1
|
Sun R, Li Y, Su R, Cai X, Kong Y, Jiang T, Cheng S, Yang H, Song L, Al-Asmari F, Sameeh MY, Lü X, Shi C. Antibacterial effect of ultrasound combined with Litsea cubeba essential oil nanoemulsion on Salmonella Typhimurium in kiwifruit juice. Int J Food Microbiol 2025; 426:110898. [PMID: 39241544 DOI: 10.1016/j.ijfoodmicro.2024.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
This study investigated the antibacterial effect of ultrasound (US) combined with Litsea cubeba essential oil nanoemulsion (LEON) on Salmonella Typhimurium in kiwifruit juice and effect on the quality and sensory properties of kiwifruit juice. In this study, LEON prepared by ultrasonic emulsification method had a good particle size distribution and high stability. The US+LEON treatment significantly (P < 0.05) improved antibacterial efficacy, compared to the control, and would not destroy the nutritional components containing ascorbic acid, flavonoids, total phenol and total soluble solids. Meanwhile, US+LEON treatment enhanced 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis-(3-ethylbenzothiazoline-6 sulfonic acid) (ABTS) radical scavenging capacity and ferric ion reducing antioxidant power (FRAP). In terms of sensory properties, US and LEON had a significant (P < 0.05) effect on the odor and overall morphology of kiwifruit juice. The enhance of antibacterial efficacy and the retention of nutrients by combined treatments shows that US+LEON is a promising antibacterial method that will provide new ideas for the processing and safety of fruit juices, and the US parameters and LEON concentration should be adjusted to reduce the effect on food sensory properties in future studies.
Collapse
Affiliation(s)
- Runyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yimeng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajing Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongyu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Manal Y Sameeh
- Department of chemistry, Al-Leith University College, Umm Al Qura University, Makkah 25100, Saudi Arabia
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
2
|
Li L, Li X, McClements DJ, Jin Z, Ji H, Qiu C. Recent progress in the source, extraction, activity mechanism and encapsulation of bioactive essential oils. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39722469 DOI: 10.1080/10408398.2024.2439040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
There is growing concern about the potential risks posed by synthetic additives in industrial products, such as foods, cosmetics, agrochemicals, and personal care products. Many plant-derived essential oils (EOs) have been shown to exhibit excellent antibacterial, antifungal, antiviral, and antioxidant activities, and may therefore be used as natural preservatives in these applications. However, most EOs have relatively low water solubility and are prone to chemical degradation during storage. The degradation products of EOs can be toxic and may not be able to fully exert their biological activity, which limits their application. Typically, these challenges can be overcome by encapsulating the essential oil in an appropriate colloid delivery system. This article begins by reviewing the sources, extraction, and activity mechanisms of EOs, and then highlights plant-based encapsulation technologies that can be used to enhance their efficacy. Finally, the potential applications of plant essential oil encapsulation system are discussed.
Collapse
Affiliation(s)
- Lecheng Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | | | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Haghbayan H, Moghimi R, Sarrafi Y, Taleghani A, Hosseinzadeh R. Enhancing bioactivity of Callistemon citrinus (Curtis) essential oil through novel nanoemulsion formulation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2660-2681. [PMID: 39102358 DOI: 10.1080/09205063.2024.2386787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
The main focus of this study was to create a stable and efficient nanoemulsion (NE) using Callistemon citrinus essential oil (EO). Various factors affecting the NE's stability were optimized including oil %, Tween 80%, time of sonication, and its accelerated stability was examined. The research also considered the antibacterial, antifungal, and larvicidal effects of the optimized NE (B10). The optimum NE stood out for its stability, featuring a particle size of 33.15 ± 0.32 nm. Analysis via IR spectroscopy confirmed successful EO encapsulation in B10. The formulation remained stable for six months, with B10 showing significantly higher antibacterial and antifungal potency compared to the pure oil. When samples were subjected to tests against Fusarium oxysporum, B10 exhibited a MIC value of 62.5 mg/mL, whereas the pure oil showed a MIC value of 250 mg/mL. This indicates that the B10 formulation was 50 times more effective than the EO. In terms of antibacterial activity against Escherichia coli, the MIC value was 0.256 mg/mL for B10 and 4 mg/mL for the EO. Also, pure oil and B10 displayed larvicidal effects against Chilo suppressalis (Walker) larvae, with B10 eliminating 95.2% of larvae in 48 h. Overall, stable and optimum C. citrinus NE with its strong antimicrobial qualities, shows promise as an effective fungicide and insecticide.
Collapse
Affiliation(s)
- Hamta Haghbayan
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Roya Moghimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Yaghoub Sarrafi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Akram Taleghani
- Department of Chemistry, Faculty of Science, Gonbad Kavous University, Gonbad-e Kavus, Iran
| | - Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
4
|
Cacciatore FA, Cardoso LT, Scherer A, Jaskulski VDO, Malheiros PDS, Brandelli A. Carvacrol-loaded chia mucilage nanocapsules as sanitizer to control Salmonella, Escherichia coli and Listeria monocytogenes in green cabbage. Braz J Microbiol 2024; 55:3503-3512. [PMID: 39352655 PMCID: PMC11712030 DOI: 10.1007/s42770-024-01528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/20/2024] [Indexed: 01/11/2025] Open
Abstract
Cabbage is susceptible to various microbiological risks, frequently serving as a vehicle for pathogenic bacteria, mainly Salmonella and Escherichia coli. Therefore, ensuring the safety of this vegetable is essential to reduce the risk of foodborne illnesses. Traditional sanitization using chlorinated water, although effective, raises concerns due to the production of potentially carcinogenic compounds, and this method is banned in some countries. In recent years, alternative sanitizing methods have been developed using essential oils (EOs). However, EOs present high volatility, limited solubility in water, and strong odor and taste. This study introduces an innovative approach to overcome these disadvantages by employing carvacrol encapsulated into chia mucilage nanocapsules (CMNC), prepared through high-energy homogenization. Encapsulating carvacrol in chia mucilage nanocapsules helps to mask its strong sensory characteristics, making it more suitable and acceptable for use in food applications. The antimicrobial efficacy of CMNC (1.67 mg/mL), carvacrol emulsion (CE: 10.6 mg/mL), and chlorine solution (CS: 200 ppm) was evaluated against Salmonella, E. coli, and Listeria monocytogenes. CMNC decreased Salmonella to levels below the detection limit of the technique (< 2 log CFU/g), reduced 3.5 log CFU/g of E. coli, and 2.5 log CFU/g of L. monocytogenes. These results are similar to or better than those obtained with CS. In addition, sanitizing cabbage with CMNC preserved the firmness and color of the samples, important aspects for consumer acceptance. This innovative approach is promising for increasing the food safety of cabbage, while mitigating the potential drawbacks associated with traditional sanitization methods.
Collapse
Affiliation(s)
- Fabíola Ayres Cacciatore
- Laboratório de Microbiologia e Higiene de Alimentos, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Louise Thomé Cardoso
- Laboratório de Microbiologia e Higiene de Alimentos, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alina Scherer
- Laboratório de Microbiologia e Higiene de Alimentos, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vinícius de Oliveira Jaskulski
- Laboratório de Microbiologia e Higiene de Alimentos, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia da Silva Malheiros
- Laboratório de Microbiologia e Higiene de Alimentos, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Adriano Brandelli
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Centro de Nanociência e Nanotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
5
|
Pedreira A, Fernandes S, Simões M, García MR, Vázquez JA. Synergistic Bactericidal Effects of Quaternary Ammonium Compounds with Essential Oil Constituents. Foods 2024; 13:1831. [PMID: 38928773 PMCID: PMC11202425 DOI: 10.3390/foods13121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial tolerance is a significant concern in the food industry, as it poses risks to food safety and public health. To overcome this challenge, synergistic combinations of antimicrobials have emerged as a potential solution. In this study, the combinations of two essential oil constituents (EOCs), namely carvacrol (CAR) and eugenol (EUG), with the quaternary ammonium compounds (QACs) benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC) were evaluated for their antimicrobial effects against Escherichia coli and Bacillus cereus, two common foodborne bacteria. The checkerboard assay was employed to determine the fractional inhibitory concentration index (FICI) and the fractional bactericidal concentration index (FBCI), indicating the presence of bactericidal, but not bacteriostatic, synergy in all QAC-EOC combinations. Bactericidal synergism was clearly supported by Bliss independence analysis. The bactericidal activity of the promising synergistic combinations was further validated by time-kill curves, achieving a >4-log10 reduction of initial bacterial load, which is significant compared to typical industry standards. The combinations containing DDAC showed the highest efficiency, resulting in the eradication of bacterial population in less than 2-4 h. These findings emphasize the importance of considering both bacteriostatic and bactericidal effects when evaluating antimicrobial combinations and the potential of EOC-QAC combinations for sanitization and disinfection in the food industry.
Collapse
Affiliation(s)
- Adrián Pedreira
- Group of Recycling and Valorization of Waste Materials (REVAL), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
- Biosystems and Bioprocess Engineering Group (Bio2Eng), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (M.S.)
| | - Susana Fernandes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (M.S.)
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (M.S.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Míriam R. García
- Biosystems and Bioprocess Engineering Group (Bio2Eng), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
| | - José Antonio Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
| |
Collapse
|
6
|
Sun J, Shen QJ, Pan JN, Zheng X, Yu T, Zhou WW. Ferrous sulfate combined with ultrasound emulsified cinnamaldehyde nanoemulsion to cause ferroptosis in Escherichia coli O157:H7. ULTRASONICS SONOCHEMISTRY 2024; 106:106884. [PMID: 38677267 PMCID: PMC11061345 DOI: 10.1016/j.ultsonch.2024.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The purpose of this study was to investigate ferroptosis in Escherichia coli O157:H7 caused by ferrous sulfate (FeSO4) and to examine the synergistic effectiveness of FeSO4 combined with ultrasound-emulsified cinnamaldehyde nanoemulsion (CALNO) on inactivation of E. coli O157:H7 in vitro and in vivo. The results showed that FeSO4 could cause ferroptosis in E. coli O157:H7 via generating reactive oxygen species (ROS) and exacerbating lipid peroxidation. In addition, the results indicated that FeSO4 combined with CALNO had synergistic bactericidal effect against E. coli O157:H7 and the combined treatment could lead considerable nucleic acids and protein to release by damaging the cell membrane of E. coli O157:H7. Besides, FeSO4 combined with CALNO had a strong antibiofilm ability to inhibit E. coli O157:H7 biofilm formation by reducing the expression of genes related on biofilm formation. Finally, FeSO4 combined with CALNO exhibited the significant antibacterial activity against E. coli O157:H7 in hami melon and cherry tomato.
Collapse
Affiliation(s)
- Jinyue Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qian-Jun Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jia-Neng Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaodong Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
7
|
Doghish AS, Shehabeldine AM, El-Mahdy HA, Hassanin MMH, Al-Askar AA, Marey SA, AbdElgawad H, Hashem AH. Thymus Vulgaris Oil Nanoemulsion: Synthesis, Characterization, Antimicrobial and Anticancer Activities. Molecules 2023; 28:6910. [PMID: 37836753 PMCID: PMC10574288 DOI: 10.3390/molecules28196910] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Essential oil nanoemulsions have received much attention due to their biological activities. Thus, a thyme essential oil nanoemulsion (Th-nanoemulsion) was prepared using a safe and eco-friendly method. DLS and TEM were used to characterize the prepared Th-nanoemulsion. Our findings showed that the nanoemulsion was spherical and ranged in size from 20 to 55.2 nm. The micro-broth dilution experiment was used to evaluate the in vitro antibacterial activity of a Th-emulsion and the Th-nanoemulsion. The MIC50 values of the thymol nanoemulsion were 62.5 mg/mL against Escherichia coli and Klebsiella oxytoca, 250 mg/mL against Bacillus cereus, and 125 mg/mL against Staphylococcus aureus. Meanwhile, it emerged that the MIC50 values of thymol against four strains were not detected. Moreover, the Th-nanoemulsion exhibited promising antifungal activity toward A. brasiliensis and A. fumigatus, where inhibition zones and MIC50 were 20.5 ± 1.32 and 26.4 ± 1.34 mm, and 12.5 and 6.25 mg/mL, respectively. On the other hand, the Th-nanoemulsion displayed weak antifungal activity toward C. albicans where the inhibition zone was 12.0 ± 0.90 and MIC was 50 mg/mL. Also, the Th-emulsion exhibited antifungal activity, but lower than that of the Th-nanoemulsion, toward all the tested fungal strains, where MIC was in the range of 12.5-50 mg/mL. The in vitro anticancer effects of Taxol, Th-emulsion, and Th-nanoemulsion were evaluated using the standard MTT method against breast cancer (MCF-7) and hepatocellular carcinoma (HepG2). Additionally, the concentration of VEGFR-2 was measured, and the activities of caspase-8 (casp-8) and caspase-9 (casp-9) were evaluated. The cytotoxic effect was the most potent against the MCF-7 breast cancer cell line after the Th-nanoemulsion treatment (20.1 ± 0.85 µg/mL), and was 125.1 ± 5.29 µg/mL after the Th-emulsion treatment. The lowest half-maximal inhibitory concentration (IC50) value, 20.1 ± 0.85 µg/mL, was achieved when the MCF-7 cell line was treated with the Th-nanoemulsion. In addition, Th-nanoemulsion treatments on MCF-7 cells led to the highest elevations in casp-8 and casp-9 activities (0.66 ± 0.042 ng/mL and 17.8 ± 0.39 pg/mL, respectively) compared to those with Th-emulsion treatments. In comparison to that with the Th-emulsion (0.982 0.017 ng/mL), the VEGFR-2 concentration was lower with the Th-nanoemulsion treatment (0.672 ± 0.019ng/mL). In conclusion, the Th-nanoemulsion was successfully prepared and appeared in nanoform with a spherical shape according to DLS and TEM, and also exhibited antibacterial, antifungal, as well as anticancer activities.
Collapse
Affiliation(s)
- Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt;
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt;
| | - Amr M. Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Hesham A. El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt;
| | - Mahmoud M. H. Hassanin
- Ornamental, Medicinal and Aromatic Plant Disease Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.-A.); (S.A.M.)
| | - Samy A. Marey
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.-A.); (S.A.M.)
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| |
Collapse
|
8
|
Su R, Guo X, Cheng S, Zhang Z, Yang H, Wang J, Song L, Liu Z, Wang Y, Lü X, Shi C. Inactivation of Salmonella using ultrasound in combination with Litsea cubeba essential oil nanoemulsion and its bactericidal application on cherry tomatoes. ULTRASONICS SONOCHEMISTRY 2023; 98:106481. [PMID: 37336076 PMCID: PMC10300259 DOI: 10.1016/j.ultsonch.2023.106481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The presence of Salmonella in nature poses a significant and unacceptable threat to the human public health domain. In this study, the antibacterial effect and mechanism of ultrasound (US) combined with Litsea cubeba essential oil nanoemulsion (LEON) on Salmonella. LEON + US treatment has a significant bactericidal effect on Salmonella. Reactive oxygen species (ROS), malondialdehyde (MDA) detection, N-phenyl-l-naphthylamine (NPN) uptake and nucleic acid release assays showed that LEON + US exacerbated cell membrane lipid peroxidation and increased the permeability of the cell membrane. The results of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) showed that LEON + US treatment was able to alter cell morphology. It can be observed by flow cytometry (FCM) that LEON + US treatment can cause cell apoptosis. In addition, bacterial counts of cherry tomatoes treated with LEON (0.08 μL/mL) + US (345 W/cm2) for 9 min were reduced by 6.50 ± 0.20 log CFU/mL. This study demonstrates that LEON + US treatment can be an effective way to improve the safety of fruits and vegetables in the food industry.
Collapse
Affiliation(s)
- Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziruo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingzi Wang
- School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Application of essential oils as sanitizer alternatives on the postharvest washing of fresh produce. Food Chem 2023; 407:135101. [PMID: 36481474 DOI: 10.1016/j.foodchem.2022.135101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Growers commonly wash fresh produce with chemical sanitizers during postharvest handling. However, these sanitizers can be harsh to washing systems and pose a health risk to workers. Essential oils (EOs) can be used as alternatives to chemical sanitizers in produce washing. Previous studies reveal that the EOs from thyme, oregano, cinnamon, and clove are the main EOs evaluated in the studies as potential sanitizers for the washing of produce. The use of EOs and surfactants, such as tween80 and cetylpyridinium chloride, might be used to improve the antimicrobial activity of emulsions. However, studies are still required to evaluate the potential effect of different chemical components of EOs and preparations. Also, it is recommended that researchers focus on overcoming obstacles regarding EOs application in washing systems, including the high levels of EO required to reduce bacterial growth, undesired organoleptic impact on produce, and the poor solubility of EOs in aqueous solution.
Collapse
|
10
|
Yang H, Song L, Sun P, Su R, Wang S, Cheng S, Zhan X, Lü X, Xia X, Shi C. Synergistic bactericidal effect of ultrasound combined with citral nanoemulsion on Salmonella and its application in the preservation of purple kale. ULTRASONICS SONOCHEMISTRY 2023; 92:106269. [PMID: 36571884 PMCID: PMC9800203 DOI: 10.1016/j.ultsonch.2022.106269] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 05/28/2023]
Abstract
In this study, a novel citral nanoemulsion (CLNE) was prepared by ultrasonic emulsification. The synergistic antibacterial mechanism of ultrasound combined with CLNE against Salmonella Typhimurium and the effect on the physicochemical properties of purple kale were investigated. The results showed that the combined treatment showed obviously inactivate effect of S. Typhimurium. Treatment with 0.3 mg/mL CLNE combined with US (20 kHz, 253 W/cm2) for 8 min reduced S. Typhimurium populations in phosphate-buffered saline (PBS) by 9.05 log CFU/mL. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein and nucleic acid release assays showed that the US combination CLNE disrupt the integrity of S. Typhimurium membranes. Reactive oxygen species (ROS) and malondialdehyde (MDA) detection indicated that US+CLNE exacerbated oxidative stress and lipid peroxidation in cell membranes. The morphological changes of cells after different treatments by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) illustrated that the synergistic effect of US+CLNE treatment changed the morphology and internal microstructure of the bacteriophage cells. Application of US+CLNE on purple kale leaves for 6 min significantly (P < 0.05) reduced the number of S. Typhimurium, but no changes in the physicochemical properties of the leaves were detected. This study elucidates the synergistic antibacterial mechanism of ultrasound combined with CLNE and provides a theoretical basis for its application in food sterilization.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiwen Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116304, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Hu M, Dong Q, Liu Y, Sun T, Gu M, Zhu H, Xia X, Li Z, Wang X, Ma Y, Yang S, Qin X. A Meta-Analysis and Systematic Review of Listeria monocytogenes Response to Sanitizer Treatments. Foods 2022; 12:foods12010154. [PMID: 36613373 PMCID: PMC9818549 DOI: 10.3390/foods12010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous organism that can be found in food-related environments, and sanitizers commonly prevent and control it. The aim of this study is to perform a meta-analysis of L. monocytogenes response to sanitizer treatments. According to the principle of systematic review, we extracted 896 records on the mean log-reduction of L. monocytogenes from 84 publications as the dataset for this study. We applied a mixed-effects model to describe L. monocytogenes response to sanitizer treatment by considering sanitizer type, matrix type, biofilm status, sanitizer concentration, treatment time, and temperature. Based on the established model, we compared the response of L. monocytogenes under different hypothetical conditions using forest plots. The results showed that environmental factors (i.e., sanitizer concentration, temperature, and treatment time) affected the average log-reduction of L. monocytogenes (p < 0.05). L. monocytogenes generally exhibited strong resistance to citric acid and sodium hypochlorite but had low resistance to electrolyzed water. The planktonic cells of L. monocytogenes were less resistant to peracetic acid and sodium hypochlorite than the adherent and biofilm cells. Additionally, the physical and chemical properties of the contaminated or inoculated matrix or surface also influenced the sanitizer effectiveness. This review may contribute to increasing our knowledge of L. monocytogenes resistance to sanitizers and raising awareness of appropriate safety precautions.
Collapse
Affiliation(s)
- Minmin Hu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence:
| | - Tianmei Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mingliang Gu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Huajian Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuo Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
12
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
13
|
Gurtler JB, Garner CM. A Review of Essential Oils as Antimicrobials in Foods with Special Emphasis on Fresh Produce. J Food Prot 2022; 85:1300-1319. [PMID: 35588157 DOI: 10.4315/jfp-22-017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Consumer safety concerns over established fresh produce washing methods and the demand for organic and clean-label food has led to the exploration of novel methods of produce sanitization. Essential oils (EOs), which are extracted from plants, have potential as clean-label sanitizers because they are naturally derived and act as antimicrobials and antioxidants. In this review, the antimicrobial effects of EOs are explored individually and in combination, as emulsions, combined with existing chemical and physical preservation methods, incorporated into films and coatings, and in vapor phase. We examined combinations of EOs with one another, with EO components, with surfactants, and with other preservatives or preservation methods to increase sanitizing efficacy. Components of major EOs were identified, and the chemical mechanisms, potential for antibacterial resistance, and effects on organoleptic properties were examined. Studies have revealed that EOs can be equivalent or better sanitizing agents than chlorine; nevertheless, concentrations must be kept low to avoid adverse sensory effects. For this reason, future studies should address the maximum permissible EO concentrations that do not negatively affect organoleptic properties. This review should be beneficial to food scientists or industry personnel interested in the use of EOs for sanitization and preservation of foods, including fresh produce. HIGHLIGHTS
Collapse
Affiliation(s)
- Joshua B Gurtler
- U.S. Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551, USA
| | - Christina M Garner
- U.S. Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551, USA
| |
Collapse
|
14
|
Kang JH. Understanding inactivation of Listeria monocytogenes and Escherichia coli O157:H7 inoculated on romaine lettuce by emulsified thyme essential oil. Food Microbiol 2022; 105:104013. [PMID: 35473974 DOI: 10.1016/j.fm.2022.104013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022]
Abstract
Effects of thyme essential oil (TEO) emulsion (TEE) with cationic charge formulated using cetylpyridinium chloride (CPC) on attachment strength and inactivation of Listeria monocytogenes and Escherichia coli O157:H7 on romaine lettuce surface were examined in this study. Regardless of the inoculation time (2 h and 24 h), pathogen attachment was stronger on the adaxial surface of the romaine lettuce than on the abaxial surface because of the lower roughness of the former. Moreover, attachment strength increased with increasing inoculation time. TEE washing had the strongest inhibitory effect on pathogen attachment at 2 h when compared with that of TEO, CPC, and sodium hypochlorite (SH), demonstrating a 3.32 and 2.53 log-reduction in the size of the L. monocytogenes and E. coli O157:H7 populations, respectively, compared to the control samples. Additionally, the TEE washing effects were maintained even after inoculation for 24 h, and it decreased attachment to adaxial surface of the samples. These results indicate that TEE could be a good alternative to SH in improving the microbiological safety of romaine lettuce.
Collapse
Affiliation(s)
- Ji-Hoon Kang
- Department of Food Science and Biotechnology, Global K-Food Research Center, Hankyong National University, Anseong-si, 17579, Republic of Korea.
| |
Collapse
|
15
|
Alexandre ACS, Ferreira Gomes BA, Duarte GN, Piva SF, Zauza SB, Vilas Boas EVDB. Recent advances in processing and preservation of minimally processed fruits and vegetables: A review – Part 1: Fundamentals and chemical methods. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Giulia Nayara Duarte
- Agriculture Department Federal University of Lavras 37200‐900 Lavras Minas Gerais Brazil
| | - Samella Fabiane Piva
- Food Science Department Federal University of Lavras 37200‐900 Lavras Minas Gerais Brazil
| | - Stefânia Barros Zauza
- Agriculture Department Federal University of Lavras 37200‐900 Lavras Minas Gerais Brazil
| | | |
Collapse
|
16
|
Ultrasonication induced nano-emulsification of thyme essential oil: Optimization and antibacterial mechanism against Escherichia coli. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108609] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Multifunctional poly(vinyl alcohol) films using cellulose nanocrystals/oregano and cellulose nanocrystals/cinnamon Pickering emulsions: Effect of oil type and concentration. Int J Biol Macromol 2022; 194:736-745. [PMID: 34838863 DOI: 10.1016/j.ijbiomac.2021.11.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
Poly (vinyl alcohol) (PVA) films with high transparency, UV-barrier, antioxidant, and antimicrobial properties were prepared using oregano essential oil (OEO) and cinnamon essential oil (CEO) Pickering emulsions. The effect of Pickering emulsion type and concentration on the PVA film properties was studied. Cellulose nanocrystals (CNCs) were used as a natural stabilizer to prepare OEO and CEO Pickering emulsions. Both emulsions showed spherical droplets with diameters of 155-291 nm, zeta potential of -36.2 to -49.6 mV, minimum inhibition concentration of 6.25-12.5 μL/mL, and inhibition zone of 40-65 mm, depending on oil type. Morphology and FTIR analysis showed that OEO and CEO Pickering emulsions were compatible with the PVA matrix. The UV-transmittance of PVA films decreased from 77.3% to 30.4% and 2.0% without sacrificing the transparency after adding OEO and CEO Pickering emulsions, respectively. Antimicrobial results showed that E. coli was more sensitive to CEO, while S. aureus was sensitive to OEO Pickering emulsion. PVA/CEO film displayed higher properties than PVA/OEO film.
Collapse
|
18
|
He Q, Zhang L, Yang Z, Ding T, Ye X, Liu D, Guo M. Antibacterial mechanisms of thyme essential oil nanoemulsions against Escherichia coli O157:H7 and Staphylococcus aureus: Alterations in membrane compositions and characteristics. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Inactivation of Listeria monocytogenes and Escherichia coli O157:H7 inoculated on fresh-cut romaine lettuce by peanut skin extract/benzethonium chloride emulsion washing. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Kang J, Song KB. Combined washing effect of noni extract and oregano essential oil on the decontamination of
Listeria monocytogenes
on romaine lettuce. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ji‐Hoon Kang
- Department of Food Science and Technology Chungnam National University Daejeon 34134 Korea
| | - Kyung Bin Song
- Department of Food Science and Technology Chungnam National University Daejeon 34134 Korea
| |
Collapse
|
21
|
He Q, Guo M, Jin TZ, Arabi SA, Liu D. Ultrasound improves the decontamination effect of thyme essential oil nanoemulsions against Escherichia coli O157: H7 on cherry tomatoes. Int J Food Microbiol 2020; 337:108936. [PMID: 33161345 DOI: 10.1016/j.ijfoodmicro.2020.108936] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/19/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Development of novel and effective decontamination technologies to ensure the microbiological safety of fresh produce has gained considerable attention, mainly driven by numerous outbreaks. This work presented the first approach regarding to the application of the previously reported hurdle technologies on the sanitization of artificially contaminated cherry tomatoes. Thyme (Thymus daenensis) essential oil nanoemulsion (TEON, 8.28 nm in diameter with a narrow size distribution) was formulated via ultrasonic nanoemulsification, showing remarkably improved antimicrobial activity against Escherichia coli (E. coli) O157:H7, compared to the coarse emulsion. The antimicrobial effect of ultrasound (US), thyme essential oil nanoemulsion (TEON) and the combination of both treatments was assessed against E. coli O157:H7. The remarkable synergistic effects of the combined treatments were achieved, which decontaminated the E. coli populations by 4.49-6.72 log CFU/g on the surface of cherry tomatoes, and led to a reduction of 4.48-6.94 log CFU/sample of the total inactivation. TEON combined with US were effective in reducing the presence of bacteria in wastewater, which averted the potential detrimental effect of cross-contamination resulted from washing wastewater in fresh produce industry. Moreover, the treatments did not noticeably alter the surface color and firmness of cherry tomatoes. Therefore, ultrasound combined with TEON is a promising and feasible alternative for the reduction of microbiological contaminants, as well as retaining the quality characteristics of cherry tomatoes.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| | - Tony Z Jin
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | | | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
22
|
Munekata PE, Pateiro M, Rodríguez-Lázaro D, Domínguez R, Zhong J, Lorenzo JM. The Role of Essential Oils against Pathogenic Escherichia coli in Food Products. Microorganisms 2020; 8:microorganisms8060924. [PMID: 32570954 PMCID: PMC7356374 DOI: 10.3390/microorganisms8060924] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/30/2022] Open
Abstract
Outbreaks related to foodborne diseases are a major concern among health authorities, food industries, and the general public. Escherichia coli (E. coli) is a pathogen associated with causing multiple outbreaks in the last decades linked to several ready to eat products such as meat, fish, dairy products, and vegetables. The ingestion of contaminated food with pathogenic E. coli can cause watery diarrhea, vomiting, and persistent diarrhea as well as more severe effects such as hemorrhagic colitis, end-stage renal disease, and, in some circumstances, hemolytic uremic syndrome. Essential oils (EOs) are natural compounds with broad-spectrum activity against spoilage and pathogenic microorganisms and are also generally recognized as safe (GRAS). Particularly for E. coli, several recent studies have been conducted to study and characterize the effect to inhibit the synthesis of toxins and the proliferation in food systems. Moreover, the strategy used to apply the EO in food plays a crucial role to prevent the development of E. coli. This review encompasses recent studies regarding the protection against pathogenic E. coli by the use of EO with a major focus on inhibition of toxins and proliferation in food systems.
Collapse
Affiliation(s)
- Paulo E.S. Munekata
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Mirian Pateiro
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - David Rodríguez-Lázaro
- Microbiology Division, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Rubén Domínguez
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Jian Zhong
- Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100125, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Jose M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: ; Tel.: +988-548-277
| |
Collapse
|
23
|
Jiang Y, Wang D, Li F, Li D, Huang Q. Cinnamon essential oil Pickering emulsion stabilized by zein-pectin composite nanoparticles: Characterization, antimicrobial effect and advantages in storage application. Int J Biol Macromol 2020; 148:1280-1289. [DOI: 10.1016/j.ijbiomac.2019.10.103] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
|
24
|
Kang JH, Song KB. Antibacterial activity of the noni fruit extract against Listeria monocytogenes and its applicability as a natural sanitizer for the washing of fresh-cut produce. Food Microbiol 2019; 84:103260. [PMID: 31421758 DOI: 10.1016/j.fm.2019.103260] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/03/2023]
Abstract
This study was conducted to investigate the antibacterial activity of the noni fruit extract (NFE) against Listeria monocytogenes (ATCC, 19111 and 19115) and assess its applicability for the washing of fresh-cut produce. Based on the results of the disc diffusion test, L. monocytogenes (ATCC, 19111 and 19115) was susceptible to the activity of NFE than other pathogens studied. Additionally, results of the time-kill assay indicated that NFE at a concentration of 0.5-0.7% effectively killed L. monocytogenes within 7 h. Furthermore, analysis of the intracellular components such as nucleic acids and proteins released from the bacterial cells and their SEM imaging revealed that NFE could increase the membrane permeability of cells resulting in their death. Compared to their unwashed samples, washing of romaine lettuce, spinach, and kale with 0.5% NFE gave a reduction of 1.47, 2.28, and 3.38 log CFU/g, respectively against L. monocytogenes (ATCC, 19111 and 19115), which is significantly different to that of NaOCl. A significant correlation was observed between the antibacterial effect induced due to NFE washing with the surface roughness of the fresh-cut produce than its surface hydrophobicity. Moreover, washing with NFE was not found to affect the color of the samples. These results indicated that NFE demonstrates good antibacterial activity against L. monocytogenes and can be used as a natural sanitizer to ensure the microbiological safety of fresh-cut produce.
Collapse
Affiliation(s)
- Ji-Hoon Kang
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyung Bin Song
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
25
|
Cao TL, Song KB. Effects of gum karaya addition on the characteristics of loquat seed starch films containing oregano essential oil. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105198] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Inhibition of Escherichia coli O157:H7 and Salmonella enterica Isolates on Spinach Leaf Surfaces Using Eugenol-Loaded Surfactant Micelles. Foods 2019; 8:foods8110575. [PMID: 31731592 PMCID: PMC6915615 DOI: 10.3390/foods8110575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 01/16/2023] Open
Abstract
Spinach and other leafy green vegetables have been linked to foodborne disease outbreaks of Escherichia coli O157:H7 and Salmonellaenterica around the globe. In this study, the antimicrobial activities of surfactant micelles formed from the anionic surfactant sodium dodecyl sulfate (SDS), SDS micelle-loaded eugenol (1.0% eugenol), 1.0% free eugenol, 200 ppm free chlorine, and sterile water were tested against the human pathogens E. coli O157:H7 and Salmonella Saintpaul, and naturally occurring microorganisms, on spinach leaf surfaces during storage at 5 °C over 10 days. Spinach samples were immersed in antimicrobial treatment solution for 2.0 min at 25 °C, after which treatment solutions were drained off and samples were either subjected to analysis or prepared for refrigerated storage. Whereas empty SDS micelles produced moderate reductions in counts of both pathogens (2.1–3.2 log10 CFU/cm2), free and micelle-entrapped eugenol treatments reduced pathogens by >5.0 log10 CFU/cm2 to below the limit of detection (<0.5 log10 CFU/cm2). Micelle-loaded eugenol produced the greatest numerical reductions in naturally contaminating aerobic bacteria, Enterobacteriaceae, and fungi, though these reductions did not differ statistically from reductions achieved by un-encapsulated eugenol and 200 ppm chlorine. Micelles-loaded eugenol could be used as a novel antimicrobial technology to decontaminate fresh spinach from microbial pathogens.
Collapse
|
27
|
Park JB, Kang JH, Song KB. Clove bud essential oil emulsion containing benzethonium chloride inactivates Salmonella Typhimurium and Listeria monocytogenes on fresh-cut pak choi during modified atmosphere storage. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|