1
|
Guo F, Chen K, Yang J, Wu Y, Cheng J, Yang Q, Zhu L, Li J, Xu W. Rapid antibiotic biosensors based on multiple molecular recognition elements. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2496-2514. [PMID: 40047053 DOI: 10.1039/d4ay02212b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The extensive use of antibiotics poses significant public health concerns, including the increase in drug-resistant bacteria and environmental pollution, underscoring the urgent need for rapid, sensitive, and specific antibiotic detection methods. Most current reviews on antibiotic detection primarily focus on categorizing antibiotics based on their types or the classification of sensors used, such as electrochemical, optical, or colorimetric sensors. In contrast, this review proposes a novel and systematic theoretical framework for the detection of antibiotics using sensors using seven popular molecular recognition elements-antibodies, aptamers, microorganisms, cells, peptides, molecularly imprinted polymers (MIPs), metal-organic frameworks (MOFs) and direct recognition modalities and briefly discusses the mechanism of molecular recognition elements and antibiotic recognition. Additionally, it explores biosensors developed using these elements, offering a detailed analysis of their strengths and limitations in terms of sensitivity, specificity, and practicality. The review concludes by addressing current challenges and future directions, providing a comprehensive perspective essential for enhancing food safety and protecting public health.
Collapse
Affiliation(s)
- Feng Guo
- College of Food Science and Technology, Hebei Normal University of Science and Technology, 066004, China.
| | - Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Jiaru Yang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Yifan Wu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Jiageng Cheng
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Qian Yang
- School of Public Health, Hebei Key Laboratory of Public Health Safety, Hebei University, Baoding 071002, China
| | - Longjiao Zhu
- Key Laboratory of Geriatrics (Hepatobiliary Diseases), China General Technology Group, Beijing 100073, China
| | - Jun Li
- College of Food Science and Technology, Hebei Normal University of Science and Technology, 066004, China.
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Lee JJ, Choi M, Jeon Y, Khanal D, Lee J, Kim D, Chan HK, Hwang SJ. Physicochemical characterization and nanochemical analysis of ciprofloxacin hydrophobic ion Pairs for enhanced encapsulation in PLGA nanoparticle. Int J Pharm 2025; 672:125314. [PMID: 39909154 DOI: 10.1016/j.ijpharm.2025.125314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/14/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
This study investigates the physicochemical transformation of ciprofloxacin (CIP) through hydrophobic ion pairing with five counter ions-sodium oleate, sodium laurate, sodium caprate, disodium pamoate, and sodium deoxycholate-to enhance compatibility with hydrophobic Poly (lactic-co-glycolic acid) (PLGA) nanoparticles. Complexation efficiencies (CE) reached up to 92.26 %, with ciprofloxacin pamoate (CIP-PAM) achieving over 90 % CE at a 1:0.5 M ratio. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses showed reduced crystallinity across all complexes, with CIP-PAM exhibiting an amorphous form. Optical photothermal infrared spectroscopy (O-PTIR) confirmed uniform complexation within particles, while CIP-PAM displayed a broad peak and weak intensity in the 900-1300 cm-1 region, supporting its amorphous nature. Log P values demonstrated increased hydrophobicity for all complexes, with ciprofloxacin oleate (CIP-OLE) showing a 93-fold increase (p < 0.001). In vitro dissociation patterns varied: CIP-OLE maintained steady release in DW (49.7 %) and PBS (32.3 %) over 48 h, whereas CIP-PAM exhibited strong stability in DW (25.2 %) and a contrasting 68.1 % release in PBS, highlighting solvent-dependent dissociation behaviors. PLGA nanoparticles prepared via S/O/W achieved particle sizes under 200 nm, with CIP-PAM showing the highest encapsulation efficiency (63.02 % vs 17.21 % (CIP)). These findings underscore the importance of counter ion selection to optimize CIP compatibility with hydrophobic carriers, providing a basis for improved drug loading of hydrophilic antibiotics.
Collapse
Affiliation(s)
- Jong-Ju Lee
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Minji Choi
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Yuim Jeon
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Dipesh Khanal
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Juseung Lee
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Dowoong Kim
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| | - Sung-Joo Hwang
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| |
Collapse
|
3
|
Pandiselvam R, Aydar AY, Aksoylu Özbek Z, Sözeri Atik D, Süfer Ö, Taşkin B, Olum E, Ramniwas S, Rustagi S, Cozzolino D. Farm to fork applications: how vibrational spectroscopy can be used along the whole value chain? Crit Rev Biotechnol 2024:1-44. [PMID: 39494675 DOI: 10.1080/07388551.2024.2409124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 06/28/2024] [Accepted: 08/08/2024] [Indexed: 11/05/2024]
Abstract
Vibrational spectroscopy is a nondestructive analysis technique that depends on the periodic variations in dipole moments and polarizabilities resulting from the molecular vibrations of molecules/atoms. These methods have important advantages over conventional analytical techniques, including (a) their simplicity in terms of implementation and operation, (b) their adaptability to on-line and on-farm applications, (c) making measurement in a few minutes, and (d) the absence of dangerous solvents throughout sample preparation or measurement. Food safety is a concept that requires the assurance that food is free from any physical, chemical, or biological hazards at all stages, from farm to fork. Continuous monitoring should be provided in order to guarantee the safety of the food. Regarding their advantages, vibrational spectroscopic methods, such as Fourier-transform infrared (FTIR), near-infrared (NIR), and Raman spectroscopy, are considered reliable and rapid techniques to track food safety- and food authenticity-related issues throughout the food chain. Furthermore, coupling spectral data with chemometric approaches also enables the discrimination of samples with different kinds of food safety-related hazards. This review deals with the recent application of vibrational spectroscopic techniques to monitor various hazards related to various foods, including crops, fruits, vegetables, milk, dairy products, meat, seafood, and poultry, throughout harvesting, transportation, processing, distribution, and storage.
Collapse
Affiliation(s)
- Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | - Alev Yüksel Aydar
- Department of Food Engineering, Manisa Celal Bayar University, Manisa, Türkiye
| | - Zeynep Aksoylu Özbek
- Department of Food Engineering, Manisa Celal Bayar University, Manisa, Türkiye
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Didem Sözeri Atik
- Department of Food Engineering, Agriculture Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Türkiye
| | - Özge Süfer
- Department of Food Engineering, Faculty of Engineering, Osmaniye Korkut Ata University, Osmaniye, Türkiye
| | - Bilge Taşkin
- Centre DRIFT-FOOD, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, Prague 6, Czech Republic
| | - Emine Olum
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts Design and Architecture, Istanbul Medipol University, Istanbul, Türkiye
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, India
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
Yin X, Zhong Y, Chen A, Bao T, Deng Q, Zhang Y, Yang R. A triple-channel sensor array utilizing fluorescent carbon dots for simultaneous discrimination and detection of multiple fluoroquinolones. Talanta 2024; 279:126608. [PMID: 39094530 DOI: 10.1016/j.talanta.2024.126608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
The presence of fluoroquinolones (FQs) residues in food and the environment has prompted concerns regarding food safety and public health. Consequently, it is of great significance to analyze the types and levels of FQs present. However, the majority of studies have concentrated on the specific detection of individual FQs, with a notable absence of high-throughput and rapid analysis methods for the simultaneous detection of multiple FQs that may coexist in food and the environment. Hereon, a triple-channel sensor array was successfully constructed utilizing fluorescent carbon dots (TA-CDs), with the assistance of Cu2+ and Fe3+, for the qualitative discrimination and quantitative detection of eight types of FQs. The sensor array can distinguish between different concentrations of FQs and various mixtures of FQs, as well as 100 % accuracy in the discrimination of unknown samples. Impressively, the sensor platform can quantitatively detect FQs in animal-derived foods, such as honey, milk, eggs, and pork, as well as in water samples. This research has the potential to be extended to other analytes with similar chemical structures or properties.
Collapse
Affiliation(s)
- Xinghang Yin
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Yujia Zhong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Anli Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Tongyan Bao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qunfen Deng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Rui Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| |
Collapse
|
5
|
Saha A, Kurrey R, Deb MK. Resin bound gold nanocomposites assisted SE/ATR-FTIR spectroscopy for detection of pymetrozine insecticide in vegetable samples. Heliyon 2024; 10:e37856. [PMID: 39347409 PMCID: PMC11437939 DOI: 10.1016/j.heliyon.2024.e37856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
The goal of this work was to assess the competence of organic hydrophobic resin bound gold nanocomposites (OH/R-AuNCs) for detection of pymetrozine insecticide from vegetable samples employing surface-enhanced/attenuated total reflectance-Fourier transform infrared (SE/ATR-FTIR) spectroscopy. The adsorption isotherm models, including the Langmuir, Freundlich and Temkin, are tested to reveal the interactive behaviour between the OH/R-AuNCs and pesticide. The adsorption occurs principally by London-Van der Waals dispersion interactions and hydrogen bonding interactions between the surface of OH/R-AuNCs materials and the hydrophobic part of pesticide molecule. The characteristic absorption band obtained at 3019.94 cm-1 was utilized for the quantitative analysis of pymetrozine insecticide in vegetable samples. The method was found to be accurate and precise, with mean recovery values in the range of 94.5-110 %, correlation coefficient of 0.992 %, and detection limit of 2.65 μg mL-1. The adsorption efficiency of the designed OH/R-AuNCs significantly influences the SE/ATR-FTIR response of the pymetrozine around 90 %. The optimized and validated method was applied to determine the residual concentrations of the pymetrozine that had been applied to vegetable samples.
Collapse
Affiliation(s)
- Anushree Saha
- Department of Chemistry, Kalinga University, Naya Raipur, Chhattisgarh, India
| | - Ramsingh Kurrey
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
| |
Collapse
|
6
|
Sahu K, Kurrey R, Pillai AK. Green synthesis of silver nanoparticles from Manilkara zapota leaf extract for the detection of aminoglycoside antibiotics and other applications. RSC Adv 2024; 14:23240-23256. [PMID: 39045403 PMCID: PMC11265568 DOI: 10.1039/d4ra01906g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
Antibiotics of aminoglycoside (AMG) class, such as streptomycin (STR), have been widely used to treat infectious diseases caused by Gram-negative bacteria in livestock and humans. In this study, a selective and sensitive colorimetric probe for the determination of STR was proposed based on eco-friendly green synthesized AgNPs from the leaf extract of Manilkara zapota. The mechanism for the detection of STR is based on the electrostatic interaction of opposite charges between negatively charged silver nanoparticle-Manilkara zapota leaf (AgNP-MZL) and STR, causing an aggregation-induced characteristic shift of the SPR band (from 390 nm to 570 nm wavelength) of AgNP-MZL. The morphology, size distribution and optical properties of AgNP-MZL were characterized using UV/visible absorption spectroscopy, FTIR spectroscopy, XRD, DLS, zeta-potential measurements and TEM. The selective determination of STR was experimentally confirmed by performing controlled testing with other classes of antibiotics. To test the sensitivity level of this method, the ratio of these two A 390/A 570 absorbance wavelengths was selected to provide a linear concentration plot between 5 and 100 ng mL-1 STR. The LOD and LOQ were calculated to be 3.5 ng mL-1 and 26.8 ng mL-1, respectively. Good precision was evaluated with a standard deviation of 0.45 ng mL-1 and a relative standard deviation of 2.0% (intraday) and 2.42% (interday) at 10 ng mL-1 for 3 replicate measurements. Advantages of the green synthesis of AgNP-MZL include its eco-friendly nature and it is easy, efficient, cost effective and selective for the detection of the AMG class of antibiotics, i.e. STR, in agricultural and environmental samples.
Collapse
Affiliation(s)
- Khushboo Sahu
- Govt. V. Y. T. Post Graduate Autonomous College Durg-491 001 Chhattisgarh India +917882 393644
| | - Ramsingh Kurrey
- National Center for Natural Resources, Pt. Ravishankar Shukla University Raipur-492 010 Chhattisgarh India
| | - Ajai Kumar Pillai
- Govt. V. Y. T. Post Graduate Autonomous College Durg-491 001 Chhattisgarh India +917882 393644
| |
Collapse
|
7
|
Hu Y, Chen X, Wang K, Jiang C, Liu W, Zhang S, Zheng M, Zhou Y, Xiao Y, Liu Y. Fluorescent responsive membrane based on terbium coordination polymer and carbon dots with AIE effect for rapid and visual detection of fluoroquinolone. Biosens Bioelectron 2024; 254:116205. [PMID: 38484411 DOI: 10.1016/j.bios.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 04/02/2024]
Abstract
In this study, based on aggregation-induced emission (AIE) effect and antenna effect, a novel portable fluorescent responsive membrane was constructed with red carbon dots (R-CDs) as reference signal and terbium coordination polymer (Tb-AMP CPs) as response signal for visual, instrument-free, and sensitive detection of fluoroquinolones (FQs). Specifically, the fluorescent responsive membrane (R-T membrane) was prepared by physically depositing R-CDs with AIE property and Tb-AMP CPs on the surface of polyvinylidene fluoride filter membranes at ambient temperature. In the presence of FQs, Tb3+ in the Tb-AMP CPs of the prepared membrane coordinated with the β-diketone structure of FQs, which turned on the yellow-green fluorescence through the "antenna effect". As the concentration of FQs increased, the R-T membrane achieved a fluorescent color transition from bright pink to yellow-green. Its visual detection sensitivity for three FQs, including ciprofloxacin, difloxacin, and enrofloxacin, was 0.01 μM, and the detection limits were 7.4 nM, 7.8 nM, and 9.2 nM, respectively, by analyzing the color parameter green. In the residue analysis of FQs in real samples, the constructed membrane also exhibited remarkable anti-interference and reliability, which is of great significance for ensuring the safety of animal-derived food.
Collapse
Affiliation(s)
- Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xi Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kai Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Chuang Jiang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Siyu Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
8
|
Attia KAM, El-Olemy A, Serag A, Abbas AEF, Eid SM. Environmentally sustainable DRS-FTIR probe assisted by chemometric tools for quality control analysis of cinnarizine and piracetam having diverged concentration ranges: Validation, greenness, and whiteness studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123161. [PMID: 37478754 DOI: 10.1016/j.saa.2023.123161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
A novel diffuse reflectance fourier transform infrared spectroscopic method accompanied by chemometrics was optimized to fulfill the white analytical chemistry and green analytical chemistry principles for the quantification of cinnarizine and piracetam for the first time without any prior separation in their challenging pharmaceutical preparation, which has a pretty substantial difference in the concentration of cinnarizine/piracetam (1:16). Furthermore, the suggested method was used for cinnarizine/piracetam dissolution testing as an effective alternative to traditional methods. For the cinnarizine/piracetam dissolution tests, we used a dissolution vessel with 900 mL of phosphate buffer pH 2.5 at 37 °C ± 0.5 °C, then the sampling was carried out by frequent withdrawal of 20 µl samples from the dissolution vessel at a one-minute interval, over one hour, then representative fourier transform infrared spectra were recorded. To create a partial-least-squares regression model, a fractional factorial design with 5 different levels and 2 factors was used. This led to the creation of 25 mixtures, 15 as a calibration set and 10 as a validation set, with varying concentration ranges: 1-75 and 16-1000 μg/mL for cinnarizine/piracetam, respectively. Upon optimization of the partial-least-squares regression model, in terms of latent variables and spectral region, root mean square error of cross-validation of 0.477 and 0.270, for cinnarizine/piracetam respectively, were obtained. The optimized partial-least-squares regression model was further validated, providing good results in terms of recovery% (around 98 to 102 %), root mean square error of prediction (0.436 and 3.329), relative root mean square error of prediction (1.210 and 1.245), bias-corrected mean square error of prediction (0.059 and 0.081), and limit of detection (0.125 and 2.786) for cinnarizine/piracetam respectively. Ultimately, the developed method was assessed for whiteness, greenness, and sustainability using five assessment tools. the developed method achieved a greener national environmental method index and complementary green analytical procedure index quadrants with higher eco-scale assessment scores (91), analytical greenness metric scores (0.87), and red-greenblue 12 algorithm scores (89.7) than the reported methods, showing high practical and environmental acceptance for quality control of cinnarizine/piracetam.
Collapse
Affiliation(s)
- Khalid A M Attia
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| | - Ahmed El-Olemy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| | - Ahmed Emad F Abbas
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, Giza 12585, Egypt
| | - Sherif M Eid
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, Giza 12585, Egypt.
| |
Collapse
|
9
|
Lei X, Guo L, Xu L, Kuang H, Xu C, Liu L. Fluorescent strip sensor for rapid and ultrasensitive determination of fluoroquinolones in fish and milk. Analyst 2023; 148:381-390. [PMID: 36537261 DOI: 10.1039/d2an01757a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthetic antibiotics fluoroquinolones are popular due to their good antibacterial performance and low price, but the risk to human health caused by their residues has attracted great attention. In this study, an ultra-sensitive mAb, 4D7, was prepared with an IC50 of 0.027 ng mL-1 to norfloxacin (NOR) and cross-reactivity of 19.7-47.7% to lomefloxacin (LOM), pefloxacin (PEF), ofloxacin (OFL), enrofloxacin (ENR), ciprofloxacin (CIP), and danofloxacin (DAN). Based on mAb 4D7 and Eu-fluorescent microspheres, a rapid and sensitive immunochromatographic strip was developed for the detection of fluoroquinolone residues in fish and milk. The detection ranges (IC20-IC80) of the strip for the detection of NOR, PEF, LOM, OFL, ENR, CIP and DAN were 0.19-1.1 μg kg-1, 0.39-2.1 μg kg-1, 0.5-2.6 μg kg-1, 0.43-3.3 μg kg-1, 0.61-3.5 μg kg-1, 0.69-5.5 μg kg-1, 0.52-3.4 μg kg-1 in fish, and 0.027-0.19 μg kg-1, 0.049-0.34 μg kg-1, 0.069-0.39 μg kg-1, 0.06-0.41 μg kg-1, 0.089-0.65 μg kg-1, 0.12-0.81 μg kg-1, 0.091-0.52 μg kg-1 in milk, respectively. The recovery rates in spiked sample tests were 88.6-113.6% with a coefficient of variation less than 8.4%. Thus the newly-developed strip was sensitive and reliable for rapid on-site detection of fluoroquinolone residues in fish and milk.
Collapse
Affiliation(s)
- Xianlu Lei
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Lingling Guo
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Liguang Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
10
|
Cationic Polystyrene Resin Bound Silver Nanocomposites Assisted Fourier Transform Infrared Spectroscopy for Enhanced Catalytic Reduction of 4-Nitrophenol in Aqueous Medium. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The present work reported a novel strategy to construct supported cationic-polystyrene-resin-bound silver nanocomposites for enhanced catalytic reduction of 4-nitrophenol in an aqueous medium. The Fourier transform infrared spectroscopy (FTIR) was used as a model instrument for the study of catalytic reduction of 4-nitrophenol using cationic-polystyrene-resin-bound silver nanocomposite materials. The mechanism is based on the reduction of 4-nitrophenol to 4-aminophenol due to the electron transfer process that occurred between donor borohydride (BH4−) and acceptor 4-nitrophenol. The polystyrene resin provides support and surface area to increase the catalytic activity of silver nanoparticles. The diffused reflectance-Fourier transform infrared spectroscopy revealed the binding of silver particles onto the surface of cationic polystyrene resin beads. Furthermore, the catalyst was easily separated by the filtration and drying process and was able to reuse. A quantitative analysis of this work has also been performed. The linearity range, the limit of detection, and the limit of quantification obtained for the present method were 0.1 × 10−4 to 1.0 M, 0.6 M, and 2.1 M, respectively. Moreover, a good catalytic efficiency was found to be 96.8%. The advantages of the current method are its simplicity, sensitivity, rapidity, low cost, ease of preparation, and excellent catalytic efficiency to reduce 4-nitrophenol from an aqueous solution.
Collapse
|
11
|
Chai Y, Zhang Y, Wang L, Du Y, Wang B, Li N, Chen M, Ou L. In situ one-pot construction of MOF/hydrogel composite beads with enhanced wastewater treatment performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Sharma H, Saha A, Mishra AK, Rai MK, Deb MK. Diazotized reagent for spectrophotometric determination of glyphosate pesticide in environmental and agricultural samples. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Research Progress of Applying Infrared Spectroscopy Technology for Detection of Toxic and Harmful Substances in Food. Foods 2022; 11:foods11070930. [PMID: 35407017 PMCID: PMC8997473 DOI: 10.3390/foods11070930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, food safety incidents have been frequently reported. Food or raw materials themselves contain substances that may endanger human health and are called toxic and harmful substances in food, which can be divided into endogenous, exogenous toxic, and harmful substances and biological toxins. Therefore, realizing the rapid, efficient, and nondestructive testing of toxic and harmful substances in food is of great significance to ensure food safety and improve the ability of food safety supervision. Among the nondestructive detection methods, infrared spectroscopy technology has become a powerful solution for detecting toxic and harmful substances in food with its high efficiency, speed, easy operation, and low costs, while requiring less sample size and is nondestructive, and has been widely used in many fields. In this review, the concept and principle of IR spectroscopy in food are briefly introduced, including NIR and FTIR. Then, the main progress and contribution of IR spectroscopy are summarized, including the model’s establishment, technical application, and spectral optimization in grain, fruits, vegetables, and beverages. Moreover, the limitations and development prospects of detection are discussed. It is anticipated that infrared spectroscopy technology, in combination with other advanced technologies, will be widely used in the whole food safety field.
Collapse
|
14
|
Tang Y, Wang X, Lu Y, Guo Y, Xie K, Chen L, Chen J, He Z, Guan F, Gao P, Zhang T, Zhang G, Dai G. Qualitative and quantitative determination of tilmicosin in poultry eggs by gas chromatography tandem mass spectrometry after derivatization with acetic anhydride. Food Chem 2022; 384:132572. [PMID: 35245750 DOI: 10.1016/j.foodchem.2022.132572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
A novel GC-MS/MS analytical method was established for the qualitative and quantitative determination of tilmicosin in poultry (Jinghai yellow chicken, Gaoyou duck and Yangzhou goose) eggs. The method was based on LLE and SPE for sample extraction and purification. Pyridine and acetic anhydride were used for the derivatization reaction. When tilmicosin was added to blank poultry egg samples at the LOQ and 75 μg/kg, 150 μg/kg, and 300 μg/kg, the recoveries ranged from 72.80% to 88.75%, the intraday and interday RSDs ranged from 2.31% to 4.56% and 3.29%-5.61%, respectively, and the LODs and LOQs ranged from 3.8 to 5.6 μg/kg and 8.4-10.5 μg/kg, respectively. These results confirmed that the parameters of this novel method meet the requirements of the FAO & WHO (2014) for veterinary drug residue testing. Poultry egg samples purchased from the local market were analysed according to the established method and only one egg sample was found to contain 18.9 μg/kg of tilmicosin.
Collapse
Affiliation(s)
- Yayun Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xutang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yang Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yawen Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| | - Lan Chen
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jinyuan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Zhaoyuan He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Fanxun Guan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Pengfei Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Khalkho BR, Deb MK, Kurrey R, Sahu B, Saha A, Patle TK, Chauhan R, Shrivas K. Citrate functionalized gold nanoparticles assisted micro extraction of L-cysteine in milk and water samples using Fourier transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120523. [PMID: 34715558 DOI: 10.1016/j.saa.2021.120523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
This paper describes the sensing application of citrate functionalized gold nanoparticles (AuNPs) employing for the determination of L-cysteine in food and water samples. It is established with diffuse reflectance Fourier transform infrared (DRS-FTIR) spectroscopic analysis. The disappearance of the thiol (-SH) band in the FTIR spectra and the shift in the peaks of the amino group (NH3+) and carboxylate group (-COO-) indicated the Au-S interaction and the aggregation of the NPs. The signal intensity of L-cysteine was enhanced due to hot-spots formed by the aggregation of AuNPs producing the effective absorption of electromagnetic radiation in the IR region for molecular vibration. The relationship between AuNPs and L-cysteine was theoretically investigated by the Density Function Theory (DFT) based on LANL2DZ with the aid of the Gaussian 09 (C.01) software. Interaction between AuNPs and L-cysteine molecules resulted to a shift to higher wavelengths in the plasmon bands, further verified by transmission electron microscopes (TEM), which have indicated random aggregated particles. Further dynamic light scattering (DLS) measurements showed a relatively high degree of polydispersity confirming the aggregation of the particles. Under optimized conditions, the calibration curve showed a good linearity range from 20 to 150 μg mL-1 with a correlation coefficient (R2) 0.990. The limit of detection and quantification were 1.04 and 3.44 μg mL-1, respectively by DRS-FTIR. This modified AuNPs sample was used successfully in milk and water samples with adequate results to determine L-cysteine.
Collapse
Affiliation(s)
- Beeta Rani Khalkho
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India; School of Studies in Environmental Science, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India; National Center for Natural Resources, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India.
| | - Ramsingh Kurrey
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Bhuneshwari Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Anushree Saha
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Tarun Kumar Patle
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Ravishankar Chauhan
- National Center for Natural Resources, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
16
|
Saha A, Kurrey R, Deb MK, Verma SK. Resin immobilized gold nanocomposites assisted surface enhanced infrared absorption (SEIRA) spectroscopy for improved surface assimilation of methylene blue from aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120144. [PMID: 34245966 DOI: 10.1016/j.saa.2021.120144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/10/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In the present work, we report the adsorption of the methylene blue (MB) dye from an aqueous solution employing resin immobilized gold nanocomposites (R-AuNCs) assisted surface-enhanced infrared absorption (SEIRA) spectroscopy. The appropriate adsorption isotherm models, including the Langmuir, Freundlich, and Temkin are tested to reveal the interactive behavior between the adsorbent (R-AuNCs) and adsorbed (MB). Interestingly, Fourier transform infrared spectroscopy (FTIR) in combination with R-AuNC materials could be another approach through which the analysis of adsorption-desorption of MB on the surface of nanocomposite adsorbents is possible in a more precise way with high sensitivity and adsorptivity. In addition, a 10-fold enhancement of the signal intensity of MB dye was obtained due to the electrostatic interaction and H-bonding interaction between COO- groups of adsorbent and the positively charged active sites of the dye molecules. The value of % removal efficiency and % adsorption obtained in the present method was 77.64% and 186.61%, respectively. Desorption of MB from adsorbent surface was also carried out using 0.1 M cetylpyridinium chloride as cationic surfactant; resulting process shows for 'n' number of cyclic process. The maximum desorption capacity for MB found in the present investigation was 44.38 mg/g, The advantages of current method are its simplicity, sensitivity, rapidity, ease to fabrication and excellent adsorption efficiencies to remove MB dye from aqueous solution.
Collapse
Affiliation(s)
- Anushree Saha
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Ramsingh Kurrey
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India.
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India.
| | - Santosh Kumar Verma
- State Forensic Science Laboratory, Department of Home, Government of Chhattisgarh, Raipur 492001, Chhattisgarh, India
| |
Collapse
|
17
|
Dai X, Wu Y, Jia Z, Bo C. Preparation of water-compatible magnetic imprinted nanospheres using heptakis (β-cyclodextrin-ionic liquid) as functional monomer for selective recognition of fluoroquinolones in water samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Zhang G, Ali MM, Feng X, Zhou J, Hu L. Mesoporous molecularly imprinted materials: From preparation to biorecognition and analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Teglia CM, Guiñez M, Culzoni MJ, Cerutti S. Determination of residual enrofloxacin in eggs due to long term administration to laying hens. Analysis of the consumer exposure assessment to egg derivatives. Food Chem 2021; 351:129279. [PMID: 33631615 DOI: 10.1016/j.foodchem.2021.129279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
The use of the antibiotic enrofloxacin (ENR) in poultry is controversial. A high-performance liquid chromatography coupled to fast-scanning fluorescence detection (HPLC-FSFD) method for the determination of ENR in egg white, egg yolk, and lyophilized samples was developed. In a first analysis, the long-term administration of ENR (100 days) to laying hens was carried out to determine its presence in egg white, yolk, or both. The predominance of ENR was observed in egg white and variations in the weight of egg white and eggshell was evidenced, showing a potential problem in the industry. Eventually, the presence of ENR was confirmed in commercial lyophilized egg white samples in concentration values around 350 µg kg-1. The consumer exposure assessment was estimated for children, adolescents, and adults. The result displayed that, in an intake of lyophilized egg white with food-producing animals, the %ADI exceeds 100%, showing toxicological levels.
Collapse
Affiliation(s)
- Carla M Teglia
- Instituto de Química de San Luis (CCT-San Luis), Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis CP5700, Argentina; Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| | - María Guiñez
- Instituto de Química de San Luis (CCT-San Luis), Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis CP5700, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina.
| | - Soledad Cerutti
- Instituto de Química de San Luis (CCT-San Luis), Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis CP5700, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina.
| |
Collapse
|
20
|
El-Azazy M, El-Shafie AS, Elgendy A, Issa AA, Al-Meer S, Al-Saad KA. A Comparison between Different Agro-Wastes and Carbon Nanotubes for Removal of Sarafloxacin from Wastewater: Kinetics and Equilibrium Studies. Molecules 2020; 25:E5429. [PMID: 33228258 PMCID: PMC7699551 DOI: 10.3390/molecules25225429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 01/16/2023] Open
Abstract
In the current study, eco-structured and efficient removal of the veterinary fluoroquinolone antibiotic sarafloxacin (SARA) from wastewater has been explored. The adsorptive power of four agro-wastes (AWs) derived from pistachio nutshells (PNS) and Aloe vera leaves (AV) as well as the multi-walled carbon nanotubes (MWCNTs) has been assessed. Adsorbent derived from raw pistachio nutshells (RPNS) was the most efficient among the four tested AWs (%removal '%R' = 82.39%), while MWCNTs showed the best adsorptive power amongst the five adsorbents (%R = 96.20%). Plackett-Burman design (PBD) was used to optimize the adsorption process. Two responses ('%R' and adsorption capacity 'qe') were optimized as a function of four variables (pH, adsorbent dose 'AD' (dose of RPNS and MWCNTs), adsorbate concentration [SARA] and contact time 'CT'). The effect of pH was similar for both RPNS and MWCNTs. Morphological and textural characterization of the tested adsorbents was carried out using FT-IR spectroscopy, SEM and BET analyses. Conversion of waste-derived materials into carbonaceous material was investigated by Raman spectroscopy. Equilibrium studies showed that Freundlich isotherm is the most suitable isotherm to describe the adsorption of SARA onto RPNS. Kinetics' investigation shows that the adsorption of SARA onto RPNS follows a pseudo-second order (PSO) model.
Collapse
Affiliation(s)
- Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; (A.S.E.-S.); (A.E.); (A.A.I.); (S.A.-M.); (K.A.A.-S.)
| | | | | | | | | | | |
Collapse
|
21
|
Wang R, Li S, Chen D, Zhao Y, Wu Y, Qi K. Selective extraction and enhanced-sensitivity detection of fluoroquinolones in swine body fluids by liquid chromatography-high resolution mass spectrometry: Application in long-term monitoring in livestock. Food Chem 2020; 341:128269. [PMID: 33035825 DOI: 10.1016/j.foodchem.2020.128269] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
To ensure food safety in livestock industries, developing a non-lethal and cost-effective detection method for the long-term monitoring of veterinary antibiotics in animals will be beneficial to avoid unnecessary losses. In this study, a highly-selective extraction using dispersive micro solid-phase extraction method coupled with an enhanced-sensitivity detection by pre-column dilution injection and liquid chromatography-high resolution mass spectrometry was used to determine the restricted fluoroquinolones (FQs) in swine body fluids. The proposed method showed good linear coefficients higher than 0.999, and high sensitivity with the LODs and LOQs in the range of 0.02-0.03 μg/L and 0.06-0.1 μg/L in swine body fluids, respectively. For further evaluation, the adequate recoveries (85.3-112.8%), satisfactory repeatability (intra-day and inter-day precisions of 2.1%-8.2% and 3.8%-13.7%, respectively), and acceptable matrix effect (0.92-1.12) of the FQs were achieved. It has been successfully applied for analysis of the FQs in body fluids without sacrificing animals in the future.
Collapse
Affiliation(s)
- Rui Wang
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Si Li
- Department of Cardiothoracic Surgical Intensive Care Unit, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Kemin Qi
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
22
|
Ye Y, Wu T, Jiang X, Cao J, Ling X, Mei Q, Chen H, Han D, Xu JJ, Shen Y. Portable Smartphone-Based QDs for the Visual Onsite Monitoring of Fluoroquinolone Antibiotics in Actual Food and Environmental Samples. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14552-14562. [PMID: 32134244 DOI: 10.1021/acsami.9b23167] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Accurate onsite profiling of fluoroquinolone antibiotics (FQs) is of vital significance for ensuring food safety and estimating environmental pollution. Here, we propose a smartphone-based QD ratiometric fluorescence-sensing system to precisely report the level of FQs. As a proof of concept, we chose gatifloxacin (GFLX, a typical member of FQs) as the model for the analytical target, which could effectively trigger the fluorescence color variation of QDs from bright yellow-green (∼557 nm) to blue (∼448 nm) through the photoinduced electron-transfer (PET) process, thus yielding an evident ratiometric response. Based on this, the level of GFLX can be reported within a wide linear range from 0.85 nM to 3.6 μM. Moreover, this assay owns a high sensitivity with a low detection limit of 0.26 nM for GFLX and a quick sample-to-answer monitoring time of 5.0 min, manifesting that this platform could be fully qualified for onsite requirements. Interestingly, this portable device has successfully been applied for the onsite detection of GFLX in real food (i.e., milk and drinking water) and environmental (i.e., fish-farming water) samples with acceptable results. This developed platform offers a great promise for the point-of-care detection of FQ residues in practical application with the merits of being label-free, low-cost, and rapid, thus opening a new pathway for the onsite evaluation of food safety and environmental health.
Collapse
Affiliation(s)
- Yingwang Ye
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tingting Wu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiuting Jiang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Xiao Ling
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qingsong Mei
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Chen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Deman Han
- Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Khalkho BR, Kurrey R, Deb MK, Shrivas K, Thakur SS, Pervez S, Jain VK. L-cysteine modified silver nanoparticles for selective and sensitive colorimetric detection of vitamin B1 in food and water samples. Heliyon 2020; 6:e03423. [PMID: 32090184 PMCID: PMC7025228 DOI: 10.1016/j.heliyon.2020.e03423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/04/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
The use of L-cysteine modified silver nanoparticles (Cys-capped AgNPs) as a colorimetric probe for determination of vitamin B1 (thiamine) is described in the present work. This method is based on the measurement of red shift of localized surface plasmon resonance (LSPR) band of Cys-capped AgNPs in the region of 200–800 nm. The color of Cys-capped AgNPs was changed from yellow to colorless by the addition of vitamin B1. The mechanism for detection of vitamin B1 is based on the electrostatic interaction between positively charged vitamin B1, which causes the red shift of LSPR band from 390 nm to 580 nm. The interaction between Cys-capped AgNPs and vitamin B1 was theoretically explored by density function theory (DFT) using LANL2DZ basis sets with help of Gaussian 09 (C.01) program. The morphology, size distribution and optical properties of Cys-capped AgNPs were characterized by transmission electron microscope (TEM), UV-Visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) techniques. The method is linear in the range of 25–500 μg mL−1 with correlation coefficient (R2) 0.992 and limit of detection of 7.0 μg mL−1. The advantages of using Cys-capped AgNPs as a chemical sensor in colorimetry assay are being simple, low cost and selective for detection of vitamin B1 from food (peas, grapes and tomato) and environmental (river, sewage and pond) water samples.
Collapse
Affiliation(s)
- Beeta Rani Khalkho
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, Chhattisgarh, India
| | - Ramsingh Kurrey
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, Chhattisgarh, India
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, Chhattisgarh, India
- Corresponding author.
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, Chhattisgarh, India
| | - Santosh Singh Thakur
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, 495009, India
| | - Shamsh Pervez
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, Chhattisgarh, India
| | - Vikas Kumar Jain
- Department of Chemistry, Govt. Engineering Collage, Raipur, 492015, Chhattisgarh, India
| |
Collapse
|
24
|
Hu G, Gao S, Han X, Yang L. Comparison of Immunochromatographic Strips Using Colloidal Gold, Quantum Dots, and Upconversion Nanoparticles for Visual Detection of Norfloxacin in Milk Samples. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01725-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Kurrey R, Deb MK, Shrivas K, Nirmalkar J, Sen BK, Mahilang M, Jain VK. A KBr-impregnated paper substrate as a sample probe for the enhanced ATR-FTIR signal strength of anionic and non-ionic surfactants in an aqueous medium. RSC Adv 2020; 10:40428-40441. [PMID: 35520865 PMCID: PMC9057572 DOI: 10.1039/d0ra07286a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/22/2020] [Indexed: 12/29/2022] Open
Abstract
Herein, we report a KBr-impregnated paper substrate as a sample probe to enhance the attenuated total reflection-Fourier transform infrared (ATR-FTIR) signal strength of anionic surfactants (AS) and non-ionic surfactants (NS) in an aqueous solution. The mechanism for the sensing of AS and NS is based on the strong interaction of surfactants with the silicate groups (SiO44−) of the KBr-impregnated paper substrate. The role of SiO44− on the surface of the paper is to enhance the adsorption of AS and NS, resulting in improved IR signal intensities for the target analytes. The improved signal intensity at 1253 cm−1 (SO42−, symmetric stretching) for AS and 1114 cm−1 (C–O–C, stretching vibration) for NS were selected for quantification. SEM-EDX was employed to determine the elemental compositions of pre- and post-adsorbed AS and NS on glass fibre filter paper (GFF). The linear range for the determination of AS and NS was 10–100 μg L−1 with a method detection limit (MDL) of 4 μg L−1 and method quantification limit (MQL) of 12 μg L−1. The good relative recovery of 71.4–109.7% and the interference studies showed the selectivity of the method for the determination of AS and NS in environmental water and commodity samples. The advantages of this method include its cost-effectiveness, enhanced sensitivity, disposability and accessibility of the paper substrate. Flow diagram of the procedures for the analysis of surfactants using modified GFF paper substrate.![]()
Collapse
Affiliation(s)
- Ramsingh Kurrey
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492 010
- India
| | - Manas Kanti Deb
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492 010
- India
| | - Kamlesh Shrivas
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492 010
- India
| | - Jayant Nirmalkar
- Korea Research Institute of Standards and Science
- Daejeon
- South Korea
| | - Bhupendra Kumar Sen
- Department of Chemistry
- Govt. D. B. Girls' PG Autonomous College
- Raipur-492 001
- India
| | - Mithlesh Mahilang
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492 010
- India
| | - Vikas Kumar Jain
- Department of Chemistry
- Govt. Engineering College
- Raipur-492015
- India
| |
Collapse
|
26
|
Sahu DK, Rai J, Rai MK, Banjare MK, Nirmal M, Wani K, Sahu R, Pandey SG, Mundeja P. Detection of flonicamid insecticide in vegetable samples by UV–Visible spectrophotometer and FTIR. RESULTS IN CHEMISTRY 2020; 2:100059. [DOI: 10.1016/j.rechem.2020.100059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Rudnicki K, Poltorak L, Skrzypek S, Sudhölter EJ. Ion transfer voltammetry for analytical screening of fluoroquinolone antibiotics at the water – 1.2-dichloroethane interface. Anal Chim Acta 2019; 1085:75-84. [DOI: 10.1016/j.aca.2019.07.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/06/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
|
28
|
Class-specific determination of fluoroquinolones based on a novel chemiluminescence system with molecularly imprinted polymers. Food Chem 2019; 298:125066. [DOI: 10.1016/j.foodchem.2019.125066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/10/2019] [Accepted: 06/23/2019] [Indexed: 01/12/2023]
|
29
|
Kurrey R, Deb MK, Shrivas K, Khalkho BR, Nirmalkar J, Sinha D, Jha S. Citrate-capped gold nanoparticles as a sensing probe for determination of cetyltrimethylammonium surfactant using FTIR spectroscopy and colorimetry. Anal Bioanal Chem 2019; 411:6943-6957. [DOI: 10.1007/s00216-019-02067-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/28/2022]
|
30
|
Duan W, Li M, Xiao W, Wang N, Niu B, Zhou L, Zheng Y. Enhanced adsorption of three fluoroquinolone antibiotics using polypyrrole functionalized Calotropis gigantea fiber. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Kurrey R, Deb MK, Shrivas K. Surface enhanced infra-red spectroscopy with modified silver nanoparticles (AgNPs) for detection of quaternary ammonium cationic surfactants. NEW J CHEM 2019. [DOI: 10.1039/c9nj01795j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel surface enhanced infra-red spectroscopy (SEIRS) method with silver nanoparticles (AgNPs) assisted by single drop microextraction (SDME) was developed for detection of total mixed quaternary ammonium cationic surfactants (QACS) in water samples.
Collapse
Affiliation(s)
- Ramsingh Kurrey
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492 010
- India
| | - Manas Kanti Deb
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492 010
- India
| | - Kamlesh Shrivas
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492 010
- India
| |
Collapse
|
32
|
Zhang L, Yang L, Xu Y, Chang G. Renewable 4-HIF/NaOH aerogel for efficient methylene blue removal via cation–π interaction induced electrostatic interaction. RSC Adv 2019; 9:29772-29778. [PMID: 35531533 PMCID: PMC9071979 DOI: 10.1039/c9ra04166d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022] Open
Abstract
A novel porous organic material 4-hydroxyindole-formaldehyde/NaOH (4-HIF/NaOH) aerogel was prepared via a facile polymerization, soaking in NaOH aqueous solution and ambient drying method. 4-HIF/NaOH aerogel porous polymer networks with high surface area have been applied as efficient adsorbents to remove methylene blue from wastewater via synergistic effects of cation–π interaction induced electrostatic interaction, electrostatic interaction and π–π interaction. The adsorption capacity calculated by adsorption isotherms at 303 K was 1016.9 mg g−1 which is higher than those observed for methylene blue on other aerogels and most other materials. Furthermore, the methylene blue loaded 4-HIF aerogel can easily be regenerated with 0.1 M HCl solution and ethanol wash, retaining over 75% of the adsorption capacity after recycling five times. A novel porous organic material 4-hydroxyindole-formaldehyde/NaOH (4-HIF/NaOH) aerogel was prepared via a facile polymerization, soaking in NaOH aqueous solution and ambient drying method.![]()
Collapse
Affiliation(s)
- Longfei Zhang
- State Key Laboratory of Environment-friendly Energy Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Li Yang
- State Key Laboratory of Environment-friendly Energy Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Yewei Xu
- State Key Laboratory of Environment-friendly Energy Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Guanjun Chang
- State Key Laboratory of Environment-friendly Energy Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| |
Collapse
|