumqi), Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Quality Standards & Testing Technology for Agri-Products, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Xuetong Zhang
- College of Life Science and Technology, Xinjiang University, Urumqi, China; Laboratory of Quality and Safety Risk Assessment for Agri-Products (Urumqi), Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Quality Standards & Testing Technology for Agri-Products, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Cheng Wang
- Laboratory of Quality and Safety Risk Assessment for Agri-Products (Urumqi), Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Quality Standards & Testing Technology for Agri-Products, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Fengjuan Liu
- Laboratory of Quality and Safety Risk Assessment for Agri-Products (Urumqi), Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Quality Standards & Testing Technology for Agri-Products, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| |
Collapse
|
2
|
Ye S, Chen J, Cao S, Luo D, Ba L. Thymol application delays the decline of fruit quality in blueberries via regulation of cell wall, energy and membrane lipid metabolism. Food Chem 2024; 458:140193. [PMID: 38959798 DOI: 10.1016/j.foodchem.2024.140193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
In this study, we evaluated the potential for exogenous thymol to slow this decline by measuring the effects of thymol application on cell wall, energy, and membrane lipid metabolism. The results showed that thymol application improved the preservation of the total soluble solids, titratable acidity, decay rate, and anthocyanin content, and effectively inhibited the accumulation of O2·-, H2O2, and malondialdehyde in blueberries during storage. Thymol application also effectively maintained fruit firmness, cell wall structure, and energy levels, while delaying the degradation of membrane phospholipids and unsaturated fatty acids during the storage of post-harvest blueberries. Therefore, exogenous thymol can maintain the quality of blueberry fruits by regulating energy and membrane lipid metabolism and reducing cell wall degradation. Thus, thymol-treatment could be a suitable biocontrol agent for maintaining blueberry quality and extending blueberry fruit storage life.
Collapse
Affiliation(s)
- Shengjie Ye
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| | - Jianye Chen
- College of Horticulture Science, South China Agricultural University, Guangzhou 510642, China
| | - Sen Cao
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| | - Donglan Luo
- School of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Liangjie Ba
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China.
| |
Collapse
|
3
|
Yu Z, Tang D, Zhang Z, Jiang Y, Yang J, Pan Y. Tert-Butylhydroquinone retards longan fruit deterioration by regulating membrane lipid and energy metabolisms. Food Chem 2024; 457:140041. [PMID: 38924916 DOI: 10.1016/j.foodchem.2024.140041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Longan fruit deteriorates rapidly after harvest, which limits its storability. This study aimed to investigate the effect of tert-butylhydroquinone (TBHQ) on quality maintenance, membrane lipid metabolism, and energy status of longan fruit during 25 °C storage. Compared with control fruit, TBHQ treatment maintained better marketable fruit rate and suppressed activities of phospholipase D (PLD), lipase, and lipoxygenase (LOX), and downregulated expressions of DlPLD, DlLOX, and Dllipase. TBHQ also increased the ratio of unsaturated fatty acids to saturated fatty acids (U/S) and the index of unsaturated fatty acids (IUFA). In addition, higher levels of ATP, ADP, energy charge, NADP+/ NADPH as well as higher activities of H+-ATPase, Ca2+-ATPase and NADK were also observed in TBHQ-treated fruit. These results suggested that TBHQ may maintain postharvest quality of longan fruit by regulating membrane lipid and energy metabolisms.
Collapse
Affiliation(s)
- Zhiqian Yu
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China
| | - Dingtao Tang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China
| | - Zhengke Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Jiali Yang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China.
| | - Yonggui Pan
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Liu Q, Zhang Q, Xue H, Bi Y, Yang X, Zong Y, Liu Z, Dov P. Effects of TrPLDs on the pathogenicity of Trichothecium roseum infected apple fruit. Food Microbiol 2024; 121:104496. [PMID: 38637067 DOI: 10.1016/j.fm.2024.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 04/20/2024]
Abstract
Phospholipase D plays a critical regulatory role in the pathogenicity of filamentous fungi. However, the molecular mechanism of PLD regulating the pathogenicity of filamentous fungi has not been reported. In this research, the previously constructed TrPLD1 and TrPLD2 (TrPLDs) mutants were used as test strains. Firstly, the function of TrPLDs in Trichothecium roseum was studied. Then, the effects of TrPLDs on the pathogenicity of T. roseum and the quality of the inoculated apples were verified. The results suggested that the deletion of TrPLD1 delayed the spore germination of ΔTrPLD1 and inhibited germ tube elongation by down-regulating the expressions of TrbrlA, TrabaA and TrwetA. By down-regulating the extracellular enzyme-coding gene expressions, ΔTrPLD1 inhibited the degradation of apple fruit cell wall and the change of fatty acid content during infection, reduced the cell membrane permeability and malondialdehyde (MDA) content of apple fruit, thereby maintaining the integrity of fruit cell membrane, and reduced the pathogenicity of ΔTrPLD1 to apple and kept the quality of apple. However, ΔTrPLD2 did not have a significant effect on the infection process of apple fruit by the pathogen.
Collapse
Affiliation(s)
- Qili Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Qianqian Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Xi Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhiguang Liu
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Prusky Dov
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| |
Collapse
|
5
|
Jiang S, An P, Xia C, Ma W, Zhao L, Liang T, Liu Q, Xu R, Huang D, Xia Z, Zou M. Genome-Wide Identification and Expression Analysis of the SUT Family from Three Species of Sapindaceae Revealed Their Role in the Accumulation of Sugars in Fruits. PLANTS (BASEL, SWITZERLAND) 2023; 13:95. [PMID: 38202403 PMCID: PMC10780545 DOI: 10.3390/plants13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Sapindaceae is an economically important family of Sapindales and includes many fruit crops. The dominant transport and storage form of photoassimilates in higher plants is sucrose. Sucrose transporter proteins play an irreplaceable role in the loading, transportation, unloading, and distribution of sucrose. A few SUT (sugar transporter) family genes have been identified and characterized in various plant species. In this study, 15, 15, and 10 genes were identified in litchi, longan, and rambutan, respectively, via genome-wide screening. These genes were divided into four subgroups based on phylogenetics. Gene duplication analysis suggested these genes underwent potent purifying selection and tandem duplications during evolution. The expression levels of SlSut01 and SlSut08 were significantly increased in the fruits of Sapindaceae members. The homologs of these two genes in longan and rambutan were also highly expressed in the fruits. The expression pattern of SUTs in three organs of the two varieties was also explored. Subcellular colocalization experiments revealed that the proteins encoded by both genes were present in the plasma membrane. This report provides data for the functional study of SUTs in litchi and provides a basis for screening sugar accumulation-related genes in fruits of Sapindaceae.
Collapse
Affiliation(s)
- Sirong Jiang
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Pengliang An
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Chengcai Xia
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Wanfeng Ma
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Long Zhao
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Tiyun Liang
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Qi Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Rui Xu
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Dongyi Huang
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Zhiqiang Xia
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Meiling Zou
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| |
Collapse
|
6
|
Lin Y, Lin H, Zeng L, Lin M, Chen Y, Fan Z, Wang H, Lin Y. DNP and ATP regulate the breakdown occurrence in the pulp of Phomopsis longanae Chi-infected longan fruit through modulating the metabolism of membrane lipid. Food Chem 2023; 409:135330. [PMID: 36599287 DOI: 10.1016/j.foodchem.2022.135330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
This study aimed to illustrate how DNP and ATP affected the pulp breakdown occurrence in P. longanae-infected longan and their relationship with the membrane lipid metabolism. Compared with P. longanae-inoculated samples, the pulp of DNP-treated P. longanae-infected longan exhibited higher cellular membrane permeability, breakdown index, activities of PI-PLC, PLD, PC-PLC, LOX, and lipase, and values of SFAs, PA, and DAG, while lower levels of PI, PC, USFAs, IUFA and U/S. However, the opposite findings were observed in ATP-treated P. longanae-infected longan. The data manifested that DNP-increased the pulp breakdown occurrence in P. longanae-inoculated samples was due to the elevated MLDEs activities that reduced the contents of phospholipids (PI, PC) and USFAs, disrupting the cell membrane structures. Nevertheless, ATP decreased the pulp breakdown occurrence in P. longanae-inoculated samples, which was ascribed to the reduced MLDEs activities that raised phospholipids (PI, PC) and USFAs contents, thus maintaining the cell membrane structures.
Collapse
Affiliation(s)
- Yuzhao Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China; College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Lingzhen Zeng
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
7
|
Wu G, Zhou C, Yang Z, Yin Q, Guo L, Deng H. Preparation and evaluation of a novel chlorine dioxide preservative based on citric acid grafted carboxymethyl chitosan. Int J Biol Macromol 2023:125024. [PMID: 37244340 DOI: 10.1016/j.ijbiomac.2023.125024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/03/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Instrument-free chlorine dioxide (ClO2) preservative for fruit and vegetable has gained great attention due to its convenience and safety. In this study, a series of carboxymethyl chitosan (CMC) with citric acid (CA) substituents were synthesized, characterized, and further used to prepare a novel ClO2 slow-releasing preservative for longan. UV-Vis and FT-IR spectra revealed that CMC-CA#1-3 were successfully prepared. Further potentiometric titration showed that the mass ratios of CA grafted in CMC-CA#1-3 were 0.18:1, 0.42:1, and 0.42:1, respectively. The composition and concentration of ClO2 slow-releasing preservative were optimized, and the best formulation was as follows: NaClO2:CMC-CA#2:Na2SO4:starch = 3:2:1:1. The maximum ClO2 release time of this preservative reached >240 h at 5-25 °C, and the maximum release rate always occurred at 12-36 h. Longan treated with 0.15-1.2 g ClO2 preservative had significantly (p < 0.05) higher L* and a* values but lower respiration rate and total microbial colony counts than the CK group (0 g ClO2 preservative). After 17 days of storage, longan treated with 0.3 g ClO2 preservative had the highest L* value of 47.47 and lowest respiration rate of 34.42 mg·kg-1·h-1, showing the best pericarp color and pulp quality. This study provided a safe, effective, and simple solution for longan preservation.
Collapse
Affiliation(s)
- Guang Wu
- Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences/Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 571100, China; Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China; Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry of Province), Ministry of Agriculture and Rural Affairs, Haikou 571100, China
| | - Chuang Zhou
- Key Laboratory of Hainan Province for Postharvest Physiology and Preservation of Tropical Horticultural Products, South Subtropical Crop Research Institute of China Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Ziming Yang
- Key Laboratory of Hainan Province for Postharvest Physiology and Preservation of Tropical Horticultural Products, South Subtropical Crop Research Institute of China Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Qingchun Yin
- Hainan Institute for Food Control/Key Laboratory of Tropical Fruits and Vegetables Quality Safety for State Market Regulation, Haikou 570314, China
| | - Li Guo
- Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences/Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 571100, China
| | - Hao Deng
- Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences/Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 571100, China; Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China; Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry of Province), Ministry of Agriculture and Rural Affairs, Haikou 571100, China.
| |
Collapse
|
8
|
Li B, Fu Y, Xi H, Liu S, Zhao W, Li P, Fan W, Wang D, Sun S. Untargeted Metabolomics Using UHPLC-HRMS Reveals Metabolic Changes of Fresh-Cut Potato during Browning Process. Molecules 2023; 28:molecules28083375. [PMID: 37110608 PMCID: PMC10144401 DOI: 10.3390/molecules28083375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Surface browning plays a major role in the quality loss of fresh-cut potatoes. Untargeted metabolomics were used to understand the metabolic changes of fresh-cut potato during the browning process. Their metabolites were profiled by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS). Data processing and metabolite annotation were completed by Compound Discoverer 3.3 software. Statistical analysis was applied to screen the key metabolites correlating with browning process. Fifteen key metabolites responsible for the browning process were putatively identified. Moreover, after analysis of the metabolic causes of glutamic acid, linolenic acid, glutathione, adenine, 12-OPDA and AMP, we found that the browning process of fresh-cut potatoes was related to the structural dissociation of the membrane, oxidation and reduction reaction and energy shortage. This work provides a reference for further investigation into the mechanism of browning in fresh-cut products.
Collapse
Affiliation(s)
- Baohong Li
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
| | - Yingjie Fu
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Hui Xi
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Shan Liu
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Wuduo Zhao
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Li
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Wu Fan
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Dingzhong Wang
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Shihao Sun
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| |
Collapse
|
9
|
Influences of flavonoids from Sedum aizoon L. on the cell membrane of Botrytis cinerea. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Li M, Lin Q, Chen Y, Chen Y, Lin M, Hung YC, Lin H. Acidic electrolyzed water treatment suppresses Phomopsis longanae Chi-induced the decreased storability and quality properties of fresh longans through modulating energy metabolism. Food Chem 2023; 404:134572. [DOI: 10.1016/j.foodchem.2022.134572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/22/2022]
|
11
|
Wang T, Yan T, Shi J, Sun Y, Wang Q, Li Q. The stability of cell structure and antioxidant enzymes are essential for fresh-cut potato browning. Food Res Int 2023; 164:112449. [PMID: 36738009 DOI: 10.1016/j.foodres.2022.112449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
In this study, the browning degrees of fresh-cut potatoes of different cultivars were investigated. Fresh-cut potatoes of the 'Huangjin' cultivar exhibited a higher browning index and sensory quality deterioration over time compared with 'Minshu' potatoes. 'Huangjin' exhibited a higher activity of browning-related enzymes such as polyphenol oxidase, tyrosinase, peroxidase, phenylalanine ammonia-lyase, phospholipase D (PLD), and lipoxygenase (LOX) than 'Minshu'. Furthermore, 'Minshu' exhibited lower H2O2 and malonaldehyde (MDA) contents, lower membrane lipid degradation and peroxidation, and delayed browning, attributable to its low PLD and LOX activities. The ultrastructure of 'Minshu' cells remained intact 7 h after cutting, while that of 'Huangjin' cells was severely damaged, and 'Minshu' cells exhibited more Golgi complexes and black particles than 'Huangjin' cells. Moreover, 'Huangjin' cells exhibited numerous multivesicular bodies, which were nonexistent in 'Minshu' cells. The results show that 'Minshu' potatoes feature a lower browning-related enzyme activity than 'Huangjin', and a tough cell structure to resist post-cut browning.
Collapse
Affiliation(s)
- Tingting Wang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Ting Yan
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Jingkun Shi
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Yanmei Sun
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Qingguo Wang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Qingqing Li
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China.
| |
Collapse
|
12
|
Dynamic Change of Carbon and Nitrogen Sources in Colonized Apples by Penicillium expansum. Foods 2022; 11:foods11213367. [PMID: 36359980 PMCID: PMC9657820 DOI: 10.3390/foods11213367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2022] Open
Abstract
Penicillium expansum is a necrotrophic pathogen, which actively kills host cells and obtains nutrients from dead cells to achieve infection. However, few reports have elucidated the differential levels of carbon and nitrogen sources over increasing distances of the leading edge in fungal colonized fruit tissues during colonization. Our results showed that the highest consumption of sucrose and fructose, as well as the accumulation of glucose, were found in the decayed region of P. expansum-colonized ‘Delicious’ apple fruit compared with the healthy region at the leading edge and the healthy region 6 mm away from the leading edge. As nitrogen sources, the contents of methionine, glutamate, leucine, valine, isoleucine and serine were the lowest in the decayed region compared with the healthy regions during colonization. In addition, the titratable acidity, oxalic acid, citric acid, succinic acid and malic acid showed the highest accumulation in the decayed region compared with the healthy regions. P. expansum colonization induced the accumulation of saturated fatty acids in the decayed region, while the level of unsaturated fatty acids was the lowest. These changes were not observed in the healthy regions. These results indicated that P. expansum kills cells in advance of its colonization in order to obtain the nutrients of the apple tissue from the distal leading tissue of the colonized apple. It is understood that more carbon and nitrogen sources are required for fungal colonization, and a stronger defense response against colonization occurred in the fruit, causing the transit of nutrients from the distal tissue to the infected sites.
Collapse
|
13
|
Liao L, Li S, Li Y, Huang Z, Li J, Xiong B, Zhang M, Sun G, Wang Z. Pre- or Post-Harvest Treatment with MeJA Improves Post-Harvest Storage of Lemon Fruit by Stimulating the Antioxidant System and Alleviating Chilling Injury. PLANTS (BASEL, SWITZERLAND) 2022; 11:2840. [PMID: 36365293 PMCID: PMC9655630 DOI: 10.3390/plants11212840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Cold storage preserves lemon fruit quality; however, it can result in significant chilling injury (CI). The effects of pre- and post-harvest methyl jasmonate (MeJA) treatments at four concentrations (0, 0.1, 0.3, and 0.5 mM) on CI and sensory quality of lemons during 80 d of storage at 7-10 °C were investigated. Both pre- and post-harvest MeJA treatments reduced CI, weight loss (WL) and maintained higher firmness, total soluble solids (TSS), and total acidity (TA) than in the controls. Antioxidant enzyme activities decreased in the control fruit but increased in both pre- and post-harvest MeJA-treated fruit. In addition, phospholipase D (PLD) and lipoxygenase (LOX) activities and malondialdehyde (MDA) content were higher in the control than in the MeJA-treated fruit. Pre-harvest MeJA treatment generally preserved fruit better than post-harvest MeJA treatment, with the best results observed when MeJA was applied at 0.3 mM, which enhanced the antioxidant system of the lemon fruits, thus reducing the post-harvest incidence of chilling injury. These results have important implications for improved fruit quality post-harvest.
Collapse
Affiliation(s)
- Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Sichen Li
- Citrus Research Institute, Southwest University, Chongqing 400700, China
| | - Yunjie Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zehao Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiahao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Zhou Z, Han P, Bai S, Ma N, Fang D, Yang W, Hu Q, Pei F. Caffeic acid-grafted-chitosan/polylactic acid film packaging enhances the postharvest quality of Agaricus bisporus by regulating membrane lipid metabolism. Food Res Int 2022; 158:111557. [DOI: 10.1016/j.foodres.2022.111557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
|
15
|
Ma W, Li J, Murtaza A, Iqbal A, Zhang J, Zhu L, Xu X, Pan S, Hu W. High-pressure carbon dioxide treatment alleviates browning development by regulating membrane lipid metabolism in fresh-cut lettuce. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Shu C, Cao J, Jiang W. Postharvest vibration-induced apple quality deterioration is associated with the energy dissipation system. Food Chem 2022; 386:132767. [PMID: 35339081 DOI: 10.1016/j.foodchem.2022.132767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 11/04/2022]
Abstract
Transit vibration is a potential risk that may cause fruit deterioration. Regulating energy metabolism is recognized for attenuating fruit abiotic/abiotic stresses. To explore the role of energy metabolism in the response of fruit to vibration stress, this research investigated the effects of exogenous treatment with adenosine triphosphate (ATP) and 2,4-dinitrophenol (DNP) on fruit after simulated vibration stress. The results demonstrated that DNP treatment induced significant energy depletion, which exacerbated the adverse physiological responses induced by vibration stress. In contrast, ATP regulated higher fruit energy levels and significantly alleviated fruit quality deterioration. This is achieved by supplying direct energy substances, maintaining higher energy charges, inhibiting ethylene biosynthesis, elevating the antioxidant system, and suppressing cell oxidative damage. The results demonstrated the positive role of fruit energy metabolism response to vibration stress. Ensuring sufficient energy level may be a promising strategy for controlling vibration-induced adverse physiological responses and a potential method to maintain fruit quality.
Collapse
Affiliation(s)
- Chang Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
17
|
ε-Poly-l-Lysine Enhances Fruit Disease Resistance in Postharvest Longans ( Dimocarpus longan Lour.) by Modulating Energy Status and ATPase Activity. Foods 2022; 11:foods11050773. [PMID: 35267405 PMCID: PMC8909375 DOI: 10.3390/foods11050773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
ε-poly-l-lysine (ε-PL) holds a strong antibacterial property and is widely used for food preservation. However, the application of ε-PL to enhance fruit disease resistance in postharvest longans (Dimocarpus longan Lour.) has not been explored. The objective of this study was to explore the impact of ε-PL treatment on disease occurrence and energy metabolism of longans infected with Phomopsis longanae Chi (P. longanae). It was found that, in comparison with P. longanae-inoculated longans, ε-PL could decrease the fruit disease index and adenosine monophosphate (AMP) content, increase the amounts of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and energy charge, and enhance the activities of adenosine triphosphatase (ATPase) (such as H+-, Mg2+-, and Ca2+-ATPase) in the mitochondria, protoplasm, and vacuole. The results suggest that the higher levels of ATPase activity and energy status played essential roles in disease resistance of postharvest longan fruit. Therefore, the ε-PL treatment can be used as a safe and efficient postharvest method to inhibit the disease occurrence of longan fruit during storage at room temperature.
Collapse
|
18
|
Zhang W, Li Z, Du M, Zhang X, Tian Y, Wang J. 1-Methylcyclopropene (1-MCP) retards the senescence of Pteridium aquilinum var. latiusculum by regulating the cellular energy status and membrane lipid metabolism. Food Sci Nutr 2021; 9:4349-4363. [PMID: 34401084 PMCID: PMC8358344 DOI: 10.1002/fsn3.2406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 11/15/2022] Open
Abstract
1-MCP is an ethylene inhibitor which can delay the ripening and senescence of fruits and vegetables effectively. Pteridium aquilinum var. Latiusculum (PA) is one of the wild vegetables which is famous and nutrient in China. However, the mechanism of PA preservation treated with 1-MCP has not been reported. Consequently, the effects of postharvest 1-MCP treatment on the changes in quality, energy metabolism, and membrane lipid metabolism of PA were investigated in this study. The results indicated that 1-MCP treatment could effectively inhibit the decreases in firmness, titratable acid (TA) content and the increases in weight loss rate, malondialdehyde (MDA) content, membrane permeability, and membrane lipid metabolism-related enzymes in PA. The cellular energy charge (EC) and the levels of ATP, ATP/ADP, and ATP/AMP, the activities of energy metabolism-related enzymes, NAD+, and NADH were maintained, and the decreases in unsaturated fatty acids and the ratio of unsaturated-to-saturated fatty acids in the membrane of PA cells were effectively retarded by 1-MCP treatment. A positive correlation was observed between cellular ATP levels and the ratio of unsaturated-to-saturated fatty acids, while negative correlations were observed between the ratio of unsaturated-to-saturated fatty acids and both lipid peroxidation and membrane permeability. These results indicated that higher levels of energy status, unsaturated-to-saturated fatty acid ratios, and lipid metabolism in the membrane could preserve the membrane integrity of postharvest PA and effectively extend its shelf life.
Collapse
Affiliation(s)
- Wentao Zhang
- College of Food ScienceNortheast Agricultural UniversityHarbinPR China
| | - Zhen Li
- College of Food ScienceNortheast Agricultural UniversityHarbinPR China
| | - Meiling Du
- College of Food ScienceNortheast Agricultural UniversityHarbinPR China
| | - Xiuling Zhang
- College of Food ScienceNortheast Agricultural UniversityHarbinPR China
| | - Yaqin Tian
- College of Food ScienceNortheast Agricultural UniversityHarbinPR China
| | - Jinge Wang
- College of Food ScienceNortheast Agricultural UniversityHarbinPR China
| |
Collapse
|
19
|
Li L, Yi P, Li C, Xin M, Sun J, He X, Sheng J, Zhou Z, Zheng F, Li J, Liu G, Ling D, Tang J, Li Z, Yang Y, Tang Y. Influence of polysaccharide-based edible coatings on enzymatic browning and oxidative senescence of fresh-cut lettuce. Food Sci Nutr 2021; 9:888-899. [PMID: 33598172 PMCID: PMC7866572 DOI: 10.1002/fsn3.2052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Fresh-cut lettuce has a short shelf-life due to enzymatic browning and oxidative senescence. The present study investigated effects of polysaccharide-based edible coatings (alginate, chitosan, and carrageenan) on enzymatic browning and antioxidant defense system of fresh-cut lettuces during cold storage (4°C) for 15 days. The results showed that three coatings could inhibit enzymatic browning through maintaining total phenolics (TP) content and decreasing polyphenol oxidase (PPO) and phenylalanine ammonialyase (PAL) activities. These coatings also reduced phospholipase D (PLD) and lipoxygenase (LOX) activities, lowered malondialdehyde (MDA) content, and enhanced antioxidant enzymes (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT; ascorbate peroxidase, APX) activities. Besides, all coatings positively affected sensory properties of fresh-cut lettuces after 3 days storage. Additionally, among three coating treatments, chitosan coating had the most positive effects on quality of fresh-cut lettuce and was the most suitable coating for retarding enzymatic browning and alleviating membrane oxidative damage. These results indicated that polysaccharide-based edible coatings were helpful to maintain quality, inhibit enzymatic browning, and postpone senescence of fresh-cut lettuce.
Collapse
Affiliation(s)
- Li Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Ping Yi
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Changbao Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Ming Xin
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jian Sun
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Xuemei He
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Jinfeng Sheng
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zhugui Zhou
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Fengjin Zheng
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jiemin Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Guoming Liu
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Dongning Ling
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jie Tang
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zhichun Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ying Yang
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yayuan Tang
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| |
Collapse
|
20
|
Zhang Z, Wang T, Liu G, Hu M, Yun Z, Duan X, Cai K, Jiang G. Inhibition of downy blight and enhancement of resistance in litchi fruit by postharvest application of melatonin. Food Chem 2021; 347:129009. [PMID: 33444889 DOI: 10.1016/j.foodchem.2021.129009] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/07/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
Litchis are tasty fruit with economic importance. However, the extreme susceptibility of harvested litchis to litchi downy blight caused by Peronophythora litchii leads to compromised quality. This study aimed to study the effects of melatonin on postharvest resistance to P. litchii in 'Feizixiao' litchis. Results showed that melatonin restricted lesion expansion in litchis after P. litchi inoculation. Melatonin enhanced the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase and 4-hydroxycinnamate CoA ligase while promoting the accumulations of phenolics and flavonoids. Nicotinamide adenine dinucleotide phosphate content and glucose-6-phosphate dehydrogenase and 6-phosphogluconic acid dehydrogenase activities were higher in treated fruit than control fruit. Higher energy status along with elevated H+-ATPase, Ca2+-ATPase, succinate dehydrogenase and cytochrome C oxidase activities were observed in treated fruit. Ultrastructural observation showed reduced damage in mitochondria in treated fruit. The results suggest that melatonin induced resistance in litchis by modulating the phenylpropanoid and pentose phosphate pathways as well as energy metabolism. .
Collapse
Affiliation(s)
- Zhengke Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, PR China
| | - Tian Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, PR China
| | - Gangshuai Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Meijiao Hu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Ze Yun
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Xuewu Duan
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Kun Cai
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Guoxiang Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China.
| |
Collapse
|
21
|
Yan H, Chen J, Liu J. The Involvement of Energy Metabolism and Lipid Peroxidation in Lignin Accumulation of Postharvest Pumelos. MEMBRANES 2020; 10:membranes10100269. [PMID: 33007858 PMCID: PMC7599556 DOI: 10.3390/membranes10100269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/28/2022]
Abstract
Lignification is especially prominent in postharvest pumelo fruit, which greatly impairs their attractiveness and commercial value. This study investigated the energy metabolism and lipid peroxidation and their relationship with accumulated lignin content in juice sacs of “Hongroumiyou” (HR) during 90 d of storage at 25 °C. The results indicated that, the alterations of energy metabolism in juice of sacs of postharvest pumelos was featured by a continuous decline in energy charge and ATP/ADP; an increase in succinic dehydrogenase (SDH) activity before 30 d and increases in activities of cytochrome c oxidase (CCO) and F0F1-ATPase before 60 d; but declines in activities of Ca2+-ATPase and H+-ATPase. Additionally, enhanced contents of H2O2, O2−, and –OH scavenging rate; increased malondialdehyde (MDA) content; and transformation of unsaturated fatty acids (USFA) to saturated fatty acids (USFA) and reduced USFA/SFA (U/S) could result in lipid peroxidation and membrane integrity loss. Moreover, correlation analysis showed that lignin accumulation was in close relation to energy metabolism and lipid peroxidation in juice sacs of postharvest pumelos. These results gave evident credence for the involvement of energy metabolism and lipid peroxidation in the lignin accumulation of HR pumelo fruit during postharvest storage.
Collapse
Affiliation(s)
- Huiling Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- South China Botanical Garden, Chinese Academy of Sciences, Beijing 100049, China
| | - Junjia Chen
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China;
| | - Juan Liu
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China;
- Correspondence:
| |
Collapse
|
22
|
Zhang L, Lei D, Deng X, Li F, Ji H, Yang S. Cytosolic glyceraldehyde-3-phosphate dehydrogenase 2/5/6 increase drought tolerance via stomatal movement and reactive oxygen species scavenging in wheat. PLANT, CELL & ENVIRONMENT 2020; 43:836-853. [PMID: 31873939 DOI: 10.1111/pce.13710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 05/07/2023]
Abstract
Drought is a major threat to wheat growth and crop productivity. However, there has been only limited success in developing drought-hardy cultivars. This lack of progress is due, at least in part, to a lack of understanding of the molecular mechanisms of drought tolerance in wheat. Here, we evaluated the potential role of three cytosolic glyceraldehyde-3-phosphate dehydrogenases (TaGAPC2/5/6) under drought stress in wheat and Arabidopsis. We found that TaGAPC2/5/6 all positively responded to drought stress via reactive oxygen species (ROS) scavenging and stomatal movement. The results of yeast co-transformation and electrophoretic mobility shift assay showed that TaWRKY33 acted as a direct regulator of TaGAPC2/5/6 genes. The dual luciferase reporter assay indicated that TaWRKY33 positively activated the expression of TaGAPC2/5/6. The results of bimolecular fluorescence complementation and yeast two-hybrid system demonstrated that TaGAPC2/5/6 interacted with phospholipase Dδ (PLDδ). We then demonstrated that TaGAPC2/5/6 positively promoted the activity of TaPLDδ in vitro and in vivo. Furthermore, lower PLDδ activity in RNAi wheat could lead to less PA accumulation, causing higher stomatal aperture sizes under drought stress. In summary, our results establish a new positive regulatory mechanism of TaGAPCs which helps wheat fine-tune their drought responses.
Collapse
Affiliation(s)
- Lin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Daili Lei
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Xia Deng
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Fangfang Li
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Haikun Ji
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Shushen Yang
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
23
|
Lin Y, Lin H, Lin M, Chen Y, Wang H, Fan Z, Ritenour MA, Lin Y. Hydrogen peroxide reduced ATPase activity and the levels of ATP, ADP, and energy charge and its association with pulp breakdown occurrence of longan fruit during storage. Food Chem 2019; 311:126008. [PMID: 31869639 DOI: 10.1016/j.foodchem.2019.126008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 01/30/2023]
Abstract
The effects of hydrogen peroxide (H2O2) on the contents of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), the level of energy charge, and the activity of adenosine triphosphatase (ATPase) in pulp of harvested longan fruit, and its association with longan pulp breakdown occurrence were studied. The results showed that, compared to the control longans, H2O2-treated longans exhibited a higher index of pulp breakdown, a higher amount of AMP, but lower levels of ATP, ADP and energy charge. H2O2-treated longans also exhibited lower activities of Mg2+-ATPase, Ca2+-ATPase, and H+-ATPase in mitochondrial membrane, vacuolar membrane, and plasma membrane as compared to the control longans. Above findings demonstrated that H2O2 caused longan pulp breakdown by depleting energy and lowering the ATPase activity, indicating H2O2-induced pulp breakdown in harvested longan fruit was due to energy deficit.
Collapse
Affiliation(s)
- Yixiong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food System & Bioengineering, University of Missouri, Columbia, MO 65211-5160, United States
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mark A Ritenour
- Indian River Research & Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce 34945-3138, United States
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
24
|
Lin Y, Lin H, Chen Y, Wang H, Ritenour MA, Lin Y. Hydrogen peroxide-induced changes in activities of membrane lipids-degrading enzymes and contents of membrane lipids composition in relation to pulp breakdown of longan fruit during storage. Food Chem 2019; 297:124955. [DOI: 10.1016/j.foodchem.2019.124955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022]
|
25
|
Effects of chitosan treatment on the storability and quality properties of longan fruit during storage. Food Chem 2019; 306:125627. [PMID: 31610328 DOI: 10.1016/j.foodchem.2019.125627] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Effects of various concentrations of Kadozan (chitosan) treatment on storability and quality properties of harvested 'Fuyan' longans were investigated. Compared to the control samples, Kadozan treated-longans displayed lower fruit respiration rate, lower pericarp cell membrane permeability, pericarp browning index, pulp breakdown index, fruit disease index, and weight loss, but higher rate of commercially acceptable fruit, higher levels of pericarp chlorophyll, carotenoid, anthocyanin, flavonoid and total phenolics, higher amounts of pulp total soluble sugar, sucrose, total soluble solids, and vitamin C. These results revealed Kadozan treatment could increase storability and retain better quality of harvested longan fruit. Among different concentrations of Kadozan, the dilution of 1:500 (VKadozan: VKadozan + Water) showed the best results in storability and maintained the best quality of longans during storage. These findings demonstrated that Kadozan could be a facile and eco-friendly postharvest handling approach for increasing storability and lengthening shelf-life of harvested 'Fuyan' longan fruit.
Collapse
|
26
|
He Y, Li Z, Tan F, Liu H, Zhu M, Yang H, Bi G, Wan H, Wang J, Xu R, Wen W, Zeng Y, Xu J, Guo W, Xue S, Cheng Y, Deng X. Fatty acid metabolic flux and lipid peroxidation homeostasis maintain the biomembrane stability to improve citrus fruit storage performance. Food Chem 2019; 292:314-324. [DOI: 10.1016/j.foodchem.2019.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 11/28/2022]
|
27
|
Lin Y, Lin H, Chen Y, Wang H, Lin M, Ritenour MA, Lin Y. The role of ROS-induced change of respiratory metabolism in pulp breakdown development of longan fruit during storage. Food Chem 2019; 305:125439. [PMID: 31499287 DOI: 10.1016/j.foodchem.2019.125439] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022]
Abstract
Compared to the control longans, hydrogen peroxide (H2O2)-treated longans exhibited higher index of pulp breakdown, higher fruit respiration rate, higher activities of pulp phosphohexose isomerase (PGI), succinate dehydrogenase (SDH), cytochrome C oxidase (CCO), ascorbic acid oxidase (AAO) and polyphenol oxidase (PPO), but lower activity of pulp nicotinamide adenine dinucleotide kinase (NADK). H2O2-treated longans also exhibited lower total activities of pulp glucose-6-phosphate dehydrogenase (G-6-PDH) and 6-phosphogluconate dehydrogenase (6-PGDH), lower levels of pulp NADP(H), but higher levels of pulp NAD(H). These data indicated that H2O2-stimulated longan pulp breakdown was owing to a decreased proportion of pentose phosphate pathway (PPP), the increased proportions of Embden-Meyerhof-Parnas pathway (EMP), tricarboxylic acid (TCA) cycle and cytochrome pathway (CCP) in total respiratory pathways. These findings further revealed that H2O2 could enhance respiration rate, and thus accelerate pulp breakdown occurrence and shorten the shelf life of longan fruit.
Collapse
Affiliation(s)
- Yixiong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food System & Bioengineering, University of Missouri, Columbia, MO 65211-5160, USA
| | - Mark A Ritenour
- Indian River Research & Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce 34945-3138, USA
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
28
|
A novel chitosan alleviates pulp breakdown of harvested longan fruit by suppressing disassembly of cell wall polysaccharides. Carbohydr Polym 2019; 217:126-134. [DOI: 10.1016/j.carbpol.2019.04.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 02/01/2023]
|
29
|
Exogenous adenosine triphosphate application retards cap browning in Agaricus bisporus during low temperature storage. Food Chem 2019; 293:285-290. [PMID: 31151613 DOI: 10.1016/j.foodchem.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
Exogenous adenosine triphosphate (ATP) treatment at 0, 250, 500, 750, and 1000 µM retarded cap browning in mushrooms by 0, 34, 26, 51 and 32 %, respectively, during storage at 4 °C for 18 days. Triggering signaling H2O2 accumulation arising from elevating NADPH oxidase enzyme activity during 6 days of storage at 4 °C may be pivotal for promoting shikimate dehydrogenase enzyme activity in mushrooms treated with ATP during 18 days of storage at 4 °C. Promoting melatonin accumulation (390 µg kg-1 FW vs. 160 µg kg-1 FW) in mushrooms treated with ATP during cold storage may attribute to signaling H2O2 accumulation. Higher DPPH scavenging capacity (72 % vs. 65 %) in mushrooms treated with ATP may attribute to higher phenols accumulation arising from higher phenylalanine ammonialyase/polyphenol oxidase enzymes activity concomitant with higher alternative oxidase gene expression during 18 days of storage at 4 °C.
Collapse
|
30
|
Li T, Shi D, Wu Q, Zhang Z, Qu H, Jiang Y. Sodium para-aminosalicylate delays pericarp browning of litchi fruit by inhibiting ROS-mediated senescence during postharvest storage. Food Chem 2019; 278:552-559. [DOI: 10.1016/j.foodchem.2018.11.099] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022]
|
31
|
Pan Y, Zhang S, Yuan M, Song H, Wang T, Zhang W, Zhang Z. Effect of glycine betaine on chilling injury in relation to energy metabolism in papaya fruit during cold storage. Food Sci Nutr 2019; 7:1123-1130. [PMID: 30918655 PMCID: PMC6418457 DOI: 10.1002/fsn3.957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 11/28/2022] Open
Abstract
"Zhongbai" papaya fruit were treated with 15 mmol/L glycine betaine (GB) and then refrigerated at 6°C for 40 days to study the influence of GB on chilling injury (CI) and possible mechanism associated with energy metabolism. The results exhibited that GB treatment remarkably reduced the CI severity as indicated by lower CI index during storage. GB treatment lowered electrolyte leakage and malondialdehyde content, which accounted for maintenance of membrane integrity and reduced lipid peroxidation. Moreover, GB treatment improved the energy status as revealed by increased adenosine triphosphate (ATP) level, energy charge, and activities of energy metabolism-related enzymes including mitochondrial membrane H+-adenosine triphosphatase (H+-ATPase) and Ca2+-adenosine triphosphatase (Ca2+-ATPase), succinate dehydrogenase (SDH), and cytochrome C oxidase (CCO). The results indicate that enhanced chilling tolerance in papaya fruit by GB treatment during cold storage might be ascribed to improved energy status in association with increased activities of energy metabolism-related enzymes.
Collapse
Affiliation(s)
- Yonggui Pan
- College of Food Science and TechnologyHainan UniversityHaikouChina
| | - Shanying Zhang
- College of Food Science and TechnologyHainan UniversityHaikouChina
| | - Mengqi Yuan
- College of Food Science and TechnologyHainan UniversityHaikouChina
| | - Hanliang Song
- College of Food Science and TechnologyHainan UniversityHaikouChina
| | - Tian Wang
- College of Food Science and TechnologyHainan UniversityHaikouChina
| | - Weimin Zhang
- College of Food Science and TechnologyHainan UniversityHaikouChina
| | - Zhengke Zhang
- College of Food Science and TechnologyHainan UniversityHaikouChina
| |
Collapse
|
32
|
Wang H, Chen YH, Sun JZ, Lin YF, Lin YX, Lin M, Hung YC, Ritenour MA, Lin HT. The Changes in Metabolisms of Membrane Lipids and Phenolics Induced by Phomopsis longanae Chi Infection in Association with Pericarp Browning and Disease Occurrence of Postharvest Longan Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12794-12804. [PMID: 30403851 DOI: 10.1021/acs.jafc.8b04616] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study investigated the changes in metabolisms of membrane lipids and phenolics caused by Phomopsis longanae Chi infection in association with pericarp browning and fruit disease occurrence of postharvest longans. Compared with the uninoculated-longans, the longans inoculated by P. longanae exhibited higher cellular membrane permeability; higher PLD, lipase, and LOX activities; and higher levels of saturated fatty acids (SFAs) and phosphatidic acid but lower levels of phosphatidylinositol, phosphatidylcholine, and unsaturated fatty acids (USFAs). Additionally, the longans inoculated by P. longanae showed higher activities of POD and PPO but a lower amount of total phenolics. These findings suggested that infection of P. longanae enhanced activities of PLD-, lipase-, and LOX- stimulated degradations of membrane lipids and USFAs, which destroyed the integrity of the cell membrane structure, resulting in enzymatic browning by contact of phenolics with POD and PPO, and resulting in reduction of resistance to pathogen infection and accordingly accelerated disease occurrence of postharvest longan fruit.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Yi-Hui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Jun-Zheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Yi-Fen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Yi-Xiong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Mengshi Lin
- Food Science Program, Division of Food Systems & Bioengineering , University of Missouri , Columbia , Missouri 65211-5160 , United States
| | - Yen-Con Hung
- Department of Food Science and Technology , University of Georgia , 1109 Experiment Street , Griffin , Georgia 30223 , United States
| | - Mark A Ritenour
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences , University of Florida , Fort Pierce 34945 , United States
| | - He-Tong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| |
Collapse
|
33
|
Zhang S, Lin H, Lin M, Lin Y, Chen Y, Wang H, Lin Y, Shi J. Lasiodiplodia theobromae (Pat.) Griff. & Maubl. reduced energy status and ATPase activity and its relation to disease development and pericarp browning of harvested longan fruit. Food Chem 2018; 275:239-245. [PMID: 30724192 DOI: 10.1016/j.foodchem.2018.09.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the effects of Lasiodiplodia theobromae (Pat.) Griff. & Maubl (L. theobromae) inoculation on the energy status and activity of adenosine triphosphatase (ATPase) during L. theobromae-induced disease development and pericarp browning of harvested 'Fuyan' longan (Dimocarpus longan Lour. cv. Fuyan) fruit. The results showed that, compared to the control longans, L. theobromae-inoculated longans displayed higher indices of fruit disease and pericarp browning, lower pericarp ATP and ADP contents, higher AMP content, lower level of energy charge, as well as lower activities of Ca2+-ATPase, Mg2+-ATPase and H+-ATPase in membranes of plasma, vacuole, and mitochondria. These results indicated that the infection of L. theobromae reduced energy status and ATPase activities, caused ions disorder, damaged the integrity and function of the cell and organelles including vacuole and mitochondria in pericarp of longan fruit, which contributed to L. theobromae-promoted disease development and pericarp browning of harvested longan fruit during storage.
Collapse
Affiliation(s)
- Shen Zhang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food System & Bioengineering, University of Missouri, Columbia, MO 65211-5160, USA
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yixiong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|