1
|
Huang J, Wang Q, Qiu Q, Zou L, Shen X, Wan Y, Qu H. Anthocyanin biosynthesis, quality, and yield in purple sweet potatoes: responses to different potassium fertilizer. PHYSIOLOGIA PLANTARUM 2025; 177:e70247. [PMID: 40302155 DOI: 10.1111/ppl.70247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 05/01/2025]
Abstract
Purple sweet potato (PSP) (Ipomoea batatas (L.) Lam) is a nutrient-rich "K-favoring" crop. The reasonable application of potassium is an important means of improving the quality and yield of PSP. We designed four different forms of potassium fertilizer treatments: K2SO4, KCl, KH2PO4, and K2HPO4, and used qRT-PCR and HPLC techniques to explore their differences in anthocyanin synthesis, accumulation, quality, and yield in PSP tubers. Our findings indicate that potassium fertilizer treatment enhances the expression of structural genes such as CHI (chalcone--flavonone isomerase), F3H (naringenin,2-oxogluturate 3-dioxygenase-like), F3‧H (flavonoid 3'-monooxygenase), ANS (leucoanthocyanidin dioxygenase-like), DFR (dihydroflavonol 4-reductase-like), and CHS (chalcone synthase), which encode key enzymes of the anthocyanin metabolism pathway. This is achieved by stimulating the high levels of expression of the transcription factor MYB, which controls anthocyanin accumulation. Consequently, this leads to increased activities of key anthocyanin biosynthetic enzymes Phenylalanine ammonia lyase (PAL, EC 4.3.1.5), chalcone isomerase (CHI, EC 5.5.1.6), dihydroflavonol 4-reductase (DFR, EC 1.1.1.219), and UDP-galactose flavonoid 3-O-galactosyltransferase (UFGT, EC 2.4.1.234), thereby promoting the synthesis and accumulation of anthocyanins within PSP tubers. This ultimately improves tuber quality and yield. Analysis conducted through hierarchical clustering heat map, principal component analysis (PCA), and comprehensive evaluation revealed that PSP exhibits varying sensitivities to different forms of potassium fertilizer, with KCl treatment significantly enhancing anthocyanin production efficiency. Our results will provide a theoretical basis and data support for the rational selection of potassium fertilizer types for actual PSP production.
Collapse
Affiliation(s)
- Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China
- School of Preclinical Medicine, Chengdu University, Chengdu, PR China
| | - Qiang Wang
- Agronomy College, Jilin Agricultural University, Changchun, Jilin, PR China
- Baicheng Academy of Agricultural Sciences, Baicheng, Jilin, PR China
| | - Qingcheng Qiu
- Agronomy College, Hunan Agricultural University, Changsha, Hunan, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China
| | - Xueshan Shen
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China
| | - Huijuan Qu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| |
Collapse
|
2
|
Wang Y, Julian McClements D, Chen L, Peng X, Xu Z, Meng M, Ji H, Zhi C, Ye L, Zhao J, Jin Z. Progress on molecular modification and functional applications of anthocyanins. Crit Rev Food Sci Nutr 2024; 64:11409-11427. [PMID: 37485927 DOI: 10.1080/10408398.2023.2238063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Anthocyanins have attracted a lot of attention in the fields of natural pigments, food packaging, and functional foods due to their color, antioxidant, and nutraceutical properties. However, the poor chemical stability and low bioavailability of anthocyanins currently limit their application in the food industry. Various methods can be used to modify the structure of anthocyanins and thus improve their stability and bioavailability characteristics under food processing, storage, and gastrointestinal conditions. This paper aims to review in vitro modification methods for altering the molecular structure of anthocyanins, as well as their resulting improved properties such as color, stability, solubility, and antioxidant properties, and functional applications as pigments, sensors and functional foods. In industrial production, by mixing co-pigments with anthocyanins in food systems, the color and stability of anthocyanins can be improved by using non-covalent co-pigmentation. By acylation of fatty acids and aromatic acids with anthocyanins before incorporation into food systems, the surface activity of anthocyanins can be activated and their antioxidant and bioactivity can be improved. Various other chemical modification methods, such as methylation, glycosylation, and the formation of pyranoanthocyanins, can also be utilized to tailor the molecular properties of anthocyanins expanding their range of applications in the food industry.
Collapse
Affiliation(s)
- Yun Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Man Meng
- Licheng Detection and Certification Group Co., Ltd, Zhongshan, China
| | - Hangyan Ji
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chaohui Zhi
- Changzhou Longjun Skypurl Environmental Protection Industrial Development Co., Ltd, Changzhou, China
| | - Lei Ye
- Changzhou Longjun Skypurl Environmental Protection Industrial Development Co., Ltd, Changzhou, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Derosa G, D'Angelo A, Maffioli P. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature. Part II. Phytother Res 2024; 38:5490-5532. [PMID: 39363526 DOI: 10.1002/ptr.8312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 10/05/2024]
Abstract
We have already published a review about the results of clinical trials evaluating the effects of selected nutraceuticals on glycemia in humans. In this second part, we describe the role of other nutraceuticals involved in dysglycemia. The available evidence showed promising hypoglycemic effects of the nutraceuticals reviewed both for their efficacy and safety profile. However, contradictory results as regard the efficacy of some supplements such as Allium sativum, Juglans regia, and Lycium barbarum on glucose homeostasis have emerged from some clinical studies. Other nutraceuticals including Aloe vera, Amorphophallus Konjac, Bauhinia forficata, Coccinia, Ganoderma lucidum, Ipomoea batatas, and Lupinus mutabilis require larger and long-term studies rigorously designed to confirm their hypoglycemic effects due to the scarce data available and the poor quality of clinical trials. Further studies are also required for Cinnamomum, Cynara scolymus, Momordica charantia, Olea europaea, and Opuntia streptacantha. Moreover, well-designed large and long-term clinical trials including the use of standardized nutraceutical preparations are necessary for Phaseolus vulgaris and Vaccinium myrtillus.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Centre of Diabetes, Metabolic Diseases, and Dyslipidemias, University of Pavia, Pavia, Italy
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and Atherosclerosis, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Angela D'Angelo
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and Dyslipidemias, University of Pavia, Pavia, Italy
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and Atherosclerosis, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
4
|
Rosell MDLÁ, Quizhpe J, Ayuso P, Peñalver R, Nieto G. Proximate Composition, Health Benefits, and Food Applications in Bakery Products of Purple-Fleshed Sweet Potato ( Ipomoea batatas L.) and Its By-Products: A Comprehensive Review. Antioxidants (Basel) 2024; 13:954. [PMID: 39199200 PMCID: PMC11351671 DOI: 10.3390/antiox13080954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Ipomoea batatas (L.) Lam is a dicotyledonous plant originally from tropical regions, with China and Spain acting as the main producers from outside and within the EU, respectively. The root, including only flesh, is the edible part, and the peel, leaves, stems, or shoots are considered by-products, which are generated due to being discarded in the field and during processing. Therefore, this study aimed to perform a comprehensive review of the nutritional value, phytochemical composition, and health-promoting activities of purple-fleshed sweet potato and its by-products, which lead to its potential applications in bakery products for the development of functional foods. The methodology is applied to the selected topic and is used to conduct the search, review abstracts and full texts, and discuss the results using different general databases. The studies suggested that purple-fleshed sweet potato parts are characterized by a high content of essential minerals and bioactive compounds, including anthocyanins belonging to the cyanidin or the peonidin type. The flesh and leaves are also high in phenolic compounds and carotenoids such as lutein and β-carotene. The high content of phenolic compounds and anthocyanins provides the purple-fleshed sweet potato with high antioxidant and anti-inflammatory power due to the modulation effect of the transcription factor Nrf2 and NF-kB translocation, which may lead to protection against hepatic and neurological disorders, among others. Furthermore, purple-fleshed sweet potato and its by-products can play a dual role in food applications due to its attractive color and wide range of biological activities which enhance its nutritional profile. As a result, it is essential to harness the potential of the purple-fleshed sweet potato and its by-products that are generated during its processing through an appropriate agro-industrial valorization system.
Collapse
Affiliation(s)
| | | | | | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (M.d.l.Á.R.); (J.Q.); (P.A.); (R.P.)
| |
Collapse
|
5
|
Nazwar TA, Bal’afif F, Wardhana DW, Mustofa M. Impact of physical exercise (strength and stretching) on repairing craniovertebral and reducing neck pain: A systematic review and meta-analysis. JOURNAL OF CRANIOVERTEBRAL JUNCTION AND SPINE 2024; 15:266-279. [PMID: 39483836 PMCID: PMC11524567 DOI: 10.4103/jcvjs.jcvjs_107_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 11/03/2024] Open
Abstract
Background The craniovertebral (CV) junction is crucial for head support, mobility, and protecting the upper spinal cord and vital nerve structures. Disorders in this area can cause severe symptoms such as neck pain, restricted movement, and neurological issues such as headaches and balance problems. Exercise and physical activity improves muscle strength, flexibility, joint stability, reducing pain, and enhancing joint function, while specifically for the CV junction, exercise can relieve muscle tension, boost blood flow, and improve posture, although the specific impact on CV junction health remains underexplored. Methods A comprehensive literature search was conducted using databases MEDLINE, Cochrane, Lilacs, and ScienceDirect, alongside manual searches through reference lists. The review focuses on exercise and CV junction issues and includes randomized controlled trials, cohort or case-control studies, and systematic reviews. Primary outcomes include pain levels, joint mobility, function, and quality of life. Results Results yield four meta-analyses with corrective exercise and conventional exercise in improving forward head posture risk difference 0.00 (-0.09, 0.09) 95% confidence interval (CI), between cervical and thoracic exercises odds ratio 1.04 (0.59, 1.84) 95% CI. Comparing exercise treatment and physiotherapy showed risk difference 0.11 (-0.10, 0.32) 95% CI and the comparative analysis between training and no treatment showed risk difference 0.09 (-0.01, 0.20) 95% CI. Conclusion Exercise-based rehabilitation programs tailored to patients with CV junction problems offer robust evidence, benefiting clinical management, and prevention efforts.
Collapse
Affiliation(s)
- Tommy Alfandy Nazwar
- Department of Surgery, Division of Neurosurgery, Brawijaya University/Saiful Anwar Hospital, Malang, East Java, Indonesia
| | - Farhad Bal’afif
- Department of Surgery, Division of Neurosurgery, Brawijaya University/Saiful Anwar Hospital, Malang, East Java, Indonesia
| | - Donny Wisnu Wardhana
- Department of Surgery, Division of Neurosurgery, Brawijaya University/Saiful Anwar Hospital, Malang, East Java, Indonesia
| | - Mustofa Mustofa
- Department of Surgery, Division of Neurosurgery, Brawijaya University/Saiful Anwar Hospital, Malang, East Java, Indonesia
| |
Collapse
|
6
|
Mao C, Chen Y, Liu T, Ye P, Wang Y, Chen X, Fu H, Wang Y, Wang K. Freezing pre-treatment improves radio frequency explosion puffing (RFEP) quality by altering the cellular structure of purple sweet potato [Ipomoea batatas (L) Lam.]. Food Res Int 2024; 184:114265. [PMID: 38609243 DOI: 10.1016/j.foodres.2024.114265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Radio frequency explosion puffing (RFEP) is a novel oil-free puffing technique used to produce crispy textured and nutritious puffed snacks. This study aimed to investigate the effects of freezing at different temperatures (-20 °C, -40 °C, -80 °C) for14 h and freezing times (1 and 2 times) on the cellular structure of purple sweet potato and the quality of RFEP chips. The analysis of cell microstructure, conductivity, and rheology revealed that higher freezing temperatures and more freezing times resulted in increased damage to the cellular structure, leading to greater cell membrane permeability and decreased cell wall stiffness. However, excessive damage to cellular structure caused tissue structure to collapse. Compared with the control group (4 °C), the RFEP sample pre-frozen once at -40 °C had a 47.13 % increase in puffing ratio and a 61.93 % increase in crispness, while hardness decreased by 23.44 % (p < 0.05). There was no significant change in anthocyanin retention or color difference. X-ray microtomography demonstrated that the RFEP sample pre-frozen once at -40 °C exhibited a more homogeneous morphology and uniform pore distribution, resulting in the highest overall acceptability. In conclusion, freezing pre-treatment before RFEP can significantly enhance the puffing quality, making this an effective method for preparing oil-free puffing products for fruits and vegetables.
Collapse
Affiliation(s)
- Chao Mao
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China
| | - Yurui Chen
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China
| | - Tong Liu
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China
| | - Pengfei Ye
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China
| | - Yequn Wang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China
| | - Xiangwei Chen
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China
| | - Hongfei Fu
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China
| | - Yunyang Wang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China.
| | - Ke Wang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China; School of Food Science, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang 453003, China.
| |
Collapse
|
7
|
Zhang G, Zhong Y, Zhang X, Wang Y, Sun Y, Li X, Liu Z, Liang J. Flavor Characteristics, Antioxidant Activity and In Vitro Digestion Properties of Bread with Large-Leaf Yellow Tea Powder. Foods 2024; 13:715. [PMID: 38472828 DOI: 10.3390/foods13050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Foods containing tea could be widely utilized due to the addition of good tea ingredients, especially large-leaf yellow tea, which is rich with a good flavor. Applying this change to bread containing tea would improve its product quality. In this research, large-leaf yellow tea bread (LYB), possessing a special flavor, was developed using ultrafine large-leaf yellow tea powder and flour as the main raw materials. The amount of ultrafine large-leaf yellow tea powder added to bread was optimized using texture, sensation, and specific volume as comprehensive evaluation indicators. At the optimal dosage, the free amino acids, volatile flavor compounds, antioxidant activity, and in vitro starch digestibility of LYB were measured. Response surface optimization experimental results showed that the comprehensive score of bread was highest when the added amount of ultrafine large-leaf yellow tea powder was 3%. In particular, compared to blank bread (BB), adding ultrafine large-leaf yellow tea powder into bread could effectively increase its amino acid composition, enhance its volatile flavor compounds, improve the antioxidant capacity, and reduce the digestibility of starch.
Collapse
Affiliation(s)
- Gexing Zhang
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yang Zhong
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinzhen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuqi Wang
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yue Sun
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xueling Li
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jin Liang
- State Key Laboratory of Tea Plant Biology and Utilization/International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
8
|
Dewi NKSM, Ramona Y, Saraswati MR, Wihandani DM, Wirasuta IMAG. The Potential of the Flavonoid Content of Ipomoea batatas L. as an Alternative Analog GLP-1 for Diabetes Type 2 Treatment-Systematic Review. Metabolites 2023; 14:29. [PMID: 38248832 PMCID: PMC10819535 DOI: 10.3390/metabo14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Ipomoea batatas L. (IBL) has gained significant popularity as a complementary therapy or herbal medicine in the treatment of anti-diabetes. This review seeks to explore the mechanism by which flavonoid compounds derived from IBL exert their anti-diabetic effects through the activation of GLP-1. The review article refers to the PRISMA guidelines. In order to carry out the literature search, electronic databases such as Science Direct, Crossref, Scopus, and Pubmed were utilized. The search query was based on specific keywords, including Ipomoea batatas OR sweet potato AND anti-diabetic OR hypoglycemic. After searching the databases, we found 1055 articles, but only 32 met the criteria for further review. IBL contains various compounds, including phenolic acid, flavonols, flavanols, flavones, and anthocyanins, which exhibit activity against anti-diabetes. Flavonols, flavanols, and flavones belong to a group of flavonoids that possess the ability to form complexes with AlCl3 and Ca2+. The intracellular L cells effectively retain Ca2+, leading to the subsequent release of GLP-1. Flavonols, flavones, and flavone groups have been found to strongly interact with DPP-IV, which inhibits the degradation of GLP-1. The anti-diabetic activity of IBL is attributed to the mechanism that effectively increases the duration of GLP-1 in the systemic system, thereby prolonging its half-life.
Collapse
Affiliation(s)
- Ni Kadek Santi Maha Dewi
- Doctoral Study Program, Faculty of Medicine, Udayana University, Denpasar 80232, Indonesia;
- Pharmacy Department, Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Indonesia
| | - Yan Ramona
- Biology Department, Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Indonesia;
| | - Made Ratna Saraswati
- Department of Internal Medicine, Faculty of Medicine, Udayana University, Denpasar 80232, Indonesia;
| | - Desak Made Wihandani
- Department of Biochemistry, Faculty of Medicine, Udayana University, Denpasar 80232, Indonesia;
| | - I Made Agus Gelgel Wirasuta
- Pharmacy Department, Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Indonesia
- Forensic Sciences Laboratory, Institute of Forensic Sciences and Criminology, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Indonesia
| |
Collapse
|
9
|
Arisanti CIS, Wirasuta IMAG, Musfiroh I, Ikram EHK, Muchtaridi M. Mechanism of Anti-Diabetic Activity from Sweet Potato ( Ipomoea batatas): A Systematic Review. Foods 2023; 12:2810. [PMID: 37509903 PMCID: PMC10378973 DOI: 10.3390/foods12142810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
This study aims to provide an overview of the compounds found in sweet potato (Ipomoea batatas) that contribute to its anti-diabetic activity and the mechanisms by which they act. A comprehensive literature search was conducted using electronic databases, such as PubMed, Scopus, and Science Direct, with specific search terms and Boolean operators. A total of 269 articles were initially retrieved, but after applying inclusion and exclusion criteria only 28 articles were selected for further review. Among the findings, four varieties of sweet potato were identified as having potential anti-diabetic properties. Phenolic acids, flavonols, flavanones, and anthocyanidins are responsible for the anti-diabetic activity of sweet potatoes. The anti-diabetic mechanism of sweet potatoes was determined using a combination of components with multi-target actions. The results of these studies provide evidence that Ipomoea batatas is effective in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Cokorda Istri Sri Arisanti
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Pharmacy Department, Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Bali 80361, Indonesia
| | - I Made Agus Gelgel Wirasuta
- Pharmacy Department, Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Bali 80361, Indonesia
| | - Ida Musfiroh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Emmy Hainida Khairul Ikram
- Centre for Dietetics Studies, Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia
- Integrated Nutrition Science and Therapy Research Group (INSPIRE), Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia
- Research Collaboration Center for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Collaboration Center for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| |
Collapse
|
10
|
Kou M, Li C, Song W, Shen Y, Tang W, Zhang Y, Wang X, Yan H, Gao R, Ahmad MQ, Li Q. Identification and functional characterization of a flavonol synthase gene from sweet potato [ Ipomoea batatas (L.) Lam.]. FRONTIERS IN PLANT SCIENCE 2023; 14:1181173. [PMID: 37235006 PMCID: PMC10206235 DOI: 10.3389/fpls.2023.1181173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Flavonol synthase (FLS) is a key enzyme of the flavonoid biosynthetic pathway, which catalyzes the conversion of dihydroflavonols into flavonols. In this study, the FLS gene IbFLS1 was cloned and characterized from sweet potato. The resulting IbFLS1 protein showed a high similarity with other plant FLSs. The conserved amino acids (HxDxnH motifs) binding ferrous iron and residues (RxS motifs) binding 2-oxoglutarate were found in IbFLS1 at conserved positions, as in other FLSs, suggesting that IbFLS1 belongs to the 2-oxoglutarate-dependent dioxygenases (2-ODD) superfamily. qRT-PCR analysis showed an organ-specific pattern of expression of the IbFLS1 gene, which was predominantly expressed in young leaves. The recombinant IbFLS1 protein could catalyze the conversion of dihydrokaempferol and dihydroquercetin to kaempferol and quercetin, respectively. The results of subcellular localization studies indicated that IbFLS1 was found mainly in the nucleus and cytomembrane. Furthermore, silencing the IbFLS gene in sweet potato changed the color of the leaves to purple, substantially inhibiting the expression of IbFLS1 and upregulating the expression of genes involved in the downstream pathway of anthocyanin biosynthesis (i.e., DFR, ANS, and UFGT). The total anthocyanin content in the leaves of the transgenic plants was dramatically increased, whereas the total flavonol content was significantly reduced. Thus, we conclude that IbFLS1 is involved in the flavonol biosynthetic pathway and is a potential candidate gene of color modification in sweet potato.
Collapse
Affiliation(s)
- Meng Kou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Chen Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Weihan Song
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Yifan Shen
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Hui Yan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Muhammad Qadir Ahmad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| |
Collapse
|
11
|
Bodjrenou DM, Li X, Lu X, Lei S, Zheng B, Zeng H. Resistant starch from sweet potatoes: Recent advancements and applications in the food sector. Int J Biol Macromol 2023; 225:13-26. [PMID: 36481330 DOI: 10.1016/j.ijbiomac.2022.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
In tropical and subtropical areas, tuber and root crops are staple foods and a key source of energy. Sweet potato (SP) is currently regarded as one of the world's top ten foods because of its diverse sizes, shapes, color, and health benefits. The resistant starch (RS) content of SP is substantial. It is predicted to become the cheapest item in the food industry due to its extensive variety, food stability, emulsifier and fat substitution capabilities, and as filler. As a result, interest in SP-sourced RS has recently increased. Due to their unique nutritional and functional qualities, novelty has become a popular research focus in recent years. This review will summarize the current understanding of SP starch components and their impact on the technological and physicochemical properties of produced starch for commercial viability. The importance of sweet potato RS in addressing future RS demand sustainability is emphasized. SPs are a viable alternative to tubers as a sustainable raw material for RS production. It has an advantage over tubers because of its intrinsic nutritional value and climatic endurance. Thermal, chemical, and enzymatic treatments are effective RS manufacturing procedures. The adaptability of sweet potato RS allows for a wide range of food applications.
Collapse
Affiliation(s)
- David Mahoudjro Bodjrenou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaodan Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Honliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Optimization of Major Extraction Variables to Improve Recovery of Anthocyanins from Elderberry by Response Surface Methodology. Processes (Basel) 2022. [DOI: 10.3390/pr11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Elderberry, which is well known for its richness in anthocyanin, is attracting attention in the bioindustry as a functional material with high antioxidant capacity. The aim of this study is to optimize extraction conditions to more effectively recover anthocyanins from elderberry. In a fundamental experiment to determine the suitable solvent, various GRAS reagents, such as acetone, ethanol, ethyl acetate, hexane, and isopropyl alcohol, were used, and total phenol and anthocyanin contents were detected as 9.0 mg/g-biomass and 5.1 mg/g-biomass, respectively, only in the extraction using ethanol. Therefore, ethanol was selected as the extraction solvent, and an experimental design was performed to derive a response surface model with temperature, time, and EtOH concentration as the main variables. The optimal conditions for maximal anthocyanin recovery were determined to be 20.0 °C, 15.0 min, and 40.9% ethanol, and the total anthocyanin content was 21.0 mg/g-biomass. In addition, the total phenol and flavonoid contents were detected as 67.4 mg/g-biomass and 43.8 mg/g-biomass, respectively. The very simple and economical extraction conditions suggested in this study contributed to improving the utilization potential of anthocyanin, a useful antioxidant derived from elderberry.
Collapse
|
13
|
Muhammad R, Ikram EHK, Md. Sharif MS, Md Nor N. The Physicochemical Analysis and Anthocyanin Level of Malaysian Purple Sweet Potato Cracker. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2022. [DOI: 10.12944/crnfsj.10.3.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Purple Sweet Potato (PSP) in Malaysia is an abandoned crop. Even though it has various health benefits and nutritional values, consumers, especially Malaysians, still lack purple sweet potato consumption. It has a high dietary fibre content, a low glycemic index, and contains proteins, minerals, polyphenols, and anthocyanin. The National Health Morbidity Survey (Malaysia) in 2019 reported that 94% of Malaysian adults lack fiber consumption in their dietary patterns. As a result, it may become an alternative crop for individuals who consume less nutrients and fibre as a result of dietary choices and health issues. This one-of-a-kind crop also contains anti-oxidative, hepatoprotective, anti-inflammatory, anti-tumor, anti-diabetic, anti-microbial, anti-obesity, and anti-aging qualities. Due to the lack of a commercial food product based on this crop, it has become an unpopular crop among Malaysians. Purple sweet potato makes only a few Malaysian sweets and traditional snacks. Nonetheless, Malaysian customers continue to ignore it. Thus, Purple Sweet Potato Cracker was made, and a proximate analysis was conducted to examine its physicochemical content. It was found that the newly developed PSP crackers were high in fiber, vitamins, and minerals, as well as in calcium (1332.08 mg/kg) and contained anthocyanins of 6.68 mg/L. Besides that, this special cracker is free from food preservatives without coloring agents and additives. The processing of Purple Sweet Potato Cracker carries important features for small-medium entrepreneurs, which will contribute to the Malaysian economy perspectives, as it has a good potential to be marketed in domestic and international commercial food outlets.
Collapse
Affiliation(s)
- Rosmaliza Muhammad
- 1Department of Culinary Arts and Gastronomy, Faculty of Hotel and Tourism Management, Universiti Teknologi MARA, Malaysia
| | | | - Mohd Shazali Md. Sharif
- 1Department of Culinary Arts and Gastronomy, Faculty of Hotel and Tourism Management, Universiti Teknologi MARA, Malaysia
| | - Norazmir Md Nor
- 3Maternal, Infant and Young Child Nutrition (Mi-Child) Research Group, Faculty of Health Sciences, Universiti Teknologi MARA, Malaysia
| |
Collapse
|
14
|
Zhang X, Gao Y, Wang R, Sun Y, Li X, Liang J. Effects of Adding Blueberry Residue Powder and Extrusion Processing on Nutritional Components, Antioxidant Activity and Volatile Organic Compounds of Indica Rice Flour. BIOLOGY 2022; 11:biology11121817. [PMID: 36552326 PMCID: PMC9775675 DOI: 10.3390/biology11121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Using indica rice flour as the main raw material and adding blueberry residue powder, the indica rice expanded powder (REP) containing blueberry residue was prepared by extrusion and comminution. The effects of extrusion processing on the nutritional components, color difference, antioxidant performance and volatile organic compounds (VOCs) of indica rice expanded powder with or without blueberry residue were compared. The results showed that the contents of fat and total starch decreased significantly after extrusion, while the contents of total dietary fiber increased relatively. Especially, the effect of DPPH and ABTS+ free radical scavenging of the indica rice expanded flour was significantly improved by adding blueberry residue powder. A total of 104 volatile compounds were detected in the indica rice expanded powder with blueberry residue (REPBR) by Electronic Nose and GC-IMS analysis. Meanwhile, 86 volatile organic compounds were successfully identified. In addition, the contents of 16 aldehydes, 17 esters, 10 ketones and 8 alcohols increased significantly. Therefore, adding blueberry residue powder to indica rice flour for extrusion is an efficient and innovative processing method, which can significantly improve its nutritional value, antioxidant performance and flavor substances.
Collapse
Affiliation(s)
- Xinzhen Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
- Anhui Engineering Laboratory for Agro-Products Processing, Anhui Agricultural University, Hefei 230036, China
- College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yang Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
- Anhui Engineering Laboratory for Agro-Products Processing, Anhui Agricultural University, Hefei 230036, China
- College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ran Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
- Anhui Engineering Laboratory for Agro-Products Processing, Anhui Agricultural University, Hefei 230036, China
- College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yue Sun
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
- Anhui Engineering Laboratory for Agro-Products Processing, Anhui Agricultural University, Hefei 230036, China
- College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xueling Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
- Anhui Engineering Laboratory for Agro-Products Processing, Anhui Agricultural University, Hefei 230036, China
- College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jin Liang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
- Anhui Engineering Laboratory for Agro-Products Processing, Anhui Agricultural University, Hefei 230036, China
- College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence:
| |
Collapse
|
15
|
Machine and Deep Learning in the Evaluation of Selected Qualitative Characteristics of Sweet Potatoes Obtained under Different Convective Drying Conditions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper discusses the use of various methods to distinguish between slices of sweet potato dried in different conditions. The drying conditions varied in terms of temperature, the values were: 60 °C, 70 °C, 80 °C, and 90 °C. Examination methods included instrumental texture analysis using a texturometer and digital texture analysis based on macroscopic images. Classification of acquired data involved the use of machine learning techniques using various types of artificial neural networks, such as convolutional neural networks (CNNs) and multi-layer perceptron (MLP). As a result, in the convective drying, changes in color darkening were found in products with the following temperature values: 60 °C (L = 83.41), 70 °C (L = 81.11), 80 °C (L = 79.02), and 90 °C (L = 75.53). The best-generated model achieved an overall classification efficiency of 77%. Sweet potato dried at 90 °C proved to be completely distinguishable from other classes, among which classification efficiency varied between 61–83% depending on the class. This means that image analysis using deep convolutional artificial neural networks is a valuable tool in the context of assessing the quality of convective-dried sweet potato slices.
Collapse
|
16
|
Jiang T, Ye S, Liao W, Wu M, He J, Mateus N, Oliveira H. The botanical profile, phytochemistry, biological activities and protected-delivery systems for purple sweet potato (Ipomoea batatas (L.) Lam.): An up-to-date review. Food Res Int 2022; 161:111811. [DOI: 10.1016/j.foodres.2022.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
|
17
|
He J, Ye S, Correia P, Fernandes I, Zhang R, Wu M, Freitas V, Mateus N, Oliveira H. Dietary polyglycosylated anthocyanins, the smart option? A comprehensive review on their health benefits and technological applications. Compr Rev Food Sci Food Saf 2022; 21:3096-3128. [PMID: 35534086 DOI: 10.1111/1541-4337.12970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023]
Abstract
Over the years, anthocyanins have emerged as one of the most enthralling groups of natural phenolic compounds and more than 700 distinct structures have already been identified, illustrating the exceptional variety spread in nature. The interest raised around anthocyanins goes way beyond their visually appealing colors and their acknowledged structural and biological properties have fueled intensive research toward their application in different contexts. However, the high susceptibility of monoglycosylated anthocyanins to degradation under certain external conditions might compromise their application. In that regard, polyglycosylated anthocyanins (PGA) might offer an alternative to overcome this issue, owing to their peculiar structure and consequent less predisposition to degradation. The most recent scientific and technological findings concerning PGA and their food sources are thoroughly described and discussed in this comprehensive review. Different issues, including their physical-chemical characteristics, consumption, bioavailability, and biological relevance in the context of different pathologies, are covered in detail, along with the most relevant prospective technological applications. Due to their complex structure and acyl groups, most of the PGA exhibit an overall higher stability than the monoglycosylated ones. Their versatility allows them to act in a wide range of pathologies, either by acting directly in molecular pathways or by modulating the disease environment attributing an added value to their food sources. Their recent usage for technological applications has also been particularly successful in different industry fields including food and smart packaging or in solar energy production systems. Altogether, this review aims to put into perspective the current state and future research on PGA and their food sources.
Collapse
Affiliation(s)
- Jingren He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Shuxin Ye
- Yun-Hong Group Co. Ltd, Wuhan, China
| | - Patrícia Correia
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Rui Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Muci Wu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nuno Mateus
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
18
|
Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. Molecules 2022; 27:molecules27103291. [PMID: 35630767 PMCID: PMC9144664 DOI: 10.3390/molecules27103291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Dyes play an important role in food, medicine, textile, and other industries, which make human life more colorful. With the increasing demand for food safety, the development of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (3) Results: 248 articles were included in this review. This review summarizes the research progress on natural dyes in the last ten years. According to structural features, natural dyes mainly include carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized. Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last 10 years are summarized, and the biological effects of dyes regarding illumination conditions. The disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their application. Here, some feasible strategies (potential resources, biotechnology, new extraction and separation strategies, strategies for improving stability) are described, which will contribute to the development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality tests and receive many regulatory approvals before their final entry into the market as food colorants or as drugs.
Collapse
|
19
|
Zhang R, Li M, Tang C, Jiang B, Yao Z, Mo X, Wang Z. Combining Metabolomics and Transcriptomics to Reveal the Mechanism of Coloration in Purple and Cream Mutant of Sweet Potato ( Ipomoea batatas L.). FRONTIERS IN PLANT SCIENCE 2022; 13:877695. [PMID: 35599902 PMCID: PMC9116297 DOI: 10.3389/fpls.2022.877695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/24/2022] [Indexed: 05/27/2023]
Abstract
Purple sweet potato is considered as a healthy food because of its high anthocyanins. To understand the coloring mechanism and quality change between purple-fleshed sweet potato (cv. Xuzi201) and its cream fleshed mutant (M1001), a combined metabolomic and transcriptomic analysis was performed. The metabolome data showed that 4 anthocyanins, 19 flavones, 6 flavanones, and 4 flavonols dramatically decreased in M1001, while the contents of 3 isoflavones, 3 flavonols, 4 catechins, and 2 proanthocyanins increased. Transcriptomic analyses indicated that the expression of 49 structural genes in the flavonoid pathway and transcription factors (TFs) (e.g., bHLH2, R2R3-MYB, MYB1) inducting anthocyanin biosynthesis were downregulated, but the repressor MYB44 was upregulated. The IbMYB1-2 gene was detected as a mutation gene in M1001, which is responsible for anthocyanin accumulation in the storage roots. Thus, the deficiency of purple color in the mutant is due to the lack of anthocyanin accumulation which was regulated by IbMYB1. Moreover, the accumulation of starch and aromatic volatiles was significantly different between Xuzi201 and M1001. These results not only revealed the mechanism of color mutation but also uncovered certain health-promoting compounds in sweet potato.
Collapse
Affiliation(s)
- Rong Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Ming Li
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chaochen Tang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Bingzhi Jiang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Zhufang Yao
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Xueying Mo
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Zhangying Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| |
Collapse
|
20
|
Tian JL, Si X, Shu C, Wang YH, Tan H, Zang ZH, Zhang WJ, Xie X, Chen Y, Li B. Synergistic Effects of Combined Anthocyanin and Metformin Treatment for Hyperglycemia In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1182-1195. [PMID: 35044756 DOI: 10.1021/acs.jafc.1c07799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mechanism underlying the hypoglycemic effect of the simultaneous use of metformin and anthocyanin-rich foods is not yet clear. Hence, the effects and possible mechanisms of action of these substances, alone and in combination, were evaluated in insulin-resistant HepG2 cells and a diabetic mouse model. The results indicated that anthocyanin and metformin had a significant synergistic effect on glucose consumption (CI < 0.9) compared with metformin alone in HepG2 cells. In the mouse model, combined treatment (50 and 100 mg/kg metformin + anthocyanin groups) demonstrated synergistic restorative effects on the blood glucose level, insulin resistance, and organ damage in the liver, pancreas, and ileum. Additionally, combined metformin and anthocyanin treatment suppressed protein tyrosine phosphatase 1B expression and regulated the PI3K/AKT/GSK3β pathway. Combined treatment also altered the gut microbial composition and structure by increasing the relative abundance of beneficial bacteria and the short-chain fatty acid content. These results suggest that the use of anthocyanins can enhance the efficacy of metformin treatment for hyperglycemia and provide a reference for further clinical research regarding nutrition and supplementary treatment.
Collapse
Affiliation(s)
- Jin-Long Tian
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Yue-Hua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Zhi-Huan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Wei-Jia Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Xu Xie
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| |
Collapse
|
21
|
Antigrowth effects of Kaempferia parviflora extract enriched in anthocyanidins on human ovarian cancer cells through Ca2+-ROS overload and mitochondrial dysfunction. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
A Correlation Study on In Vitro Physiological Activities of Soybean Cultivars, 19 Individual Isoflavone Derivatives, and Genetic Characteristics. Antioxidants (Basel) 2021; 10:antiox10122027. [PMID: 34943130 PMCID: PMC8698514 DOI: 10.3390/antiox10122027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/11/2022] Open
Abstract
The functionality of soybeans is an important factor in the selection and utilization of excellent soybean cultivars, and isoflavones are representative functional substances in soybeans, which exhibit effects on antioxidants, estrogen activity, and cancer, and prevent cardiovascular diseases. This study analyzed ABTS, DPPH, estrogen, ER (ER) alpha, UCP-1, and NO inhibition activities in 48 types of soybean cultivars, as well as the relationship with 19 isolated types of individual isoflavone derivatives. Statistical analysis was conducted to find individual isoflavone derivatives affecting physiological activities, revealing the high correlation of three types of derivatives: genistein 7-O-(6″-O-acetyl)glucoside (6″-O-acetylgenistin), genistein 7-O-(2″-O-apiosyl)glucoside, and glycitein. Based on these results, 15 types of soybean cultivars were selected (one control type, seven yellow types, six black types, and one green type), which have both high physiological activities and a high content of individual isoflavone derivatives. In addition, these high correlations were further verified through a genome-wide association study (GWAS) to determine the association between activities, substances, and genetic characteristics. This study comprehensively describes the relationship between the specific physiological activities of soybean resources, individual isoflavone derivative substances, and SNPs, which will be utilized for in-depth research, such as selection of excellent soybean resources with specific physiological activities.
Collapse
|
23
|
Wang Y, Ye Y, Wang L, Yin W, Liang J. Antioxidant activity and subcritical water extraction of anthocyanin from raspberry process optimization by response surface methodology. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Jokioja J, Yang B, Linderborg KM. Acylated anthocyanins: A review on their bioavailability and effects on postprandial carbohydrate metabolism and inflammation. Compr Rev Food Sci Food Saf 2021; 20:5570-5615. [PMID: 34611984 DOI: 10.1111/1541-4337.12836] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/31/2022]
Abstract
Anthocyanins, the natural red and purple colorants of berries, fruits, vegetables, and tubers, improve carbohydrate metabolism and decrease the risk factors of metabolic disorders, but their industrial use is limited by their chemical instability. Acylation of the glycosyl moieties of anthocyanins, however, changes the chemical properties of anthocyanins and provides enhanced stability. Thus, acylated anthocyanins are more usable as natural colorants and bioactive components of innovative functional foods. Acylated anthocyanins are common in pigmented vegetables and tubers, the consumption of which has the potential to increase the intake of health-promoting anthocyanins as part of the daily diet. For the first time, this review presents the current findings on bioavailability, absorption, metabolism, and health effects of acylated anthocyanins with comparison to more extensively investigated nonacylated anthocyanins. The structural differences between nonacylated and acylated anthocyanins lead to enhanced color stability, altered absorption, bioavailability, in vivo stability, and colonic degradation. The impact of phenolic metabolites and their potential health effects regardless of the low bioavailability of the parent anthocyanins as such is discussed. Here, purple-fleshed potatoes are presented as a globally available, eco-friendly model food rich in acylated anthocyanins, which further highlights the industrial possibilities and nutritional relevance of acylated anthocyanins. This work supports the academic community and industry in food research and development by reviewing the current literature and highlighting gaps of knowledge.
Collapse
Affiliation(s)
- Johanna Jokioja
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| | - Kaisa M Linderborg
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
25
|
Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Alam MK. A comprehensive review of sweet potato (Ipomoea batatas [L.] Lam): Revisiting the associated health benefits. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Luo D, Mu T, Sun H. Sweet potato ( Ipomoea batatas L.) leaf polyphenols ameliorate hyperglycemia in type 2 diabetes mellitus mice. Food Funct 2021; 12:4117-4131. [PMID: 33977940 DOI: 10.1039/d0fo02733b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The hypoglycemic effects and potential mechanism of sweet potato leaf polyphenols (SPLP) on type 2 diabetes mellitus (T2DM) were investigated. Results showed that oral administration of SPLP to mice could alleviate body weight loss, decrease fasting blood glucose levels (by 64.78%) and improve oral glucose tolerance compared with those of untreated diabetic mice. Furthermore, increased fasting serum insulin levels (by 100.11%), ameliorated insulin resistance and improved hepatic glycogen (by 126.78%) and muscle glycogen (increased by 135.85%) were observed in the SPLP treatment group. SPLP also could reverse dyslipidemia, as indicated by decreased total cholesterol, triglycerides, low density lipoprotein-cholesterol and promoted high density lipoprotein-cholesterol. Histopathological analysis revealed that SPLP could relieve liver inflammation and maintain the islet structure to inhibit β-cell apoptosis. A quantitative real-time polymerase chain reaction confirmed that SPLP could up-regulate the phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase-3β signaling pathway to improve glucose metabolism and up-regulate the phosphatidylinositol 3-kinase/protein kinase B/glucose transporter 4 signaling pathway in the skeletal muscle to enhance glucose transport. This study provides useful information to support the application of SPLP as a natural product for the treatment of T2DM.
Collapse
Affiliation(s)
- Dan Luo
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P.R. China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P.R. China.
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P.R. China.
| |
Collapse
|
28
|
Manzoor M, Singh J, Gani A, Noor N. Valorization of natural colors as health-promoting bioactive compounds: Phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem 2021; 362:130141. [PMID: 34091168 DOI: 10.1016/j.foodchem.2021.130141] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 01/17/2023]
Abstract
Color is the prime attribute with a large impact on consumers' perception, selection, and acceptance of foods. However, the belief in bio-safety protocols, health benefits, and the nutritional importance of food colors had focused the attention of the scientific community across the globe towards natural colorants that serve to replace their synthetic toxic counterparts. Moreover, multi-disciplinary applications of greener extraction techniques and their hyphenated counterparts for selective extraction of bioactive compounds is a hot topic focusing on process intensification, waste valorization, and retention of highly stable bioactive pigments from natural sources. In this article, we have reviewed available literature to provide all possible information on various aspects of natural colorants, including their sources, photochemistry and associated biological activities explored under in-vitro and in-vivo animal and human studies. However a particular focus is given on innovative technological approaches for the effective extraction of natural colors for nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Mehnaza Manzoor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India.
| | - Jagmohan Singh
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - Nairah Noor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India
| |
Collapse
|
29
|
Wang J, Li M, Wang C, Dai Y, Sun Y, Li X, Heider CG, Wu X, Liang J. Effect of extrusion processing and addition of purple sweet potatoes on the structural properties and in vitro digestibility of extruded rice. Food Funct 2021; 12:739-746. [PMID: 33350998 DOI: 10.1039/d0fo02074e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, extruded rice as a functional ingredient has been a hot area of research in food processing. In this study, extruded rice with purple sweet potato (ERPSP) was prepared. Moreover, the effects of extrusion and added purple sweet potato on the structure and in vitro digestibility of extruded rice were studied via numerous detection methods, such as scanning electron microscopy (SEM), water absorption index (WAI), water solubility index (WSI), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). SEM results showed that there were numerous pits and bubbles in the extruded rice. In particular, compared with raw rice, the WAI and WSI of ERPSP was higher, and the thermal properties also changed noticeably. The results of XRD and FT-IR spectroscopy showed that the semicrystalline structure of extruded rice changed from A-type to A + V-type mixture, and the relative crystallinity of extruded rice changed accordingly. In addition, a significantly lower equilibrium hydrolysis (C∞) and kinetic constant (k) were observed in ERPSP. The novel rice product made from broken rice by extrusion processing and addition of the purple sweet potato exhibited improved structural properties and reduced digestibility, which increased the potential value and application of broken rice in the food industry.
Collapse
Affiliation(s)
- Jiejie Wang
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Herawati ERN, Santosa U, Sentana S, Ariani D. Protective Effects of Anthocyanin Extract from Purple Sweet Potato ( Ipomoea batatas L.) on Blood MDA Levels, Liver and Renal Activity, and Blood Pressure of Hyperglycemic Rats. Prev Nutr Food Sci 2020; 25:375-379. [PMID: 33505931 PMCID: PMC7813593 DOI: 10.3746/pnf.2020.25.4.375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
There has been a dynamic progression in the study of purple sweet potatoes, particularly in regard to their antioxidant compounds, such as anthocyanins. Antioxidants can reduce oxidative stress due to hyperglycemia, therefore research into the protective effects of hyperglycemia is essential. This study was conducted to investigate the protective effects of anthocyanin extracts from purple sweet potatoes on blood malondialdehyde (MDA) levels, liver and renal activity, and blood pressure in hyperglycemic rats. Anthocyanin from purple sweet potato (APSP) was extracted with ethanol-citric acid 3% solvent. Twenty-four rats were split into four experimental groups: (i) healthy rats; (ii) hyperglycemic rats without anthocyanin treatment; (iii) hyperglycemic rats treated with APSP extract at a dose of 50 mg/kg; and (iv) hyperglycemic rats treated with APSP extract at a dose of 100 mg/kg. Rats received treatment for 35 days. The results showed that consumption of APSP significantly reduced levels of MDA in the blood, and liver and renal systems. APSP could reduce the urea and creatinine levels, which are indicative of improved renal function. In addition, APSP could decrease serum glutamate oxalacetate transaminase and serum glutamate pyruvate transaminase levels, indicative of protective activity of the extract on liver, and decrease systolic blood pressure. Accordingly, it was concluded that APSP could be developed as a functional food for treatment of diabetes.
Collapse
Affiliation(s)
| | - Umar Santosa
- Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Suharwadji Sentana
- Research Division for Natural Product Technology, Indonesian Institute of Sciences, Yogyakarta 55861, Indonesia
| | - Dini Ariani
- Research Division for Natural Product Technology, Indonesian Institute of Sciences, Yogyakarta 55861, Indonesia
| |
Collapse
|
31
|
The anti-inflammatory potential of protein-bound anthocyanin compounds from purple sweet potato in LPS-induced RAW264.7 macrophages. Food Res Int 2020; 137:109647. [DOI: 10.1016/j.foodres.2020.109647] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
|
32
|
Yang Y, Zhang JL, Zhou Q. Targets and mechanisms of dietary anthocyanins to combat hyperglycemia and hyperuricemia: a comprehensive review. Crit Rev Food Sci Nutr 2020; 62:1119-1143. [PMID: 33078617 DOI: 10.1080/10408398.2020.1835819] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hyperglycemia and hyperuricemia are both metabolic disorders related to excessive amount of metabolites in blood, which are considered as high risk factors for the development of many chronic diseases. Enzymes, cells, tissues and organs, which are relevant to metabolism and excretion of glucose and UA, are usually regarded to be the targets in treatment of hyperglycemia and hyperuricemia. Several drugs have been commonly applied to combat hyperglycemia and hyperuricemia through various targets but with unignorable side effects. Anthocyanins have become promising alternatives against hyperglycemia and hyperuricemia because of their bio-activities with little side effects. Structurally different anthocyanins from berry fruits, cherries and purple sweet potato lead to the diverse functional activity and property. This review is aimed to illustrate the specific targets that are available for anthocyanins from berry fruits, cherries and purple sweet potato in hyperglycemia and hyperuricemia management, as well as discuss the structure-activity relationship, and the underlying mechanisms associated with intracellular signaling pathway, anti-oxidative stress and anti-inflammation. In addition, the relationship of hyperglycemia and hyperuricemia, and the possibly regulative role of anthocyanins against them, along with the effects of anthocyanins in clinical trial are mentioned.
Collapse
Affiliation(s)
- Yang Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiu-Liang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Ministry of Education, Key Laboratory of Environment Correlative Dietology, Wuhan, China
| | - Qing Zhou
- Department of Pharmacy, Wuhan City Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Kim HJ, Koo KA, Park WS, Kang DM, Kim HS, Lee BY, Goo YM, Kim JH, Lee MK, Woo DK, Kwak SS, Ahn MJ. Anti-obesity activity of anthocyanin and carotenoid extracts from color-fleshed sweet potatoes. J Food Biochem 2020; 44:e13438. [PMID: 32812262 DOI: 10.1111/jfbc.13438] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/01/2020] [Accepted: 07/24/2020] [Indexed: 01/02/2023]
Abstract
The anti-obesity effects of anthocyanin and carotenoid extracts from color-fleshed potatoes were studied with 3T3-L1 cells in vitro and high-fat diet (HFD)-induced obese mice in vivo. Treatment of 3T3-L1 adipocytes with anthocyanin and carotenoid extracts, respectively, after differentiation induction significantly inhibited fat accumulation by 63.1 and 83.5%. Studies of adipogenesis inhibition showed that the anthocyanin extract acts at intermediate stages, whereas the carotenoid extract influences all the stages. The extracts significantly diminished triglyceride (TG) content and peroxisome proliferator-activated receptor gamma (PPARγ) protein expression during adipogenesis of the intermediate stage. Oral administration of anthocyanin and carotenoid extracts, respectively, to HFD-fed mice significantly reduced weight gain and restored TG levels to normal or lower as compared to the HFD-fed group with improvement of a lipid profile, TG to HDL-C ratio. Histological differences in liver tissues revealed that the extracts protected the liver tissue from adipogenesis by HFD fed. This research presents the first direct demonstration that the two pigment extracts from sweet potato exhibit anti-obesity activities. PRACTICAL APPLICATIONS: Anthocyanins and carotenoids are the main pigments of purple- and orange-fleshed sweet potatoes, respectively, which are highly nutritious foods with antidiabetic and antioxidant properties. Obesity is a rapidly growing health problem that increases major risk factors of several serious diseases including cardiovascular diseases, diabetes, and cancer. The results of this research suggest that anthocyanin and carotenoid-rich extracts from color-fleshed sweet potatoes may be useful as supplementary ingredients for the treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Hye-Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyung Ah Koo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Dong-Min Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Bo Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Min Goo
- Gyeongnam Oriental Anti-aging Institute, Sancheong, Republic of Korea
| | - Jung-Hwan Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Dong Kyun Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
34
|
Jiang T, Shuai X, Li J, Yang N, Deng L, Li S, He Y, Guo H, Li Y, He J. Protein-Bound Anthocyanin Compounds of Purple Sweet Potato Ameliorate Hyperglycemia by Regulating Hepatic Glucose Metabolism in High-Fat Diet/Streptozotocin-Induced Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1596-1608. [PMID: 31927925 DOI: 10.1021/acs.jafc.9b06916] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purple sweet potato is known as a rich source of protein and anthocyanins. Anthocyanins can form complexes with protein present in food products through non-covalent forces or covalent bonds during processing, transportation, and storage as their protein affinity. We evaluated the hypoglycemic effects of protein-bound anthocyanin compounds of purple sweet potato (p-BAC-PSP) and free anthocyanin compounds of purple sweet potato (FAC-PSP) in high-fat diet/streptozotocin-induced diabetic mice. The results showed that administration of both p-BAC-PSP and FAC-PSP improved diabetic condition, as evidenced by the improvement of glucose tolerance and lipid metabolism, and the decrease of oxidative stress and liver damage. For the mechanism study, we have found that p-BAC-PSP and FAC-PSP induced the expression of AMP-activated protein kinase in liver. With p-BAC-PSP or FAC-PSP treatment, glucose transporter type 2, the protein levels of glucokinase, and insulin receptor α were found to be improved significantly (p < 0.05). Glycolysis key genes, phosphofructokinase and pyruvate kinase, were upregulated in two treatment groups, while gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, were downregulated. Our findings suggested that p-BAC-PSP has great potential as a dietary supplement with hypoglycemic activity for general, pre-diabetic, and diabetic population.
Collapse
Affiliation(s)
- Tian Jiang
- School of Food Science and Engineering , Wuhan Polytechnic University , 430023 Wuhan , China
| | - Xiaoyan Shuai
- School of Food Science and Engineering , Wuhan Polytechnic University , 430023 Wuhan , China
| | - Jia Li
- School of Food Science and Engineering , Wuhan Polytechnic University , 430023 Wuhan , China
| | - Ning Yang
- School of Food Science and Engineering , Wuhan Polytechnic University , 430023 Wuhan , China
| | - Li Deng
- School of Food Science and Engineering , Wuhan Polytechnic University , 430023 Wuhan , China
| | - Shuyi Li
- School of Food Science and Engineering , Wuhan Polytechnic University , 430023 Wuhan , China
| | - Yi He
- School of Food Science and Engineering , Wuhan Polytechnic University , 430023 Wuhan , China
| | - Heng Guo
- Yun-Hong Group Co. Ltd. , 430206 Wuhan , China
| | - Yubao Li
- Department of Pharmacy , Wuhan No.1 Hospital , 430030 Wuhan , China
| | - Jingren He
- School of Food Science and Engineering , Wuhan Polytechnic University , 430023 Wuhan , China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products , Wuhan 430023 , China
| |
Collapse
|
35
|
Petropoulos SA, Sampaio SL, Di Gioia F, Tzortzakis N, Rouphael Y, Kyriacou MC, Ferreira I. Grown to be Blue-Antioxidant Properties and Health Effects of Colored Vegetables. Part I: Root Vegetables. Antioxidants (Basel) 2019; 8:E617. [PMID: 31817206 PMCID: PMC6943509 DOI: 10.3390/antiox8120617] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023] Open
Abstract
During the last few decades, the food and beverage industry faced increasing demand for the design of new functional food products free of synthetic compounds and artificial additives. Anthocyanins are widely used as natural colorants in various food products to replenish blue color losses during processing and to add blue color to colorless products, while other compounds such as carotenoids and betalains are considered as good sources of other shades. Root vegetables are well known for their broad palette of colors, and some species, such as black carrot and beet root, are already widely used as sources of natural colorants in the food and drug industry. Ongoing research aims at identifying alternative vegetable sources with diverse functional and structural features imparting beneficial effects onto human health. The current review provides a systematic description of colored root vegetables based on their belowground edible parts, and it highlights species and/or cultivars that present atypical colors, especially those containing pigment compounds responsible for hues of blue color. Finally, the main health effects and antioxidant properties associated with the presence of coloring compounds are presented, as well as the effects that processing treatments may have on chemical composition and coloring compounds in particular.
Collapse
Affiliation(s)
- Spyridon A. Petropoulos
- Crop Production and Rural Environment, Department of Agriculture, University of Thessaly, 38446 Nea Ionia, Greece
| | - Shirley L. Sampaio
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus;
| | - Isabel Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| |
Collapse
|
36
|
Strugała P, Dzydzan O, Brodyak I, Kucharska AZ, Kuropka P, Liuta M, Kaleta-Kuratewicz K, Przewodowska A, Michałowska D, Gabrielska J, Sybirna N. Antidiabetic and Antioxidative Potential of the Blue Congo Variety of Purple Potato Extract in Streptozotocin-Induced Diabetic Rats. Molecules 2019; 24:E3126. [PMID: 31466303 PMCID: PMC6749302 DOI: 10.3390/molecules24173126] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
This study was designed to evaluate the effects of purple potato extract of the Blue Congo variety (PP) on diabetes and its antioxidant activities after two-week administration tostreptozotocin (STZ)-induced diabetic rats. The activities of PP were evaluated at a dose of 165 mg/kg body weight (b.w.) by estimating biochemical changes in blood plasma and through a histopathological study of kidney, muscles, and liver tissue. We evaluated the effect of treatment with extract on glucose level, glycated hemoglobin, activities of enzymatic antioxidants (including superoxide dismutase, glutathione peroxidase, and catalase), and lipid peroxidation. Moreover, we determined advanced glycation end-products (AGEs), advanced oxidation protein products (AOPPs), and the level of oxidative modified proteins (OMPs) as markers of carbonyl-oxidative stress in rats with diabetes. Using high-performance liquid chromatography, we identified five anthocyanins and six phenolic acids in the extract from Blue Congo with the dominant acylated anthocyanin as petunidin-3-p-coumaroyl-rutinoside-5-glucoside. The administration of Blue Congo extract lowered blood glucose, improved glucose tolerance, and decreased the amount of glycated hemoglobin. Furthermore, PP demonstrated an antioxidative effect, suppressed malondialdehyde levels, and restored antioxidant enzyme activities in diabetic rats. After administration of PP, we also noticed inhibition of OMP, AGE, and AOPP formation in the rats' blood plasma.
Collapse
Affiliation(s)
- Paulina Strugała
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland.
| | - Olha Dzydzan
- Department of Biochemistry, Ivan Franko National University of Lviv, 4 Hrushevskyi St., Lviv 79005, Ukraine
| | - Iryna Brodyak
- Department of Biochemistry, Ivan Franko National University of Lviv, 4 Hrushevskyi St., Lviv 79005, Ukraine
| | - Alicja Z Kucharska
- Faculty of Biotechnology and Food Science, Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, J. Chełmońskiego 37/41, 51-630 Wrocław, Poland
| | - Piotr Kuropka
- Faculty of Veterinary Medicine, Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland
| | - Mariana Liuta
- Department of Biochemistry, Ivan Franko National University of Lviv, 4 Hrushevskyi St., Lviv 79005, Ukraine
| | - Katarzyna Kaleta-Kuratewicz
- Faculty of Veterinary Medicine, Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland
| | - Agnieszka Przewodowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Bonin Research Center, Bonin 3, 76-009 Bonin, Poland
| | - Dorota Michałowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Bonin Research Center, Bonin 3, 76-009 Bonin, Poland
| | - Janina Gabrielska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Natalia Sybirna
- Department of Biochemistry, Ivan Franko National University of Lviv, 4 Hrushevskyi St., Lviv 79005, Ukraine
| |
Collapse
|
37
|
Yea CS, Addelia Nevara G, Muhammad K, Ghazali HM, Karim R. Physical properties, resistant starch content and antioxidant profile of purple sweet potato powder after 12 months of storage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1620765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Chay Shyan Yea
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Gita Addelia Nevara
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Nutrition, Universitas Mohammad Natsir, Bukittinggi, Indonesia
| | - Kharidah Muhammad
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hasanah Mohd Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Roselina Karim
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
38
|
Chen Z, Li W, Guo Q, Xu L, Santhanam RK, Gao X, Chen Y, Wang C, Panichayupakaranant P, Chen H. Anthocyanins from dietary black soybean potentiate glucose uptake in L6 rat skeletal muscle cells via up-regulating phosphorylated Akt and GLUT4. J Funct Foods 2019; 52:663-669. [DOI: 10.1016/j.jff.2018.11.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|